A NEW CALCULUS ON THE RING OF SYMMETRIC FUNCTIONS AND ITS APPLICATIONS

Yusuke Iwahashi kumiawaseman@gmail.com

2013/10/30

Abstract

This paper develops a new calculus on the ring of symmetric functions $\Lambda_{\mathbb{Q}}$ and introduces its application. In the last of this paper, the author describes a new general method to expand any symmetric function in terms of a basis in $\Lambda_{\mathbb{Q}}$. For application of it, the author also mentions a general way to evaluate the transition matrix between any two bases in $\Lambda_{\mathbb{Q}}$.

Keywords: the ring of symmetric functions; combinatorics; representation theory; transition matrices

1 Notations and Definitions

Throughout this paper, $\mathbb{N} = \{0, 1, 2, 3, \dots\}, \lambda \vdash n$ denotes that λ is a partition of n. ϕ denotes a partition of 0. $\Lambda_{\mathbb{Q}}$ is the ring of symmetric functions in infinitely many variables x_1, x_2, x_3, \dots with \mathbb{Q} coefficients.

Basically, we use the notation and the definition of [2]. $p_n, h_n, e_n, m_\lambda, s_{\lambda/\mu}$ denote the power sum symmetric function, the complete homogeneous symmetric function, the elementary symmetric function, the monomial symmetric function and the skew schur symmetric function associated with the integer n or the partition λ , μ respectively. For any $f_n \in \Lambda_{\mathbb{Q}}, f_\lambda = f_{\lambda_1} f_{\lambda_2} f_{\lambda_3} \cdots$ is automatically defined.

Definition 1. \bigcirc_n is an linear transformation on Λ_{\bigcirc} , that has the following rules. $A, B \in$

 $\Lambda_{\mathbb{Q}}; \alpha, \beta \in \mathbb{Q}; n, m \in \mathbb{N}.$

$$\bigcirc_{0}A = A$$
$$\bigcirc_{n} (\bigcirc_{m}A) = \bigcirc_{m} (\bigcirc_{n}A)$$
$$\bigcirc_{n} (\alpha A + \beta B) = \alpha (\bigcirc_{n}A) + \beta (\bigcirc_{n}B)$$
$$\bigcirc_{n} (AB) = \sum_{m=0}^{n} (\bigcirc_{m}A) (\bigcirc_{n-m}B)$$

 \bigcirc_n^m denotes m times action of \bigcirc_n . Let us call \bigcirc_n 'ball putting operator' or 'n indistinguishable balls', \bigcirc_1^n 'n distinguishable balls', and $A \in \Lambda_{\mathbb{Q}}$ 'box' or 'boxes'. The following figures depict the reason for these names.

Definition 2. \bigcirc_n acts on the power sum symmetric function p_m $(m \ge 1)$ as following rules.

$$\bigcirc_n p_m = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases} , \text{ if } n \neq 0$$

Theorem 3. One can easily see that

$$\bigcirc_n p_m^l = \begin{cases} \binom{l}{n/m} p_m^{l-n/m} & m \mid n\\ 0 & m \nmid n \end{cases} , \text{ if } n \neq 0$$

Example 4.

$$\bigcirc_n p_1^m = \binom{m}{n} p_1^{m-n}$$

Definition 5. \bigcirc_n^{-1} denotes inverse operation of \bigcirc_n . For instance, $\bigcirc_n^{-1} \bigcirc_n A = A + B$, where *B* satisfies the condition $\bigcirc_n B = 0$. For example, $\bigcirc_1^{-1} p_1 = \frac{1}{2}p_1^2 + A$, where $\bigcirc_1 A = 0$. Let us call this 'ball picking operator'.

Because the power sum symmetric functions form a basis of $\Lambda_{\mathbb{Q}}$, any symmetric function can be expressed in terms of the power sum symmetric functions. Throughout the paper, we consider that symmetric function is a 'function' of the power sum symmetric function. For $A, q_n, r_\lambda \in \Lambda_{\mathbb{Q}}, A(q)$ denotes a symmetric function obtained by replacing p_n with q_n , and A(r) a symmetric function obtained by replacing p_λ with r_λ .

