Vyacheslav Telnin

Increasing of dimention of our space from 4 to 16 through spinors.

Abstract

From the fact, that 2-dimensional basis spinors are complex, there are made two conclusions. The first is that it is possible to change them by 4-dimensional real basis spinors. The second is that it is possible to enter 12 more dimensions in addition to 4 ordinary dimensions of our space. There is found connection of the basis of that 16-dimensional space with the basis of 4-dimensional space of real basis spinors.

1). The inner complex structure of 2-dimensional basis spinors.

Let us consider ordinary 4-dimensional Minkowski space. It's metric tensor is : $n_{\mu\nu} = (n_{\mu}, n_{\nu})$

	\hat{n}_1	\hat{n}_2	n_3	n_4
n_1	1	0	0	0
n_2	0	-1	0	0
n_3	0	0	-1	0
n_4	0	0	0	-1
(1.1)				

From [1] we'll take the formule (3.1.20) for the connection of basis 4-vectors with the basis complex 2-spinors :

$$\mathbf{r}_{n_{1}} = \frac{1}{\sqrt{2}} \cdot (\mathbf{\xi}_{1} \otimes \mathbf{\xi}_{1}^{*} + \mathbf{\xi}_{2} \otimes \mathbf{\xi}_{2}^{*})$$

$$\mathbf{r}_{n_{2}} = \frac{1}{\sqrt{2}} \cdot (\mathbf{\xi}_{1} \otimes \mathbf{\xi}_{2}^{*} + \mathbf{\xi}_{2} \otimes \mathbf{\xi}_{1}^{*}) \qquad \mathbf{r}_{\mu} = n_{\mu}^{\alpha\beta} \cdot \mathbf{\xi}_{\alpha} \otimes \mathbf{\xi}_{\beta}^{*} \quad (1.2)$$

$$\mathbf{r}_{n_{3}} = \frac{i}{\sqrt{2}} \cdot (\mathbf{\xi}_{1} \otimes \mathbf{\xi}_{2}^{*} - \mathbf{\xi}_{2} \otimes \mathbf{\xi}_{1}^{*})$$

$$\mathbf{r}_{n_{4}} = \frac{1}{\sqrt{2}} \cdot (\mathbf{\xi}_{1} \otimes \mathbf{\xi}_{1}^{*} - \mathbf{\xi}_{2} \otimes \mathbf{\xi}_{2}^{*})$$

From that formule we get the metric tensors for ξ_{α} and ξ_{α}^* :

 $(\boldsymbol{\xi}_{\alpha}, \boldsymbol{\xi}_{\beta}) = \boldsymbol{\varepsilon}_{\alpha\beta} \qquad (\boldsymbol{\xi}_{\alpha}^{*}, \boldsymbol{\xi}_{\beta}^{*}) = \boldsymbol{\varepsilon}_{\alpha\beta} \qquad (1.3)$

	ξ_1	ξ_2	ξ _β
ξ_1	0	1	
ξ_2	-1	0	
ξα			$\epsilon_{\alpha\beta}$

It is written in [1] that $[(2.5.26)] \dot{\xi}_{\alpha}^*$ did not decompose along $\dot{\xi}_{\beta}$. Then we do so. Let us form vectors \dot{a}_{α} and \dot{b}_{α} so :

$$\mathbf{r}_{a_{\alpha}} = \frac{1}{\sqrt{2}} \cdot (\mathbf{\xi}_{\alpha} + \mathbf{\xi}_{\alpha}^{*}) \qquad \mathbf{r}_{a_{\alpha}}^{*} = \mathbf{r}_{\alpha} \qquad \alpha = 1, 2$$

$$\mathbf{r}_{b_{\alpha}} = \frac{i}{\sqrt{2}} \cdot (\mathbf{\xi}_{\alpha}^{*} - \mathbf{\xi}_{\alpha}) \qquad \mathbf{r}_{\alpha}^{*} = \mathbf{h}_{\alpha}$$
Then
$$\mathbf{r}_{\xi_{\alpha}} = \frac{1}{\sqrt{2}} \cdot (\mathbf{r}_{\alpha}^{*} + i \cdot \mathbf{h}_{\alpha})$$

$$\mathbf{r}_{\xi_{\alpha}}^{*} = \frac{1}{\sqrt{2}} \cdot (\mathbf{r}_{\alpha}^{*} - i \cdot \mathbf{h}_{\alpha}) \qquad (1.5)$$

