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Abstract In this paper we present an anachronistic pre-YM and pre-GR attempt
to formulate an alternative mathematical physics language in order to treat the
problem of the electron in twentieth century physics. We start the construction of
our alternative to the Minkowski-Laue consensus by putting spin in the metric.
This allows us to simplify Lorentz transformations as metric transformations with
invariant coordinates. Using the developed formalism on the Pauli-Dirac level,we
expand the quantum helicity operators into helicity rotators and then extend them
from the usual 3-D expressions to 4-D variants. We connect the resulting 4-D
Dirac-Weyl hyperbolic rotators to mathematical expressions that are very similar
to their analogues in the pre General Relativity attempts towards a relativistic the-
ory of gravity. This relative match motivates us to interpret the 4-D hyperbolic
rotation angle as possibly gravitational in nature. At the end we apply the 4D hy-
perbolic rotator to the Dirac equation and investigate how it might change this
equation and the related Lagrangian. We are curious to what extend the result en-
ters the realm of quantum gravity and thus might be beyond pre-GR relativistic
theories of gravity of Abraham, Nordström, Mie and Einstein.
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1 The problem of the electron

The problem of the electron in twentieth century physics was the starting point of
the research that lead to this paper. In the early-relativistic or pre-Einstein period,
Lorentz, Abraham and Poincaré worked on the electromagnetic electron theory in
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an attempt to make it compatible with classical mechanics [1], [2]. In their ap-
proach Abraham, Lorentz and Poincaré used the hypothesis that all forces should
behave as if they were of electromagnetic origin during a global translation of
the system. [...] If all forces, including inertial forces, transformed like electro-
magnetic forces; [...] in order to respect the relativity principle all forces had to
transform like electromagnetic forces; that is, according to a representation of the
Lorentz group [1], [3]. But the three couldn’t produce a problem free electron the-
ory. Due to the work of Einstein, Minkowski and Laue, the problem of the electron
evolved into its modern, relativistic form as the problem of the non-zero diver-
gence of the electron’s self stress energy density tensor [4], [5], [6], [7].The key
sentence in Laue’s 1911 paradigmatic paper on relativistic mechanics, confirming
the opinion of Abraham, Lorentz and Poincaré, stated: Planck and Einstein have
already expressed that all ponderomotoric forces should behave under a Lorentz
transformation in an equal manner as in electrodynamics. Thus it should be possi-
ble in all areas of physics to put the force density together with the power density
into a four force density. This leading principle lead to what we propose to call the
Minskowski-Laue consensus, the fixation of the already growing consensus in the
relativistic avant-garde in the first decade of the nineteenth century regarding rela-
tivistic dynamics in EM and mechanics. The general expression for the Minkowski
Laue relativistic mechanics is F ν = −∂µ T µν

mech, with T µν

mech = V µ Gν . To this day
the problem of the electron is formulated in the paradigmatic math-phys language
of the Minkowski-Laue consensus.

According to von Laue, the electron in free space is a (quasi-)static system, so
the divergence of its stress-energy density tensor should be zero. But in Minkow-
ski’s relativistic electro-magnetics, the divergence of the stress-energy density ten-
sor of the electromagnetic field is zero only in charge-free space and equals the
electromagnetic Lorentz four-force when charges are present. Electromagnetically
the electron in free space is a charge in its own field and should feel its own em-
four-force, which is not zero and not balanced by a reaction-force. So the electron
in free space acts a net em-force and em-power on itself, leading to and infinite
four force. This conclusion is refuted by experiments on the real electron, which,
in free space and in the classical limit, behaves as a Laue closed system. Up till
now, two strategies have been developed to find a way out of this conflict. The first
is to add a mechanical tensor to the electro-magnetic field-tensor and to declare
the divergence of the sum to be zero. This could be called the Poincaré-Laue strat-
egy or the compensation-method. The second strategy is to suggest changes in the
electro-magnetic stress-energy tensor, or in the connected EM four momentum, in
such a way that the problem can be solved within the frame of electromagnetics.
Both strategies have never solved the fundamental problem in such a way that a
consensus was established and the foundational discussions ceased. Instead, the
formulation of the problem of the electron seems to have been frozen in time,
without a solution coming in sight [8], [9], [10].

