A NEW CALCULUS ON THE RING OF SYMMETRIC FUNCTIONS AND ITS APPLICATIONS

Yusuke Iwahashi kumiawaseman@gmail.com

2013/10/30

Abstract

This paper develops a new calculus on the ring of symmetric functions $\Lambda_{\mathbb{Q}}$ and introduces its application. In the last of this paper, the author describes a new general method to expand any symmetric function in terms of a basis in $\Lambda_{\mathbb{Q}}$. For application of it, the author also mentions a general way to evaluate the transition matrix between any two bases in $\Lambda_{\mathbb{Q}}$.

Keywords: the ring of symmetric functions; combinatorics; representation theory; transition matrices

1 Notations and Definitions

Throughout this paper, $\mathbb{N} = \{0, 1, 2, 3, \dots\}$, $\lambda \vdash n$ denotes that λ is a partition of n. ϕ denotes a partition of 0. $\Lambda_{\mathbb{Q}}$ is the ring of symmetric functions in infinitely many variables x_1, x_2, x_3, \ldots with $\mathbb Q$ coefficients.

Basically, we use the notation and the definition of [2]. $p_n, h_n, e_n, m_\lambda, s_{\lambda/\mu}$ denote the power sum symmetric function, the complete homogeneous symmetric function, the elementary symmetric function, the monomial symmetric function and the skew schur symmetric function associated with the integer n or the partition λ , μ respectively. For any $f_n \in \Lambda_{\mathbb{Q}}$, $f_\lambda = f_{\lambda_1} f_{\lambda_2} f_{\lambda_3} \cdots$ is automatically defined.

Definition 1. \bigcirc ^{*n*} is an linear transformation on Λ _Q, that has the following rules. *A, B* \in

 $\Lambda_{\mathbb{Q}}; \alpha, \beta \in \mathbb{Q}; n, m \in \mathbb{N}.$

$$
\bigcirc_{0} A = A
$$

$$
\bigcirc_{n} (\bigcirc_{m} A) = \bigcirc_{m} (\bigcirc_{n} A)
$$

$$
\bigcirc_{n} (\alpha A + \beta B) = \alpha (\bigcirc_{n} A) + \beta (\bigcirc_{n} B)
$$

$$
\bigcirc_{n} (AB) = \sum_{m=0}^{n} (\bigcirc_{m} A) (\bigcirc_{n-m} B)
$$

 \bigcirc_n^m denotes m times action of \bigcirc_n . Let us call \bigcirc_n 'ball putting operator' or 'n indistinguishable balls', \bigcirc_1^n 'n distinguishable balls', and $A \in \Lambda_{\mathbb{Q}}$ 'box' or 'boxes'. The following figures depict the reason for these names.

Definition 2. \bigcirc ^{*n*} acts on the power sum symmetric function p_m ($m \ge 1$) as following rules. \overline{a}

$$
\bigcirc_n p_m = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases}
$$
, if $n \neq 0$

Theorem 3. *One can easily see that*

$$
\bigcirc_n p_m^l = \begin{cases} \binom{l}{n/m} p_m^{l-n/m} & m \mid n \\ 0 & m \nmid n \end{cases}, \text{ if } n \neq 0
$$

Example 4.

$$
\bigcirc_n p_1^m = \binom{m}{n} p_1^{m-n}
$$

Definition 5. \bigcirc_n^{-1} denotes inverse operation of \bigcirc_n . For instance, $\bigcirc_n^{-1} \bigcirc_n A = A + B$, where *B* satisfies the condition $\bigcirc_n B = 0$. For example, $\bigcirc_1^{-1} p_1 = \frac{1}{2}$ $\frac{1}{2}p_1^2 + A$, where $\bigcirc_1 A = 0$. Let us call this 'ball picking operator'.

Because the power sum symmetric functions form a basis of $\Lambda_{\mathbb{Q}}$, any symmetric function can be expressed in terms of the power sum symmetric functions. Throughout the paper, we consider that symmetric function is a 'function' of the power sum symmetric function. For $A, q_n, r_\lambda \in \Lambda_{\mathbb{Q}}, A(q)$ denotes a symmetric function obtained by replacing p_n with q_n , and $A(r)$ a symmetric function obtained by replacing p_λ with r_λ .