Note that this notation is different from the conventional notation in the area of symmetric functions, such as e(x). In this paper, we never care about the variables x_1, x_2, x_3, \cdots , but we always care about how a symmetric function is expressed in terms of the power sum symmetric function.

For convenience, we introduce other notations of substitution,

$$\begin{array}{c} A|_{p \to q} \\ A|_{p \to r} \end{array}$$

For instance, if $A = \frac{1}{2}p_2 + \frac{1}{2}p_1^2$, then

$$A(h) = \frac{1}{2}h_2 + \frac{1}{2}h_1^2 = \frac{1}{4}p_2 + \frac{3}{4}p_1^2$$
$$A(s) = \frac{1}{2}s_{(2)} + \frac{1}{2}s_{(1,1)} = \frac{1}{2}p_1^2$$

2 Equation Of Symmetric Function

The complete homogeneous symmetric functions are expressed by the power sum symmetric functions as follows.

$$h_0 = 1$$

$$h_1 = p_1$$

$$h_2 = \frac{1}{2}p_2 + \frac{1}{2}p_1^2$$

$$h_3 = \frac{1}{3}p_3 + \frac{1}{2}p_2p_1 + \frac{1}{6}p_1^3$$

One may notice that $\bigcirc_1 h_3 = h_2$ and $\bigcirc_2 h_3 = h_1$. Actually, h_n satisfies the following equation.

Lemma 6. The complete homogeneous symmetric function has equations below

$$h_0 = 1$$

$$\bigcirc_n h_m = h_{m-n} \tag{1}$$

$$h_m(0) = 0 \quad if \ m \neq 0 \tag{2}$$

If n > m, $\bigcap_n h_m = 0$. (2) states that h_n is homogeneous. One can see it as a definition of h_n .

Proof. It suffices to prove that the known relation $nh_n = \sum_{m=1}^n p_m h_{n-m}$ satisfies (2). \Box

Let us make sure that (2) yields p_n expression of h_n . First, let us evaluate h_1 . When n = 1, m = 1, (2) is $\bigcirc_1 h_1 = h_0 = 1$. We apply \bigcirc_1^{-1} to this, and get $h_1 = \bigcirc_1^{-1} 1 = p_1 + A$, where $\bigcirc_1 A = 0$. From the fact that h_1 is homogeneous, we can see that A = 0. Hence, we have $h_1 = p_1$.

Next, let us evaluate h_2 . When n = 1, m = 2, (2) is $\bigcirc_1 h_2 = h_1 = p_1$. We apply \bigcirc_1^{-1} to this, and get $h_2 = \bigcirc_1^{-1} p_1 = \frac{1}{2} p_1^2 + A$, where $\bigcirc_1 A = 0$. Furthermore, we apply \bigcirc_2 to (2), we get $\bigcirc_2 h_2 = \bigcirc_2 (\frac{1}{2} p_1^2 + A) = \frac{1}{2} + \bigcirc_2 A = h_0 = 1$. $\bigcirc_2 A = \frac{1}{2}$. We apply \bigcirc_2^{-1} to this, and get $A = \frac{1}{2} p_2 + B$, where $\bigcirc_1 B = \bigcirc_2 B = 0$. As the above, from the fact that h_2 is homogeneous, we can see that B = 0. Therefore, we finally obtain $h_2 = \frac{1}{2} p_2 + \frac{1}{2} p_1^2$.

Lemma 7. The elementary symmetric function has equations below

$$e_{0} = 1$$

$$\bigcirc_{n}e_{m} = \begin{cases} e_{m-n} & n = 0, 1\\ 0 & otherwise \end{cases}$$

$$e_{n}(0) = 0 \quad if \ n \neq 0 \qquad (3)$$

Proof. It suffices to prove that the known relation $ne_n = \sum_{m=1}^n (-1)^{m+1} p_m e_{n-m}$ satisfies (3).