Originally, the electron problem was seen as a discrepancy between the rela-
tivistic theory, SR and GR, on the one hand and Maxwell-Lorentz EM theory on
the other hand and motivated early pre-QM unification programs. But with the in-
troduction of intrinsic electron spin, the problem of the electron attracted quantum
physicist. Theorists like Thomas, Frenkel, de Broglie and Kramers tried to deal
with intrinsic electron spin in the formalism of the Minskowski-Laue consensus



Towards a 4-D extension of the quantum helicity rotator 3

in order to fuse the concept of intrinsic spin with the Minskowski-Laue math-phys
language [11], [12], [13], [14]. In the works of Kramers and de Broglie, two sets
of languages are invoked to deal with the relativistic problem of the spinning elec-
tron, the Minkowski-Laue consensus and Pauli-Dirac spin QM but they remained
incapable of fusing the concepts and the math-phys of these two approaches. In
1938 Dirac himself, the father of the relativistic quantum theory of the electron,
returned to the Lorentz model of the electron in an attempt to find an opening re-
garding the self-energy problem as it reappeared in quantum mechanics [15]. In
the years thereafter, Dirac continued to try to solve the electron’s self-energy prob-
lem by going back to the pre-quantum theory of relativistic electrodynamics [16].
According to Dirac, the problem of the electron was related to our understanding
of empty space: We can see now that we may very well have an æther, subject to
quantum mechanics and conforming to relativity, [...]. We must make some pro-
found alterations in our theoretical ideas of the vacuum. It is no longer a trivial
state, but needs elaborate mathematics for its description. [17] It (the new æther)
will probably have to be modified by the introduction of spin variables before a
satisfactory quantum theory of electrons can be obtained from it [18].

This is the point were, in retrospective, we hook on, Dirac’s suggestion of in-
troducing spin variables into the vacuum/metric/æther as a necessary step forward
in our understanding of the electron. This meant that in dealing with the problem
of relativistic dynamics regarding the problem of the (spinning) electron, we ig-
nored what was to come afterwards, the Yang-Mills theories of the weak force
and the strong force. Our goal was to create a math-phys language for the elec-
tron problem that replaced the Minkowski-Laue consensus and contained pre-YM
Pauli-Dirac QM. The tricky side catch of our approach was that Einstein used
Laue’s closed system condition, so essentially the Minkowski-Laue consensus or
the relativistic formulation of the conservation of energy, momentum and angu-
lar momentum, as a basis for his theory of gravity ([19], postulate 1 on p. 1250;
[7], p. 57). In order to be able to remain pre-GR as long as possible, we simpli-
fied the gravity side of the problem by only trying to connect our yet to develop
math-phys language to the attempts of the pre-GR theorists of relativistic grav-
ity, Abraham [20], Nordström [21], [22], Mie [23], [24] and of course Einstein
himself. As such, our approach is pre-YM and pre-GR, but without criticizing
these well established, experimentally verified monumental theories of physics.
We deliberately choose such an anachronistic approach in order to simplify the
environment in which to deal with the problem of the electron. The hope was that
our approach would nevertheless lead to some useful new insights.

2 Using quaternions to put ‘spin’ into the metric

This paragraph recaptures the biquaternion definitions developed in previous pa-
per, in which the matrix representation was not yet used [25]. Quaternions can be
represented by the basis (1̂, Î, Ĵ, K̂). This basis has the properties ÎÎ = ĴĴ = K̂K̂ =
−1̂; ÎĴ = −ĴÎ = K̂; ĴK̂ = −K̂Ĵ = Î; K̂Î = −ÎK̂ = Ĵ. A quaternion number in its
summation representation is given by A = a01̂+a1Î+a2Ĵ+a3K̂, in which the aµ

are real numbers. Bi-quaternions or complex quaternions are given by C = A+ iB
in which the cµ = aµ + ibµ are complex numbers and the aµ and bµ are real num-
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bers. The complex conjugate of a bi-quaternion C is given by C̃ = A− iB. A set of
four numbers, real or complex, is given by

Cµ =

 c0
c1
c2
c3

 , (1)

or by Cµ = [c0,c1,c2,c3], a set of four numbers ∈ C. The quaternion basis can be
given as a set K̂µ