Note that this notation is different from the conventional notation in the area of symmetric functions, such as $e(x)$. In this paper, we never care about the variables x_1, x_2, x_3, \dots , but we always care about how a symmetric function is expressed in terms of the power sum symmetric function.

For convenience, we introduce other notations of substitution,

$$
\begin{array}{c}\nA|_{p\to q} \\
A|_{p\to r}\n\end{array}
$$

For instance, if $A = \frac{1}{2}$ $rac{1}{2}p_2 + \frac{1}{2}$ $\frac{1}{2}p_1^2$, then

$$
A(h) = \frac{1}{2}h_2 + \frac{1}{2}h_1^2 = \frac{1}{4}p_2 + \frac{3}{4}p_1^2
$$

$$
A(s) = \frac{1}{2}s_{(2)} + \frac{1}{2}s_{(1,1)} = \frac{1}{2}p_1^2
$$

2 Equation Of Symmetric Function

The complete homogeneous symmetric functions are expressed by the power sum symmetric functions as follows.

$$
h_0 = 1
$$

\n
$$
h_1 = p_1
$$

\n
$$
h_2 = \frac{1}{2}p_2 + \frac{1}{2}p_1^2
$$

\n
$$
h_3 = \frac{1}{3}p_3 + \frac{1}{2}p_2p_1 + \frac{1}{6}p_1^3
$$

One may notice that $\bigcirc_1 h_3 = h_2$ and $\bigcirc_2 h_3 = h_1$. Actually, h_n satisfies the following equation.

Lemma 6. *The complete homogeneous symmetric function has equations below*

$$
h_0\ =\ 1
$$

$$
\bigcirc_n h_m = h_{m-n} \tag{1}
$$

$$
h_m(0) = 0 \quad \text{if } m \neq 0 \tag{2}
$$

If $n > m$, $\bigcirc_n h_m = 0$. (2) states that h_n is homogeneous. One can see it as a definition of h_n .

Proof. It suffices to prove that the known relation $nh_n = \sum_{m=1}^n p_m h_{n-m}$ satisfies (2).

Let us make sure that (2) yields p_n expression of h_n . First, let us evaluate h_1 . When $n = 1, m = 1, (2)$ is $\bigcirc_{1} h_{1} = h_{0} = 1$. We apply \bigcirc_{1}^{-1} to this, and get $h_{1} = \bigcirc_{1}^{-1} 1 = p_{1} + A$, where $\bigcirc_1 A = 0$. From the fact that h_1 is homogeneous, we can see that $A = 0$. Hence, we have $h_1 = p_1$.

Next, let us evaluate h_2 . When $n = 1, m = 2, (2)$ is $\bigcirc_{1}h_2 = h_1 = p_1$. We apply \bigcirc_{1}^{-1} to this, and get $h_2 = \bigcirc_1^{-1} p_1 = \frac{1}{2}$ $\frac{1}{2}p_1^2 + A$, where $\bigcirc_1 A = 0$. Furthermore, we apply \bigcirc_2 to (2), we get $\bigcirc_{2}h_{2} = \bigcirc_{2}(\frac{1}{2})$ $\frac{1}{2}p_1^2 + \bar{A}$) = $\frac{1}{2} + \bigcirc 2A = h_0 = 1$. $\bigcirc 2A = \frac{1}{2}$ $\frac{1}{2}$. We apply \bigcirc ^{−1} to this, and get $A = \frac{1}{2}$ $\frac{1}{2}p_2 + B$, where $\bigcirc_1 B = \bigcirc_2 B = 0$. As the above, from the fact that h_2 is homogeneous, we can see that $B = 0$. Therefore, we finally obtain $h_2 = \frac{1}{2}$ $rac{1}{2}p_2 + \frac{1}{2}$ $\frac{1}{2}p_1^2$.