Lemma 8. The monomial symmetric function has equations below

$$m_{\phi} = 1$$

$$\bigcirc_{n} m_{\lambda} = \begin{cases} m_{\lambda-\{n\}} & n \in \lambda \\ 0 & n \notin \lambda \end{cases} \quad if n \neq 0$$

$$m_{\lambda}(0) = 0 \quad if \lambda \neq \phi$$
(4)

Example 9.

$$\bigcirc_2 m_{(3,2,2)} = m_{(3,2)}$$

 $\bigcirc_1 m_{(3,2,2)} = 0$

Lemma 10. The skew schur symmetric function has equations below

$$s_{\lambda/\mu} = \begin{cases} 1 & \lambda = \mu \\ 0 & otherwise \end{cases} \quad if \ |\lambda| = |\mu| \tag{5}$$

$$\bigcirc_n s_{\lambda/\mu} = \sum_{\nu} s_{\lambda/\nu} \tag{6}$$

$$s_{\lambda/\mu}(0) = 0 \quad \text{if } \lambda \neq \mu$$

here ν runs over all $|\mu| + n$ brick young diagrams that are obtained from μ by adding at most one brick on each column.

Example 11.

$$\bigcirc_3 s_{\lambda/(1)} = s_{\lambda/(4)} + s_{\lambda/(3,1)}$$

Lemma 12. We introduce a new symmetric function as follows

$$I_{0} = 1$$

$$\bigcirc_{n}I_{m} = \begin{cases} \sum_{l=1}^{m}I_{l-1}I_{m-l} & \text{if } n = 1\\ \sum_{l=1}^{m-1}I_{l}\left(\bigcirc_{n-1}I_{m-l-1}\right) & \text{if } n > 1 \end{cases}$$

$$I_{n}(0) = 0 \quad \text{if } n \neq 0$$
(7)

Let us call it 'path-graph colouring symmetric function'. Because if $t \in \mathbb{N}$, then $I_n(t)$ equals chromatic polynomial of path-graph of n vertexes. One can check that $h_n = I_n(e)$, $e_n = I_n(h)$.

Lemma 13. The identity

$$\bigcirc_n \zeta = \zeta \tag{8}$$

$$\zeta(0) = 1$$

It is easily checked that $\zeta = h_0 + h_1 + h_2 + \cdots$. This symmetric function will play an important role in the application to enumerative combinatorics.

Example 14. The twelvefold way can be expressed in terms of my calculus. If n balls and m boxes exist, the twelvefold way is

ball	box	any f	surjective f	injective f
dist.	dist.	$\bigcirc_1^n \zeta^m _{p \to 0}$	$\bigcirc_{1}^{n} \left(\zeta - 1 \right)^{m} _{p \to 0}$	$\bigcirc_1^n p_1^m _{p \to 1}$
dist.	indist.	$\left \bigcirc_{1}^{n}h_{m}(\zeta)\right _{p\to 0}$	$\left. \bigcirc_{1}^{n} h_{m}(\zeta - 1) \right _{p \to 0}$	$\left \bigcirc_{1}^{n}h_{m}\right _{p\rightarrow1}$
indist.	dist.	$\bigcirc_n \zeta^m _{p \to 0}$	$\bigcirc_n (\zeta - 1)^m _{p \to 0}$	$\bigcirc_n p_1^m _{p \to 1}$
indist.	indist.	$\left \bigcirc_n h_m(\zeta)\right _{p\to 0}$	$\left \bigcirc_n h_m(\zeta-1)\right _{p\to 0}$	$\bigcirc_n h_m _{p \to 1}$

The information about the twelvefold way is available in [1].