=
[
1̂, Î, Ĵ, K̂

]
and then a biquaternion C can also be written as

C =Cµ K̂µ = c01̂+c1Î+c2Ĵ+c3K̂. We apply this to the space-time four vector of
relativistic bi-quaternion 4-space R with the four numbers Rµ = [ict,r1,r2,r3] =
[r0,r1,r2,r3], so with r1,r2,r3 ∈ R and r0 ∈ C. Then we have R = Rµ K̂µ = r01̂+

r1Î+ r2Ĵ+ r3K̂ = r01̂+ r · K̂. We use the threevector analogue of Rµ K̂µ when we
write r · K̂. In this notation we define the complex conjugate of a four vector as
RT =−r01̂+r ·K̂ and the quaternion conjugate of a four vector as RP = r01̂−r ·K̂.

Quaternions can be represented by 2x2 matrices. Several representations are
possible and our choice is given by

R =

[
r0 + ir1 r2 + ir3
−r2 + ir3 r0− ir1

]
=

[
R00 R01
R10 R11

]
. (2)

Then we can write R as

R = r0

[
1 0
0 1

]
+ r1

[
i 0
0 −i

]
+ r2

[
0 1
−1 0

]
+ r3

[
0 i
i 0

]
. (3)

This gives us the quaternions as the following matrices:

1̂=

[
1 0
0 1

]
, Î =

[
i 0
0 −i

]
, Ĵ =

[
0 1
−1 0

]
, K̂ =

[
0 i
i 0

]
. (4)

We can compare these to the Pauli spin matrices σσσ = (σx,σy,σz). If we exchange
the σx and the σz, we have K̂ = iσσσ and K̂µ

= (σ0, iσσσ). The reason to use the
quaternion matrices and not the Pauli matrices lies in the way the Lorentz trans-
formations can be abridged using the quaternion matrices in combination with
hyperbolic relativity.

Multiplication of two vectors A and B follows matrix multiplication. So we
have

C = AB =

[
A00B00 +A01B10 A00B01 +A01B11
A10B00 +A11B10 A10B01 +A11B11

]
=

[
C00 C01
C10 C11

]
. (5)

Of course, vectors A, B and C can be expressed with their aµ ,bµ ,cµ coordinates
and if we use them, after some elementary but elaborate calculations and rear-
rangements we arrive at the following result:

c0 = a0b0−a1b1−a2b2−a3b3

c1 = a2b3−a3b2 +a0b1 +a1b0

c2 = a3b1−a1b3 +a0b2 +a2b0

c3 = a1b2−a2b1 +a0b3 +a3b0 (6)
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In short, if we use the classic Euclidean dot and cross products of Euclidean three-
vectors, this gives for the coordinates c0 = a0b0−a ·b and c = a×b+a0b+ab0.
And in the quaternion notation we get

C = AB = (a0b0−a ·b)1̂+(a×b+a0b+ab0) · K̂ (7)

From this it immediately follows that AT A = (−a0a0−a ·a)1̂, and, with a0 = icat ,
we get AT A = (c2a2

t − a2)1̂. This can be used to define the main quadratic form
of the metric as dRT dR = (c2dt2 − dr2)1̂ = c2dτ21̂ = −ds21̂, with ds = icdτ .
It may be clear that our definitions lead to many analogies with Hestenes’ space
time algebra [26]. But our matrix representation, which remains crucial all along,
follows a quaternion basis and not the Pauli basis, to mention a difference.

3 The Lorentz transformation as a twist of the metric

A normal Lorentz transformation between two reference frames connected by a
relative velocity v in the x− or Î-direction, with the usual γ = 1/

√
1− v2/c2,

β = v/c and r0 = ict, can be expressed as[
r′0
r′1

]
=

[
γ −iβγ

iβγ γ

][
r0
r1

]
=

[
γr0− iβγr1
γr1 + iβγr0

]
. (8)

We want to connect this to our matrix representation of R as in Eq.(2) which gives

R′00 = r′0 + ir′1 = γr0− iβγr1 + iγr1−βγr0 (9)
R′11 = r′0− ir′1 = γr0− iβγr1− iγr1 +βγr0. (10)