Lemma 7. *The elementary symmetric function has equations below*

$$
e_0 = 1
$$

\n
$$
\bigcirc_{n} e_m = \begin{cases} e_{m-n} & n = 0, 1 \\ 0 & otherwise \end{cases}
$$
 (3)
\n
$$
e_n(0) = 0 \text{ if } n \neq 0
$$

Proof. It suffices to prove that the known relation $ne_n = \sum_{m=1}^n (-1)^{m+1} p_m e_{n-m}$ satisfies (3). \Box

Lemma 8. *The monomial symmetric function has equations below*

$$
m_{\phi} = 1
$$

\n
$$
\bigcap_{n} m_{\lambda} = \begin{cases} m_{\lambda - \{n\}} & n \in \lambda \\ 0 & n \notin \lambda \end{cases} \quad \text{if } n \neq 0
$$

\n
$$
m_{\lambda}(0) = 0 \quad \text{if } \lambda \neq \phi
$$
\n(4)

Example 9.

$$
\bigcirc_2 m_{(3,2,2)} = m_{(3,2)} \n\bigcirc_1 m_{(3,2,2)} = 0
$$

Lemma 10. *The skew schur symmetric function has equations below*

$$
s_{\lambda/\mu} = \begin{cases} 1 & \lambda = \mu \\ 0 & otherwise \end{cases} \qquad \text{if } |\lambda| = |\mu| \tag{5}
$$

$$
\bigcirc_n s_{\lambda/\mu} = \sum_{\nu} s_{\lambda/\nu} \tag{6}
$$

$$
s_{\lambda/\mu}(0) = 0 \quad \text{if } \lambda \neq \mu
$$

here ν runs over all $|\mu| + n$ *brick young diagrams that are obtained from* μ *by adding at most one brick on each column.*

Example 11.

$$
\bigcirc_3 s_{\lambda/(1)} = s_{\lambda/(4)} + s_{\lambda/(3,1)}
$$

Lemma 12. *We introduce a new symmetric function as follows*

$$
I_0 = 1
$$

\n
$$
\bigcirc_n I_m = \begin{cases} \sum_{l=1}^m I_{l-1} I_{m-l} & \text{if } n = 1\\ \sum_{l=1}^{m-1} I_l \left(\bigcirc_{n-1} I_{m-l-1} \right) & \text{if } n > 1 \end{cases}
$$
\n
$$
I_n(0) = 0 \text{ if } n \neq 0
$$
\n(7)

Let us call it 'path-graph colouring symmetric function'. Because if $t \in \mathbb{N}$, then $I_n(t)$ equals chromatic polynomial of path-graph of n vertexes. One can check that $h_n = I_n(e)$, $e_n = I_n(h).$

Lemma 13. *The identity*

$$
\begin{array}{rcl}\n\bigcirc_n \zeta & = & \zeta \\
\zeta(0) & = & 1\n\end{array}\n\tag{8}
$$

It is easily checked that $\zeta = h_0 + h_1 + h_2 + \cdots$. This symmetric function will play an important role in the application to enumerative combinatorics.

Example 14. The twelvefold way can be expressed in terms of my calculus. If n balls and m boxes exist, the the twelvefold way is

ball	box	any f	surjective f	injective f
dist.	dist.	$\bigcirc_1^n \zeta^m _{p\to 0}$	$O_1^n (\zeta - 1)^m _{p \to 0}$	$\left[\bigcirc_1^n p_1^m\right]_{p\to 1}$
dist.	indist.	$\left[\bigcirc^n_1 h_m(\zeta)\right]_{p\to 0}$	$\left[\bigcirc_1^n h_m(\zeta-1)\right]_{p\to 0}$	$\vert \bigcirc_1^n h_m \vert_{p \to 1}$
indist.	dist.	$\bigcirc_n \zeta^m _{p\to 0}$	$\bigcirc_n (\zeta - 1)^m \big _{p \to 0}$	$ \bigcirc_np_1^m _{p\to 1}$
indist.	indist.	$\bigcirc_n h_m(\zeta) _{p\to 0}$	$\bigcirc_n h_m(\zeta-1)\big _{p\to 0}$	$\bigcirc_n h_m\big _{p\to 1}$

The information about the twelvefold way is available in [1].

