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Abstract

The fluid equations, named after Claude-Louis Navier and George Gabriel Stokes, describe the motion of
fluid substances. These equations arise from applying Newton’s second law to fluid motion, together with the
assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of
velocity) and a pressure term - hence describing viscous flow. Due to specific of NS equations they could be
transformed to full/partial inhomogeneous parabolic differential equations: differential equations in respect of
space variables and the full differential equation in respect of time variable and time dependent inhomogeneous
part. Finally, orthogonal polynomials as the partial solutions of obtained Helmholtz equations were used for
derivation of analytical solution of incompressible fluid equations in 1D, 2D and 3D space for rectangular boundary.
Solution in 2D and 3D space for any shaped boundary was expressed in term of 2D and 3D global solution of
Helmholtz equation accordantly.

1 Introduction

In physics, the fluid equations, named after Claude-Louis Navier and George Gabriel Stokes, describe fluid substances
motion. These equations arise from applying Newton’s second law to fluid motion, together with the assumption that
the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure
term - hence describing viscous flow. Equations were introduced in 1822 by the French engineer Claude Louis Marie
Henri Navier [1] and successively re-obtained, by different arguments, by a several authors including Augustin-Louis
Cauchy in 1823 [2], Simeon Denis Poisson in 1829, Adhemar Jean Claude Barre de Saint-Venant in 1837, and, finally,
George Gabriel Stokes in 1845 [3]. Detailed and thorough analysis of the history of the fluid equations could be
found in by Olivier Darrigol [4]. The invention of the digital computer led to many changes. John von Neumann,
one of the CFD founding fathers, predicted already in 1946 that automatic computing machines’ would replace
the analytic solution of simplified flow equations by a numerical’ solution of the full nonlinear flow equations for
arbitrary geometries. Von Neumann suggested that this numerical approach would even make experimental fluid
dynamics obsolete. Von Neumann’s prediction did not fully come true, in the sense that both analytic theoretical
and experimental research still coexist with CFD. Crucial properties of CFD methods such as consistency, stability
and convergence need mathematical study [5].

Aims of this article are to propose new approach for solution of incompressible fluid equations. The article has
three basic parts: first part explains how to solve NS in one dimension, second part extend solution to two-dimensional
space and, finally, third part summarize with three-dimensional space.

2 Parabolic formulation of equations

Incompressible fluid equations are expressed as follow

ρ

(

∂v

∂t
+ (v · ∇)v

)

− µ∆v +∇p = f (1)

∂ρ

∂t
+∇ · (ρv) = 0 (2)
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where equation (2) for incompressible flow reduces to dρ
dt = 0 or ρ = const due to ∇ · v = 0. Equations of fluid

motion (1) could be expressed in full time derivative replacing covariant time derivative by

d

dt
=

∂

∂t
+ (v · ∇) (3)

So, we obtain
dv

dt
− a2∆v =

1

ρ
(−∇p+ f) (4)

3 inhomogeneous parabolic like equation for full time derivative, where a =
√

µ/ρ. Tensor of the inner pressure of
fluid for existing solution of velocities could be found by using of equations

pi
in = −pei + fiei + µ∇i(

3
∑

i=1

viei) (5)

where ei are eigenvectors of corresponding coordinate system.

3 Galilean transform invariance of Navier–Stokes PDEs

It is known fact that Galilean coordinate transform is invariance transform for Navier–Stokes equations [6].

Definition 3.1. A group G of transformations of v(r, t) is symmetry group of Navier–Stokes equations if and only

if ∀g ∈ G,v a NS solution =⇒ gv a NS solution.

Theorem 3.1. A Galilean coordinate transformation group

gGal
u

v(r, t) = v(r − ut, t) + u,u ∈ R
d

is symmetry group of Navier–Stokes equations.