Now we want to introduce the rapidity and thus hyperbolic Special Relativity in
order to integrate Lorentz transformations into our matrix metric. For this we only
need elementary rapidity definitions as they were already formulated by Varičak in
1912 [27]. If we use the rapidity ψ as eψ = coshψ +sinhψ = γ +βγ , the previous
transformations can be rewritten as

R′00 = r′0 + ir′1 = (γ−βγ)(r0 + ir1) = R00e−ψ (11)
R′11 = r′0− ir′1 = (γ +βγ)(r0− ir1) = R11eψ . (12)

As a result we have

RL =

[
R′00 R′01
R′10 R′11

]
=

[
R00e−ψ R01

R10 R11eψ

]
=U−1RU−1. (13)

In the expression RL =U−1RU−1 we used the matrix U as

U =

[
e

ψ

2 0
0 e−

ψ

2

]
. (14)

But this means that we can write the result of a Lorentz transformation on R with
a Lorentz velocity in the Î-direction between the two reference systems as

RL = r0

[
e−ψ 0

0 eψ

]
+ r1

[
ie−ψ 0

0 −ieψ

]
+ r2

[
0 1
−1 0

]
+ r3

[
0 i
i 0

]
. (15)
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This can be written as

RL = r0U−11̂U−1 + r1U−1ÎU−1 + r2Ĵ+ r3K̂ = r01̂
L + r1ÎL

+ r2Ĵ+ r3K̂. (16)

But because we started with Eq.(8), we now have two equivalent options to express
the result of a Lorentz transformation, either as a coordinate transformation or as
a basis transformation: RL = r′01̂+ r′1Î+ r2Ĵ+ r3K̂ = r01̂

L + r1ÎL
+ r2Ĵ+ r3K̂.

This result only works for Lorentz transformation between vx-, v1- or Î-aligned
reference systems. Reference systems which do not have their relative Lorentz ve-
locity aligned in the Î-direction will have to be rotated into such an alignment be-
fore the Lorentz transformation in the form RL = U−1RU−1 is applied. With this
requirement we restrict ourselves to a limited realm of applications. The interest-
ing thing about the eψ = γ +βγ term is that it represents a relativistic Doppler-
correction applied to the frequency ν of light-signals exchanged between two in-
ertial reference systems, ν/ν0 = eψ [27].

4 The Maxwell-Lorentz structures in our math-phys environment

If we want to apply the previous to relativistic electrodynamics and to quantum
physics, we need to develop the mathematical language further. We start with a
particle with a given three vector velocity as v, a rest mass as m0 and an inertial
mass mi = γm0, with the usual γ = (

√
1− v2/c2)−1. We define the coordinate

velocity four vector as V = V µ K̂µ = ic1̂+ v · K̂ = v01̂+ v · K̂. The proper veloc-
ity four vector on the other hand will be defined using the proper time τ = t0 as
U = U µ K̂µ = d

dτ
Rµ K̂µ = γV µ K̂µ = u01̂+ u · K̂. The four vector partial deriva-

tive ∂ = ∂ µ K̂µ will be defined using the coordinate four set ∂ µ = (−i 1
c ∂t ,∇∇∇) =

(∂0,∂1,∂2,∂3). The electrodynamic potential four vector A = Aµ K̂µ will be de-
fined by the coordinate four set Aµ = (i 1

c φ ,A) = (A0,A1,A2,A3). The electric
four current density vector J = Jµ K̂µ will be defined by the coordinate four set
Jµ = (icρe,J) = (J0,J1,J2,J3), with ρe as the electric charge density. The electric
four current with a charge q will be also be written as Jµ and the context will in-
dicate which one is used. And although we defined these four vectors using the
coordinate column notation, we will mostly use the matrix or summation notation,
as for example in Eqn.(2).

I we apply the multiplication rules of our four vectors as matrices to the elec-
tromagnetic field with four derivative ∂ and four potential A we get B = ∂ T A and
then insert ∂0 =−i 1

c ∂t and A0 = i 1
c φ we get

B = ∂
T A = (− 1

c2 ∂tφ −∇∇∇ ·A)1̂+(∇∇∇×A− i
1
c
(−∂tA−∇∇∇φ)) · K̂. (17)