3 Series Expansion Of Symmetric Function

Let $A \in \Lambda_{\mathbb{Q}}$, and B_{λ} be a basis of $\Lambda_{\mathbb{Q}}^{|\lambda|}$. A can be expanded in terms of B_{λ} .

$$
A = A|_{p \to q} + ((\bigcirc_{1} A)|_{p \to q}) (\bigcirc_{1} B_{(1)})^{-1} (B_{(1)}|_{p \to q})
$$

+
$$
((\bigcirc_{2} A)|_{p \to q} (\bigcirc_{1}^{2} A)|_{p \to q}) (\bigcirc_{2} B_{(2)} \bigcirc_{1}^{2} B_{(2)})^{-1} (B_{(2)}|_{p \to q}) + \cdots
$$

$$
(\bigcirc_{2} B_{(1,1)} \bigcirc_{1}^{2} B_{(1,1)})^{-1} (B_{(1,1)}|_{p \to q}) + \cdots
$$

Let us call this formula 'a Taylor series expansion of A by B around q'. As a special case, we obtain for $p \to 0$

$$
A = A|_{p\to 0} + ((\bigcirc_{1}A)|_{p\to 0}) (\bigcirc_{1}B_{(1)})^{-1} (B_{(1)})
$$

+
$$
((\bigcirc_{2}A)|_{p\to 0} (\bigcirc_{1}^{2}A)|_{p\to 0}) \begin{pmatrix} \bigcirc_{2}B_{(2)} & \bigcirc_{1}^{2}B_{(2)} \\ \bigcirc_{2}B_{(1,1)} & \bigcirc_{1}^{2}B_{(1,1)} \end{pmatrix}^{-1} \begin{pmatrix} B_{(2)} \\ B_{(1,1)} \end{pmatrix} + \cdots
$$

Let us call this formula 'a Maclaurin series expansion of A by B'. These formulas are useful for evaluating transition matrix between bases of $\Lambda_{\mathbb{Q}}$.

Corollary 15. One expands the complete homogeneous symmetric function h_n by the *power sum symmetric function p around* A and substitute $p \rightarrow B$, then one gets

$$
h_n(A + B) = \sum_{m=0}^{n} h_m(A)h_{n-m}(B)
$$

Example 16. When $n = 3$, we have

$$
h_3(A + B) = \sum_{m=0}^{3} h_m(A)h_{3-m}(B) =
$$

$$
\frac{1}{3}(A_3 + B_3) + \frac{1}{2}(A_2 + B_2)(A_1 + B_1) + \frac{1}{6}(A_1 + B_1)^3
$$

\n
$$
= 1\left(\frac{1}{3}B_3 + \frac{1}{2}B_2B_1 + \frac{1}{6}B_1^3\right) + A_1\left(\frac{1}{2}B_2 + \frac{1}{2}B_1^2\right) +
$$

\n
$$
\left(\frac{1}{2}A_2 + \frac{1}{2}A_1^2\right)B_1 + \left(\frac{1}{3}A_3 + \frac{1}{2}A_2A_1 + \frac{1}{6}A_1^3\right)1
$$

Corollary 17. *If* A_{λ}, B_{λ} *are the bases of* $\Lambda_{\mathbb{Q}}^n$ *, the transition matrix between those two bases is easily obtained from a Maclaurin series expansion of A by B.*

Example 18. the transition matrix from the monomial symmetric functions to the schur symmetric function of size 2 is

$$
\begin{pmatrix}\ns_{(2)} \\
s_{(1,1)}\n\end{pmatrix} = \begin{pmatrix}\n\bigcirc_{2} s_{(2)} & \bigcirc_{1}^{2} s_{(2)} \\
\bigcirc_{2} s_{(1,1)} & \bigcirc_{1}^{2} s_{(1,1)}\n\end{pmatrix} \begin{pmatrix}\n\bigcirc_{2} m_{(2)} & \bigcirc_{1}^{2} m_{(2)} \\
\bigcirc_{2} m_{(1,1)} & \bigcirc_{1}^{2} m_{(1,1)}\n\end{pmatrix} \begin{pmatrix}\nm_{(2)} \\
m_{(1,1)}\n\end{pmatrix}
$$
\n
$$
= \begin{pmatrix}\n1 & 1 \\
0 & 1\n\end{pmatrix} \begin{pmatrix}\n1 & 0 \\
0 & 1\n\end{pmatrix}^{-1} \begin{pmatrix}\nm_{(2)} \\
m_{(1,1)}\n\end{pmatrix}
$$

The information about transition matrix is available in [2]

References

- [1] Enumerative Combinatorics Volume 1, 2, Richard P. Stanley
- [2] I. G. Macdonald, *Symmetric functions and Hall polynomials* Oxford Univ. Press, New York, 1995
- [3] Generalized Schur operators and Pieri's rule, Yasuhide Numata