Proof. Set
ṽ(r, t) = v(r − ut, t) + u (6)

Now we apply operator 3 onto ṽ

∂tṽ(r, t) = ∂tv(r − ut, t)− (u ·∇)v(r − ut, t) (7)

(ṽ ·∇)ṽ(r, t) = (v(r − ut, t) + u) ·∇v(r − ut, t) (8)

Summation of left and right parts gives

∂tṽ(r, t) + (ṽ ·∇)ṽ(r, t) = ∂tv(r − ut, t) + v(r − ut, t) ·∇v(r − ut, t) (9)

On other hand, the transformations of spatial derivatives with respect to the coordinates are

∂x = ∂xx
′ ·∇′ + ∂xt

′∂t′ = ∂x′ (10)

Corollary 3.2. For not constant u the displacement of coordinates system of each fluid parcel moving with velocity

u = v(r −
∫ t

t0
vdτ, t) transform full time derivative of Navier–Stokes equations into partial time derivative

Dv

Dt
= ∂tv(r

′, t) + ∂tr
′∂r′v(r′, t)

= ∂tv(r −

∫ t

t0

vdτ, t) + ∂t(r −

∫ t

t0

vdτ)∂r′v(r′, t)

= ∂tv(r −

∫ t

t0

vdτ, t) = ∂tv(r
′, t)

So, NS equations could be solved at first in partial time derivative form or local coordinate system in Lagrangian

point of view and than transformed into global coordinate system of Eulerean coordinates

v(r, t) = ṽ(r, t) + ṽ(r −

∫ t

t0

ṽdτ, t) (11)
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4 One dimensional inhomogeneous solution

Consider the initial-boundary value problem for v = v(x, t)

dv

dt
− a2∆v =

1

ρ
(−∇p+ f) in Ω× (0,∞) (12)

v(x, 0) = v0(x) x ∈ Ω (13)

∂v

∂n
= 0 on ∂Ω× (0,∞) (14)

where p = p(x, t) and f = f(x, t), Ω ⊂ R
n, n the exterior unit normal at the smooth parts of ∂Ω, a2 a positive

constant and v0(x) a given function.
So according to [7] equation (4), when x is scaled to a = 1, could be rewritten as follow

dv

dt
=

∂2v

∂x2
+Q(x, t), x ∈ Ω, t > 0 (15)

We expand v and Q in the eigenfunctions sin (nπxL ) on space Ω ∈ [0, L] where sin(nπxL ) and sin(mπx
L ) functions

orthogonality could be applied. So, we obtain

Q(x, t) =

∞
∑

n=1

qn(t) sin (
nπx

L
) (16)

with

qn(t) =
1

I1

∫

Ω

Q(x, t) sin (
nπx

L
)dx (17)

I1 =

∫

Ω

sin2 (
nπx

L
)dx =

L

2
(18)

and

v(x, t) =

∞
∑

n=1

un(t) sin (
nπx

L
) (19)

Thus we get the inhomogeneous ODE

u̇n(t) +
(nπ

L

)2

un(t) = qn(t), (20)

whose solution is

un(t) = un(0)e
(−(nπ/L)2t) +

t
∫

0

qn(τ)e
(−(nπ/L)2(t−τ))dτ (21)

where

un(0) =
1

I1

∫

Ω

v0(x) sin (
nπx

L
)dx (22)

Again, we substitute all obtained equations into (19) and have

v(x, t) =

∫

Ω

v0(s)(

∞
∑

n=1

1

I1
sin (

nπs

L
) sin (

nπx

L
)e(−(nπ/L)2t))ds

+

∫

Ω

ds

∫ t

0

Q(s, τ)(

∞
∑

n=1

1

I1
sin (

nπs

L
) sin (

nπx

L
)e(−(nπ/L)2(t−τ)))dτ (23)

Now we must apply continuity condition ∇·v = ∂
∂xv(x, t) = 0. This is equation of extreme for coordinate x. Solving

this equation gives extreme point xex. Finally, solution of 1D incompressible Navier-Stokes equation is

v(t) =

∫

Ω

v0(s)(

∞
∑

n=1

1

I1
sin (

nπs

L
) sin (

nπxex

L
) sin (−(nπ/L)2t))ds

+

∫

Ω

ds

∫ t

0

Q(s, τ)(

∞
∑

n=1

1

I1
sin (

nπs

L
) sin (

nπxex

L
) sin (−(nπ/L)2(t− τ)))dτ (24)
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If we investigate each point of fluid in moving coordinate system of this point, Galilean transform eq. (11) must by
applied.