If we apply the Lorenz gauge B0 =− 1
c2 ∂tφ −∇∇∇ ·A = 0 and the usual EM defini-

tions of the fields in terms of the potentials we get B = (B− i 1
c E) · K̂ =

−→
B · K̂ and

we can write B as

B = B1Î+B2Ĵ+B3K̂ =
−→
B · K̂ =

[
iB1 B2 + iB3

−B2 + iB3 −iB1

]
=

[
B00 B01
B10 B11

]
. (18)
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For the Lorentz transformation of B we can go back to the 1908 paper by
Minkowski [5], where he wrote the transformation in a form equivalent toB′1B′2

B′3

=

1 0 0
0 γ iβγ

0 −iβγ γ

B1
B2
B3

=

 B1
γB2 + iβγB3
γB3− iβγB2

 (19)

So we have B′01 =B′2+ iB′3 = γB2+ iβγB3+ iγB3+βγB2 and B′10 =−B′2+ iB′3 =
−γB2− iβγB3+ iγB3+βγB2. If we use the rapidity ψ as eψ = coshψ +sinhψ =
γ +βγ , this can be rewritten as B′01 =B′2+ iB′3 = (γ +βγ)(B2+ iB3) = B01eψ and
B′10 =−B′2 + iB′3 = (γ−βγ)(−B2 + iB3) = B10e−ψ , which leads to

BL =

[
B00 B01eψ

B10e−ψ B11

]
=

[
e

ψ

2 0
0 e−

ψ

2

][
B00 B01
B10 B11

][
e−

ψ

2 0
0 e

ψ

2

]
=UBU−1. (20)

So just as with a four vector, the Lorentz transformation of the EM field coordi-
nates can also be written as a transformation of the basis, while leaving the field
coordinates invariant: BL = B1U ÎU−1 +B2U ĴU−1 +B3UK̂U−1 = B1Î+B2ĴL

+

B3K̂L.
For the EM-field ‘six-vector’ matrix B as a product of two four vectors we can

write BL =UBU−1 =U(∂ T A)U−1 =U(∂ T )UU−1AU−1 = (∂ T A)L = (∂ T )−LAL.
This can be generalized to the Lorentz transformation of the product C = AB.
For a coherent relativistic math-phys language we need the following rule for the
Lorentz transformation of the product C of two fourvectors A and B who individ-
ually transform as AL =U−1AU−1 and BL =U−1BU−1:

CL = (AB)L = A−LBL =UAUU−1BU−1 =UABU−1 =UCU−1. (21)

This implies that (AB)L 6= ALBL if A and B are fourvectors. As a result, it is easy
to prove that the quadratic AT A = c2a2

τ 1̂ is Lorentz invariant.
Using the four density current J, the Maxwell equations in our language are

∂B = µ0J and the Lorentz force law, with a four force density F , as JB = F .
Maxwell’s inhomogeneous wave equations can be written as (−∂ T ∂ )B=−µ0∂ T J
and with the Lorentz invariant quadratic derivative −∂ T ∂ = (∇∇∇2− 1

c2 ∂ 2
t )1̂ we get

the homogeneous wave equations of the EM field in free space in the familiar
form as (−∂ T ∂ )B = ∇∇∇

2B− 1
c2 ∂ 2

t B = 0. Given the definition of the four vectors,
our matrix multiplication contains the Maxwell-Lorentz structure.

As for the electromagnetic energy of a pure EM field, we have the two products
BB and BT B, with BT = (∂ T A)T = ∂AT = (B+ i 1

c E) · K̂ =
−→
B
∗
· K̂ in which we

used
−→
B
∗

instead of
−̃→
B as the complex conjugate of

−→
B . We then can calcutate

the results, which gives BB = (B2 − 1
c2 E2 − 2i 1

c B ·E)1̂ =
−→
B ·
−→
B 1̂ for the first.