3 Series Expansion Of Symmetric Function

Let $A \in \Lambda_{\mathbb{Q}}$, and B_{λ} be a basis of $\Lambda_{\mathbb{Q}}^{|\lambda|}$. A can be expanded in terms of B_{λ} .

$$A = A|_{p \to q} + ((\bigcirc_1 A)|_{p \to q}) (\bigcirc_1 B_{(1)})^{-1} (B_{(1)}|_{p \to q}) + ((\bigcirc_2 A)|_{p \to q} (\bigcirc_1^2 A)|_{p \to q}) (\bigcirc_2 B_{(2)} \bigcirc_1^2 B_{(2)} \\ \bigcirc_2 B_{(1,1)} \bigcirc_1^2 B_{(1,1)})^{-1} (B_{(2)}|_{p \to q} \\ B_{(1,1)}|_{p \to q}) + \cdots$$

Let us call this formula 'a Taylor series expansion of A by B around q'. As a special case, we obtain for $p \to 0$

$$A = A|_{p\to0} + ((\bigcirc_1 A)|_{p\to0}) (\bigcirc_1 B_{(1)})^{-1} (B_{(1)}) + ((\bigcirc_2 A)|_{p\to0} (\bigcirc_1^2 A)|_{p\to0}) \left(\bigcirc_2 B_{(2)} \bigcirc_1^2 B_{(2)} \\ \bigcirc_2 B_{(1,1)} \bigcirc_1^2 B_{(1,1)} \right)^{-1} \left(\begin{array}{c} B_{(2)} \\ B_{(1,1)} \end{array} \right) + \cdots$$

Let us call this formula 'a Maclaurin series expansion of A by B'. These formulas are useful for evaluating transition matrix between bases of $\Lambda_{\mathbb{Q}}$.

Corollary 15. One expands the complete homogeneous symmetric function h_n by the power sum symmetric function p around A and substitute $p \rightarrow B$, then one gets

$$h_n(A+B) = \sum_{m=0}^n h_m(A)h_{n-m}(B)$$

Example 16. When n = 3, we have

$$h_3(A+B) = \sum_{m=0}^3 h_m(A)h_{3-m}(B) =$$

$$\frac{1}{3}(A_3 + B_3) + \frac{1}{2}(A_2 + B_2)(A_1 + B_1) + \frac{1}{6}(A_1 + B_1)^3$$

= $1\left(\frac{1}{3}B_3 + \frac{1}{2}B_2B_1 + \frac{1}{6}B_1^3\right) + A_1\left(\frac{1}{2}B_2 + \frac{1}{2}B_1^2\right) + \left(\frac{1}{2}A_2 + \frac{1}{2}A_1^2\right)B_1 + \left(\frac{1}{3}A_3 + \frac{1}{2}A_2A_1 + \frac{1}{6}A_1^3\right)1$

Corollary 17. If A_{λ}, B_{λ} are the bases of $\Lambda^n_{\mathbb{Q}}$, the transition matrix between those two bases is easily obtained from a Maclaurin series expansion of A by B.

Example 18. the transition matrix from the monomial symmetric functions to the schur symmetric function of size 2 is

$$\begin{pmatrix} s_{(2)} \\ s_{(1,1)} \end{pmatrix} = \begin{pmatrix} \bigcirc_2 s_{(2)} & \bigcirc_1^2 s_{(2)} \\ \bigcirc_2 s_{(1,1)} & \bigcirc_1^2 s_{(1,1)} \end{pmatrix} \begin{pmatrix} \bigcirc_2 m_{(2)} & \bigcirc_1^2 m_{(2)} \\ \bigcirc_2 m_{(1,1)} & \bigcirc_1^2 m_{(1,1)} \end{pmatrix} \begin{pmatrix} m_{(2)} \\ m_{(1,1)} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} m_{(2)} \\ m_{(1,1)} \end{pmatrix}$$

The information about transition matrix is available in [2]

References

- [1] Enumerative Combinatorics Volume 1, 2, Richard P. Stanley
- [2] I. G. Macdonald, Symmetric functions and Hall polynomials Oxford Univ. Press, New York, 1995
- [3] Generalized Schur operators and Pieri's rule, Yasuhide Numata