5 Two dimensional inhomogeneous solution

Consider the initial-boundary value problem for v = v(x, y, t)

dvi

dt
− a2∆vi =

1

ρ
(−∇ip+ fi) in Ω× (0,∞) (25)

vi(x, y, 0) = vi0(x, y) x, y ∈ Ω (26)

∂vi

∂n
= 0 on ∂Ω× (0,∞) (27)

where p = p(x, y, t) and f = f(x, y, t), Ω ⊂ R
2n, n the exterior unit normal at the smooth parts of ∂Ω, a2 a positive

constant and vx0 (x, y), v
y
0 (x, y) a given function.

So, when x and y scale was determined to a = 1, equation (4) could be rewritten as follow

dvi

dt
=

∂2vi

∂x2
+

∂2vi

∂y2
+Qi(x, y, t), x, y ∈ Ω, t > 0 (28)

5.1 Rectangular boundary

We will expand v and Q in base of orthogonal functions. At first, we must find vector potential Qo of Q so that
Q = ∇×Qo. To any potential Qo, an arbitrary gradient field can be added to get another vector potential with the
same curl everywhere. For simplicity, the second component of Qo can be taken to be zero, since a gradient field can
take care of that if needed. This means that some equations simplify

−
∂Q1

o

∂x1
= Q1 (29)

∂Q1
o

∂x2
= Q2 (30)

These can be solved sequentially, namely Q1
o is determined using the first equation up to a function of x1, while Q1

o

is determined by the second equation, up to a function of x2. Than we expand Qo as follow

Qx
o =

∞
∑

m,n=1

qxmn(t) sin (
nπx

Lx
) sin (

mπy

Ly
) (31)

Now we could express vector Q as follow

Qx = −

∞
∑

m,n=1

qxmnp(t)
∂

∂x
sin (

nπx

Lx
) sin (

mπy

Ly
) (32)

Qy =

∞
∑

m,n=1

qxmnp(t)
∂

∂y
sin (

nπx

Lx
) sin (

mπy

Ly
) (33)

where

qxmn(t) =
1

Imn

∫∫

Ω

ds1ds2Q
1
o(s1, s2, t) sin (

nπs1
Ls1

) sin (
mπs2
Ls2

) (34)

and

Imn =

∫∫

Ω

dΩ(sin (
nπs1
Ls1

) sin (
mπs2
Ls2

))2 (35)

The same way we will find vector v for t = 0 by using equations (29) and (30). We must find vector potential vo of
v so that v = ∇× vo. Than we expand vo as follow

vxo =

∞
∑

m,n=1

ux
mn(0) sin (

nπx

Lx
) sin (

mπy

Ly
) (36)
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Now we could express vector v for any t as follow

vx = −

∞
∑

m,n=1

ux
mn(t)

∂

∂x
sin (

nπx

Lx
) sin (

mπy

Ly
) (37)

vy =
∞
∑

m,n=1

ux
mn(t)

∂

∂y
sin (

nπx

Lx
) sin (

mπy

Ly
) (38)

Thus we get the inhomogeneous ODE

u̇x
mn(t) + k2mnu

x
mn(t) = qxmn(t), (39)

k2mn =

(

nπ

Lx

)2

+

(

mπ

Ly

)2

(40)

whose solution is

ux
mn(t) = ux

mn(0)e
(−k2

mnt) +

∫ t

0

qxmn(τ)e
(−k2

mn(t−τ))dτ (41)

where

ux
mn(0) =

1

Imn

∫∫

Ω

vx0o(s1, s2) sin (
nπs1
Ls1

) sin (
mπs2
Ls2

)ds1ds2 (42)