The Lorentz invariance follows from BL = UBU−1 and the fact that BB result
in a scalar value, so BLBL = UBU−1UBU−1 = UBBU−1 =

−→
B ·
−→
BU 1̂U−1 =

−→
B ·−→

B 1̂ = BB. We also have the interesting product ∂ ( 1
µ0

BB), the four divergence
of this Lorentz invariant EM energy related product. Using the Maxwell equations
∂B= µ0J and the Lorentz force density law JB=F , we get ∂ ( 1

µ0
BB) = 1

µ0
∂BB=

JB = F (factor 2 question; ∂ ( 1
2µ0

BB) = F ?).
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For the second EM energy related product BT B we get

BT B =−
−→
B
∗
·
−→
B 1̂+(

−→
B
∗
×
−→
B ) · K̂ =−(B2 +

1
c2 E2)1̂+2i

1
c
(E×B) · K̂ =

i
2µ0

c
(icuEM 1̂+S · K̂) = i2µ0c(i

1
c

uEM 1̂+g · K̂),(22)

with the Poynting vector as µ0S = E×B, the EM momentum density c2g = S
and the EM energy as 2µ0uEM = B2 + 1

c2 E2. Thus we get the usual EM four mo-

mentum density G and the four energy current density S as G = 1
c2 S = −i

2µ0c BT B,
a result that again mimics STA [26]. For the Lorentz transformation of BT B, as a
four vector it should be

GL =U−1GU−1 =
−i

2µ0c
U−1BT BU−1 =

−i
2µ0c

U−1BTU−1UBU−1 =
−i

2µ0c
U−1BTU−1BL, (23)

but this gives the problematic U−1BTU−1 which doesn’t seem to give (BT )L. So
here we enter the discussion, in our math-phys language and already in the vacuum
context, of the genuine EM momentum density four vector, a discussion strongly
related to the correct formulation of the EM energy density tensor. Problematic
also is the product ∂ ( 1

µ0
BBT ), for which we get ∂ ( 1

µ0
BBT ) = 1

µ0
∂BBT = JBT 6=

FLorentz. We get the signs wrong, also with ∂ ( 1
µ0

BT B). We could try ∂ T G but that
leads to ∂ T BT B which is also problematic. The fact that in our math-phys environ-
ment things do not run smoothly and unproblematic as regards to the relativistic
Poynting vector and the EM four momentum density, especially when charges are
included, indicates that fundamental problems in physics have a tendency to stay
around, independent of the formalism. We believe that the capacity of not-solving
but merely rephrasing these more that a century old problems in our own math-
phys is a good sign.

5 Relativistic mechanics

In Special Relativity, Laue’s condition for a conserved energy-momentum is ∂ ν Tνµ =

0. In our language we have the ∂ T P= 0 condition as a starting point of our alterna-
tive relativistic mechanics. Given the symmetry condition p=miv, the momentum
four vector will be P = miV and the condition ∂ T P = 0 leads to

∂
T P = (− 1

c2 ∂tUi−∇∇∇ ·p)1̂+(∇∇∇×p+ i
1
c
(∂tp+∇∇∇Ui)) · K̂ = 0. (24)

so to three subconditions 1
c2 ∂tUi +∇∇∇ ·p = 0, ∇∇∇×p = 0 and ∂tp =−∇∇∇Ui. The first

one is the continuity equation, the second means that we have zero vorticity and
the third that the related force field can be connected to a potential energy. We can
take the time derivative of the second condition, giving the conserved force field
condition ∇∇∇×F = 0. So the condition ∂ T P = 0 can represent a central force.
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In the Laue condition ∂ ν Tνµ = 0 the stress-energy density tensor is Tνµ =

Vν Gµ . In our math-phys language we would get the not exact analog T = V T G
and ∂T = 0, but that would imply a full homogeneous Maxwell-Lorentz structure
with the product ∂V T G = 0. Our stress energy density ‘tensor’ T gives

T =V T G = (ui−v ·g)1̂+(v×g+ ic(−g+
1
c2 uiv)) · K̂. (25)

This tensor analog contains all the elements of Tνµ = Vν Gµ , with the difference
that the cross product v×g appears directly in our T =V T G whereas ony half of
it is in the usual tensor and the anti-symmetric tensor product is needed to get the
full cross product. In the case of a symmetric situation v has the same direction as
g, resulting in the three equations T = (ui−v ·g)1̂= u01̂, v×g = 0 and g = 1

c2 uiv.
The first of these equations equals the scalar Lagrangian density, the trace of the
Laue mechanical stress-energy density tensor. Then the divergence of the sym-
metric T gives the four force density F =−∂T as F =−∂u0. Only if v doesn’t
have the same direction as g will there be an anti-symmetric component present
that is analog to the structure of the Maxwell-Lorentz electromagnetic field. In
our math-phys language, the compactified Minkowski-Laue equation’s content is
spread out over several products and equations existing at different layers of com-
plexity. Interestingly, through the equation Fµ = −∂µ u0, Abraham, Nordström
and Mie unsuccessfully tried to construct their relativistic theories of gravity.

