A FURTHER DEFINITION OF PRIME NUMBER

Yibing Qiu yibing.qiu@hotmail.com

Abstract: This article redefine the prime number in angle with irreducible.

• Introduction and results

We have the definition of prime number in *Number Theory* such as

- 1. A natural number p is called *prime* if the only natural numbers dividing p are 1 and p itself [1].
- 2. A *prime number* is an integer p greater than 1 whose only positive divisors are 1 and p [2].

These definitions are both in angle with divisibility. In here, we through another angle with irreducible to redefine the prime number,

Definition. Let n_0 be a positive integer, for every natural number n which less than n_0 , if there always exist

$$gcd(n, n_0) = 1$$

We call n_0 is a prime number.

That is too saying:

A prime number is a positive integer that irreducible to every natural number which less than itself.

^[1] John. Stillwell, Elements of Number Theory, Beijing, Springer, 2010, Page 2

^[2] M.B. Nathanson, Elementary Methods in Number Theory, Beijing, Springer, 2003, Page25