Again, we substitute all obtained equations into (54) and have

vi(x, y, t) = (−1)i
∫∫

Ω

vx0o(s1, s2)(
∞
∑

m,n=1

1
Imn

S(ns1,ms2)
∂

∂xj
S(nx,my)e(−k2

mnpt))ds1ds2

+(−1)i
∫∫

Ω

ds1ds2
∫ t

0 Qx
o(s1, s2, τ)(

∞
∑

m,n=1

1
Imn

S(ns1,ms2)
∂

∂xj
S(nx,my)e(−k2

mnp(t−τ)))dτ (43)

∀[i, j] ∈ [[x, y], [y, x]] where

S(nx1,mx2) = sin (nπxLx
) sin (mπy

Ly
) (44)

If we investigate each point of fluid in moving coordinate system of this point, Galilean transform eq. (11) must by
applied.

5.2 Any shaped boundary

For any shaped boundary ∂Ω we will use the similar equations (32), (33)

Qi(x1, x2, t) = (−1)i
∞
∑

m,n=1

q1mn(t)
∂

∂xj
H∂Ω,k(nx1,mx2) (45)

where i 6= j and equations (37) and (38) for velocities

vi(x1, x2, t) = (−1)i
∞
∑

m,n=1

u1
mn(t)

∂

∂xj
H∂Ω,k(nx1,mx2) (46)

where H∂Ω,k(nx,my) are partial solutions of Helmholtz 2D equation for given boundary ∂Ω. and could be taken
for example from [9]. The equations of inverse curl operator in any coordinate system could be obtained by solving
equations (29) and (30). So, equation (43) transforms to

vi(x1, x2, t) = (−1)i
∞
∑

m,n=1

(v10mnf +Q1
mn)

Imn

∂

∂xj
H∂Ω,k(nx1,mx2)e

(−k2

mnpt) (47)

v10mnf =

∫∫

Ω

v10o(s1, s2)H∂Ω,k(ns1,ms2)dΩ (48)

Q1
mn =

∫∫

Ω

dΩ

∫ t

0

Q1
o(s1, s2, τ)H∂Ω,k(ns1,ms2)e

(k2

mnτ)dτ (49)

Imn =

∫∫

Ω

dΩ (H∂Ω,k(ns1,ms2))
2

(50)
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where ∀[i, j] ∈ [[x1, x2], [x2, x1]] and denotes coordinate indexes. If we investigate each point of fluid in moving
coordinate system of this point, Galilean transform eq. (11) must by applied.

6 Three dimensional inhomogeneous solution

Consider the initial-boundary value problem for v = v(x, y, z, t)

dvi

dt
− a2∆vi =

1

ρ
(−∇ip+ fi) in Ω× (0,∞) (51)

vi(x, y, z, 0) = vi0(x, y, z) x, y, z ∈ Ω (52)

∂vi

∂n
= 0 on ∂Ω× (0,∞) (53)

where p = p(x, y, z, t) and f = f(x, y, z, t), Ω ⊂ R
3n, n the exterior unit normal at the smooth parts of ∂Ω, a2 a

positive constant and vx0 (x, y, z), v
y
0 (x, y, z), v

z
0(x, y, z) a given function.