6 Pauli spin QM and the Lorentz transformation of spinors

The basic Klein-Gordon wave equation in Quantum Mechanics can be written
in our math-phys environment as −∂ T ∂Ψ = (∇∇∇2 − 1

c2 ∂ 2
t )1̂Ψ = 0 with a two

column spinor instead of the scalar spinor of Schrödinger- and Klein-Gordon
QM. But it results in two identical equations, so a degenerate situation in which
the two valued spinor equation can be reduced to the original single one.This
Klein-Gordon Equation can be linked to the quadratic energy-momentum condi-
tion PT P = ( 1

c2 U2
i − p2)1̂ = 1

c2 U2
0 1̂ = −E21̂, with E = i 1

cU0. With the operator
convention P̂ = −ih̄∂ we can switch from the energy equation to the wave equa-
tion P̂T P̂Ψ = −E21̂Ψ . We can make this canonical by applying the replacement
P→ P+ qA and P̂→ P̂+ qA or ∂ → D = ∂ + i q

h̄ A. This results in the canonical
Klein-Gordon wave equation in a biquaternion metric, that includes the Pauli-spin
EM-field interaction term, as DT DΨ = E2

h̄2 1̂Ψ . The DT DΨ part can be expanded
as

DT DΨ = ∂
T

∂Ψ + i
q
h̄

∂
T AΨ + i

q
h̄

AT
∂Ψ − q2

h̄2 AT AΨ . (26)

Now, the first and the last terms give scalar quadratics but the two middle terms
must be examined more carefully. By writing out the two matrix products and
applying the standard differentiation rule to the scalars in these matrixes, one can
show that ∂ T AΨ +AT ∂Ψ =BΨ +2( 1

c2 φ∂t +A ·∇)1̂Ψ . This gives us for DT DΨ =
E2

h̄2 1̂Ψ the equation

∂
µ

∂µ 1̂Ψ −
q2

h̄2 Aµ Aµ 1̂Ψ −2i
q
h̄

Aµ
∂µ 1̂Ψ =−E2

h̄2 1̂Ψ + i
q
h̄

BΨ , (27)
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with ∂ T ∂ =−∂ µ ∂µ 1̂, AT A=−Aµ Aµ 1̂ and Aµ ∂µ =( 1
c2 φ∂t +A ·∇). The only non-

degenerate part in this equation is i q
h̄ BΨ . In our units we have the Bohr magneton

µB = eh̄
2m0

and if we multiply the equation by h̄2

2m0
we get the non-degenerate term

as iµBBΨ . This can be written as

iµBBΨ = iµB
−→
B · K̂Ψ =−µB

−→
B ·σσσΨ =−µBB ·σσσΨ + iµB

1
c

E ·σσσΨ , (28)

with σx � σz. So by putting spin in the metric we get a canonical Klein Gordon
equation that includes Pauli-spin EM-field interaction terms. If we replace the
degenerate quadratic scalar part by the canonical Schrödinger equation and ignore
the spin electric field interaction term, we get the Pauli equation.

With the equation DT DΨ = E2

h̄2 1̂Ψ we are able to treat Pauli spin relativisti-
cally, provided that the spinor Ψ Lorentz transforms as Ψ L =UΨ or

Ψ
L =UΨ =

[
e

ψ

2 0
0 e−

ψ

2

][
Ψ0
Ψ1

]
=

[
Ψ0e

ψ

2

Ψ1e−
ψ

2

]
. (29)

The condition Ψ L = UΨ assures the invariance of the equation DT DΨ = E2

h̄2 1̂Ψ .

If Ψ is the transpose complexe conjugate of Ψ , then Ψ L =UΨ = (Ψ̃0e−
ψ

2 ,Ψ̃1e
ψ

2 )
so

Ψ LΨ
L =

[
Ψ̃0e−

ψ

2 ,Ψ̃1e
ψ

2

][
Ψ0e

ψ

2

Ψ1e−
ψ

2

]
= Ψ̃0Ψ0 +Ψ̃1Ψ1 =ΨΨ . (30)

This assures the Lorentz invariance of the QM probability density. It can be given
as Ψ LΨ L =ΨU−1UΨ which implies that Ψ

L
=ΨU−1.