And the equations (1.3) will take the form :

$$(\stackrel{\mathbf{r}}{a_{\alpha}}, \stackrel{\mathbf{r}}{a_{\beta}}) - (\stackrel{\mathbf{r}}{b_{\alpha}}, \stackrel{\mathbf{r}}{b_{\beta}}) + i \cdot ((\stackrel{\mathbf{r}}{a_{\alpha}}, \stackrel{\mathbf{r}}{b_{\beta}}) + (\stackrel{\mathbf{r}}{b_{\alpha}}, \stackrel{\mathbf{r}}{a_{\beta}})) = 2 \cdot \varepsilon_{\alpha\beta}$$

$$(\stackrel{\mathbf{r}}{a_{\alpha}}, \stackrel{\mathbf{r}}{a_{\beta}}) - (\stackrel{\mathbf{r}}{b_{\alpha}}, \stackrel{\mathbf{r}}{b_{\beta}}) - i \cdot ((\stackrel{\mathbf{r}}{a_{\alpha}}, \stackrel{\mathbf{r}}{b_{\beta}}) + (\stackrel{\mathbf{r}}{b_{\alpha}}, \stackrel{\mathbf{r}}{a_{\beta}})) = 2 \cdot \varepsilon_{\alpha\beta}$$

$$(1.6)$$

From the idea of simplicity we choose the next formule :

$$(\overset{\mathbf{r}}{a}_{\alpha}, \overset{\mathbf{r}}{b}_{\beta}) = (\overset{\mathbf{r}}{b}_{\alpha}, \overset{\mathbf{r}}{a}_{\beta}) = 0$$
 (1.7)

From the idea of simplicity we adopt :

$$(a_{\alpha}^{\mathbf{r}}, a_{\beta}^{\mathbf{r}}) = \varepsilon_{\alpha\beta}$$
 $(b_{\alpha}^{\mathbf{r}}, b_{\beta}^{\mathbf{r}}) = -\varepsilon_{\alpha\beta}$ (1.8)

Let us designate :

$$\mathbf{r}_{1} = \mathbf{a}_{1}$$
 $\mathbf{r}_{2} = \mathbf{a}_{2}$ $\mathbf{r}_{3} = \mathbf{b}_{1}$ $\mathbf{r}_{4} = \mathbf{b}_{2}$ (1.9)

Then

$$(c_{\mu}, c_{\nu}) = c_{\mu\nu}$$
 (1.10)

	a_1	a_2	b_1	b_2	c _μ
a_1	0	1	0	0	c_1
a_2	-1	0	0	0	\ddot{c}_2
b_1	0	0	0	-1	c_3
b_2	0	0	1	0	c_4
C _v	c_1	c_2	<i>c</i> ₃	c_4	C _{μν}

And we derive from this for the complex 2-dimensional basis spinors :

	ξ _β	ξ^*_β	u _β	
ξ_{α}	$\epsilon_{\alpha\beta}$	0		
ξ_{α}^{*}	0	$\epsilon_{\alpha\beta}$		
u _α			$(\dot{u}_{\alpha}, \dot{u}_{\beta})$	
(1.11)				

2). The 16-dimensional vector space.

Let us consider the following four 4-dimensional spaces (determine their bases) :

$$\begin{split} \mathbf{r} & m_{\mu} = n_{\mu}^{\alpha\beta} \cdot \mathbf{\xi}_{\alpha} \otimes \mathbf{\xi}_{\beta} \\ \mathbf{r} & n_{\mu} = n_{\mu}^{\alpha\beta} \cdot \mathbf{\xi}_{\alpha} \otimes \mathbf{\xi}_{\beta}^{*} \\ \mathbf{r} & \mu = 1, 2, 3, 4 \quad (2.1) \\ \mathbf{r} & p_{\mu} = n_{\mu}^{\alpha\beta} \cdot \mathbf{\xi}_{\alpha}^{*} \otimes \mathbf{\xi}_{\beta} \\ \mathbf{r} & q_{\mu} = n_{\mu}^{\alpha\beta} \cdot \mathbf{\xi}_{\alpha}^{*} \otimes \mathbf{\xi}_{\beta}^{*} \end{split}$$

From (1.1), (1.2), (1.11) there is following this scalar product of these basis vectors :

	m _v	n _v	p_{v}	\dot{q}_{v}
m_{μ}	$n_{\mu\nu}$	0	0	0
n_{μ}	0	$n_{\mu\nu}$	0	0
p_{μ}	0	0	$n_{\mu\nu}$	0
q_{μ}	0	0	0	$n_{\mu\nu}$

(2.2)

Let us designate

And, using (1.2), (1.5), (1.9), (2.1), we derive the "connection of bases" (cobases) - $e_{\mu}^{\alpha\beta}$:

$$\mathbf{r}_{\mu} = e_{\mu}^{\alpha\beta} \cdot \mathbf{r}_{\alpha} \otimes \mathbf{r}_{\beta} \qquad \mu = 1, 2, \dots, 16 \qquad \alpha = 1, 2, 3, 4 \quad (2.4)$$

Now we see that the space W with basis e_{μ} is the squared space V with the basis c_{α} :

$$W = V \otimes V \tag{2.5}$$

What is the metric tensor in W?

$$g_{\mu\nu} = (e_{\mu}, e_{\nu})$$

From (1.1), (2.2), (2.3) it follows, that along the main diagonal stand numbers :

It is possible to represent the formula (2.5) in other views :

$$W = V^2$$
 $V = W^{\frac{1}{2}}$ (2.6), (2.7)

That means, that the spinor space V is the power $\frac{1}{2}$ from the basis space W.

Literature:

1). R. Penrose, W. Rindler "Spinors and space-time." Volume 1, 1984

23/11-2007inRussianonwww.telnin.narod.ru12/11-2013in English on viXra.