So, when x, y and z scale was determined to a = 1, equation (4) could be rewritten as follow

dvi

dt
=

∂2vi

∂x2
+

∂2vi

∂y2
+

∂2vi

∂z2
+Qi(x, y, z, t), x, y, z ∈ Ω, t > 0. (54)

6.1 Rectangular boundary

We will expand v and Q in base of orthogonal functions. At first, we must find vector potential Qo of Q so that
Q = ∇×Qo. To any potential Qo, an arbitrary gradient field can be added to get another vector potential with the
same curl everywhere. For simplicity, the third component of Qo can be taken to be zero, since a gradient field can
take care of that if needed. This means that some equations simplify

−
∂Q2

o

∂x3
= Q1 (55)

∂Q1
o

∂x3
= Q2 (56)

∂Q2
o

∂x1
−

∂Q1
o

∂x2
= Q3 (57)

These can be solved sequentially, namely Q2
o is determined using the first equation up to a function of x1 and x3,

while Q1
o is determined by the second equation, up to a function of x2 and x3. The third equation can then be solved

provided our solvability conditions holds. Than we expand Qo as follow

Qi
o =

∞
∑

m,n,p=1

qimnp(t) sin (
nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
), ∀i ∈ [1, 2] (58)

where qzmnp = 0. Now we could express vector Q as follow

Qx =

∞
∑

m,n,p=1

(qymnp(t)
∂

∂y
− qzmnp(t)

∂

∂z
) sin (

nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
) (59)

Qy =

∞
∑

m,n,p=1

(qzmnp(t)
∂

∂z
− qxmnp(t)

∂

∂x
) sin (

nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
) (60)

Qz =

∞
∑

m,n,p=1

(qxmnp(t)
∂

∂x
− qymnp(t)

∂

∂y
) sin (

nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
) (61)

where

qimnp(t) =
1

Imnp

∫∫∫

Ω

ds1ds2ds3Q
i
o(s1, s2, s3, t) sin (

nπs1
Ls1

) sin (
mπs2
Ls2

) sin (
pπs3
Ls3

) (62)

and

Imnp =

∫∫∫

Ω

ds1ds2ds3(sin (
nπs1
Ls1

) sin (
mπs2
Ls2

) sin (
pπs3
Ls3

))2 (63)
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The same way we will find vector v for t = 0 by using equation (55), (56) and (57). Than we expand vo as follow

vio =

∞
∑

m,n,p=1

ui
mnp(0) sin (

nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
), ∀i ∈ [1, 2] (64)

Now we could express vector v for any t as follow

vx =

∞
∑

m,n,p=1

(uy
mnp(t)

∂

∂y
− uz

mnp(t)
∂

∂z
) sin (

nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
) (65)

vy =

∞
∑

m,n,p=1

(uz
mnp(t)

∂

∂z
− ux

mnp(t)
∂

∂x
) sin (

nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
) (66)

vz =

∞
∑

m,n,p=1

(ux
mnp(t)

∂

∂x
− uy

mnp(t)
∂

∂y
) sin (

nπx

Lx
) sin (

mπy

Ly
) sin (

pπz

Lz
) (67)

where uz
mnp(t) = 0. Thus we get the inhomogeneous ODE

u̇i
mnp(t) + k2mnpu

i
mnp(t) = qimnp(t), (68)

k2mnp =

(

nπ

Lx

)2

+

(

mπ

Ly

)2

+

(

pπ

Ly

)2

(69)

whose solution is

ui
mnp(t) = ui

mnp(0)e
(−k2

mnpt) +

∫ t

0

qimnp(τ)e
(−k2

mnp(t−τ))dτ (70)

where

ui
mnp(0) =

1

Imnp

∫∫∫

Ω

vi0o(s1, s2, s3) sin (
nπs1
Ls1

) sin (
mπs2
Ls2

) sin (
pπs3
Ls3

)ds1ds2ds3 (71)

Again, we substitute all obtained equations into (54) and have

vi(x, y, z, t) =
∫∫∫

Ω

vj0o(s1, s2, s3)(
∞
∑

m,n,p=1

1
Imnp

S(ns1,ms2, ps3)
∂

∂xj
S(nx,my, pz)e(−k2

mnpt))ds1ds2ds3

−
∫∫∫

Ω

vl0o(s1, s2, s3)(
∞
∑

m,n,p=1

1
Imnp

S(ns1,ms2, s3)
∂

∂xl
S(nx,my, pz)e(−k2

mnpt))ds1ds2ds3

+
∫∫∫

Ω

ds1ds2ds3
∫ t

0 Qj
o(s1, s2, s3, τ)(

∞
∑

m,n,p=1

1
Imnp

S(ns1,ms2, ps3)
∂

∂xj
S(nx,my, pz)e(−k2

mnp(t−τ)))dτ

−
∫∫∫

Ω

ds1ds2ds3
∫ t

0 Q
l
o(s1, s2, s3, τ)(

∞
∑

m,n,p=1

1
Imnp

Smnp(ns1,ms2, ps3)
∂

∂xl
S(nx,my, pz)e(−k2

mnp(t−τ)))dτ (72)

∀[i, j, k] ∈ [[x, y, z], [y, z, x], [z, x, y]] where

S(nx1,mx2, px3) = sin (nπxLx
) sin (mπy

Ly
) sin (pπzLz

) (73)

If we investigate each point of fluid in moving coordinate system of this point, Galilean transform eq. (11) must by
applied.

6.2 Any shaped boundary

For any shaped boundary ∂Ω we will use the similar equations (59), (60), (61)

Qi(x1, x2, x3, t) =

∞
∑

m,n,p=1

(

qjmnp(t)
∂

∂xj
− qlmnp(t)

∂

∂xl

)

H∂Ω,k(nx1,mx2, px3) (74)

where ∀[i, j, l] ∈ [[x1, x2, x3], [x2, x3, x1], [x3, x1, x2]] and equations (65), (66) and (67) for velocities

vi(x1, x2, x3, t) =

∞
∑

m,n,p=1

(

uj
mnp(t)

∂

∂xj
− ul

mnp(t)
∂

∂xl

)

H∂Ω,k(nx1,mx2, px3) (75)
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where H∂Ω,k(nx,my, pz) are partial solutions of Helmholtz 3D equation for given boundary ∂Ω. and could be taken
for example from [9]. The equations of inverse curl operator in any coordinate system could be obtained from [10].
So, equation (72) transforms to

vi(x1, x2, x3, t) =
∞
∑

m,n,p=1

(
(vj0mnpf +Qj

mnp)

Imnp

∂

∂xj
−

(vl0mnpf +Ql
mnp)

Imnp

∂

∂xl
)H∂Ω,k(nx1,mx2, px3)e

(−k2

mnpt) (76)

vi0mnpf =

∫∫∫

Ω

vi0o(s1, s2, s3)H∂Ω,k(ns1,ms2, ps3)dΩ (77)

Qi
mnp =

∫∫∫

Ω

dΩ

∫ t

0

Qi
o(s1, s2, s3, τ)H∂Ω,k(ns1,ms2, ps3)e

(k2

mnpτ)dτ (78)

Imnp =

∫∫∫

Ω

dΩ (H∂Ω,k(ns1,ms2, ps3))
2 (79)

where ∀[i, j, k] ∈ [[x1, x2, x3], [x2, x3, x1], [x3, x1, x2]] and denotes coordinate indexes. If we investigate each point of
fluid in moving coordinate system of this point, Galilean transform eq. (11) must by applied.

7 Conclusions

Due to the form of fluid equations they could be transformed into the full/partial inhomogeneous parabolic differential
equations: partial differential equations in respect to space variables and full differential equations in respect to the
time variable and inhomogeneous time dependent part. Velocity and outer forces density components were expressed
in form of curl for obtaining solution satisfying continuity condition. Orthogonal polynomials as the partial solutions
of obtained Helmholtz equations were used for derivation of analytical solution of velocities for incompressible fluid in
1D, 2D and 3D space for rectangular boundary. Solution in 2D and 3D space for any shaped boundary was expressed
in term of 2D and 3D global solution of Helmholtz equation accordantly.
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