7 The Dirac level

Up to the Pauli level we reproduce elements basic to QM. But the relativistic wave
equation of the electron exists on the Dirac level, so we aren’t there yet if we want
a math-phys language for the analysis of the problem of the electron including
pre-YM quantum and pre-GR gravity aspects. Dirac linearized the quadratic rela-
tivistic Klein-Gordon wave equation by going to four by four matrices instead of
the two by two Pauli matrices. In our math-phys language we define αµ through

Pµ
αµ =

[
P P
−PT PT

]
= p0

[
1̂ 1̂
1̂ −1̂

]
+p ·

[
K̂ K̂
−K̂ K̂

]
=

p0

[
1̂ 1̂
1̂ −1̂

]
+ p1

[
Î Î
−Î Î

]
+ p2

[
Ĵ Ĵ
−Ĵ Ĵ

]
+ p3

[
K̂ K̂
−K̂ K̂

]
= p0α0 +p ·ααα (31)

We have Pµ αµ = p0α0 + p1α1 + p2α2 + p3α3. We can split this into Pµ αµ =
Pµ βµ +Pµ γµ and then get

Pµ
βµ =

[
P 0
0 PT

]
= p0

[
1̂ 0
0 −1̂

]
+p ·

[
K̂ 0
0 K̂

]
= p0β0 +p ·βββ =

p0

[
1̂ 0
0 −1̂

]
+ p1

[
Î 0
0 Î

]
+ p2

[
Ĵ 0
0 Ĵ

]
+ p3

[
K̂ 0
0 K̂

]
(32)



Towards a 4-D extension of the quantum helicity rotator 11

with Pµ βµ = p0β0 + p1β1 + p2β2 + p3β3, and

/P = Pµ
γµ =

[
0 P
−PT 0

]
= p0

[
0 1̂
1̂ 0

]
+p ·

[
0 K̂
−K̂ 0

]
= p0γ0 +p · γγγ =

p0

[
0 1̂
1̂ 0

]
+ p1

[
0 Î
−Î 0

]
+ p2

[
0 Ĵ
−Ĵ 0

]
+ p3

[
0 K̂
−K̂ 0

]
(33)

with /P = Pµ γµ = p0γ0 + p1γ1 + p2γ2 + p3γ3. If we use K̂ = iσσσ we have

γγγ =

[
0 iσσσ
−iσσσ 0

]
(34)

with as only difference to the standard notation the exchange of γ1 with γ3. With
these definitions we have obtained a Clifford Algebra four set with the γµ ’s, a Weyl
set. Another Clifford four set, a Dirac set, can be obtained with (β0,γγγ). Clifford
Algebra three sets can be made with the ααα’s and with the βββ ’s. The βββ ’s form the
Dirac spin set. We define the unit matrix on the Dirac level as /1.

Using these definitions of the matrices on the Dirac level, we can define the
Dirac-spinor wave equations. The wave equations in the Dirac environment have
to be reducible to the Klein Gordon energy condition PT P =−E21̂ with E = iU0

c .
The Dirac equation and the Weyl equations match this demand.The Weyl or chiral
equation stems from the quadratic /P/P = E2/1.

/P/P =

[
0 P
−PT 0

][
0 P
−PT 0

]
=

[
−PPT 0

0 −PT P

]
= E2

[
1̂ 0
0 1̂

]
= E2/1 (35)

This leads to the two options for the Weyl equations

/̂PΨ = E/1Ψ (36)

/̂PΨ =−E/1Ψ (37)

if we use /̂P = −ih̄/∂ and a four column spinor Ψ . The Dirac equation stems from
the quadratic (p0β0 +p · γγγ)2 = E2/1.[

p01̂ p · K̂
−p · K̂ −p01̂

][
p01̂ p · K̂
−p · K̂ −p01̂

]
=

[
(p2

0 +p2)1̂ 0
0 (p2

0 +p2)1̂

]
= E2/1 (38)

This leads to the two options for the Dirac equations

(p̂0β0 + p̂ · γγγ)Ψ = E/1Ψ (39)
(p̂0β0 + p̂ · γγγ)Ψ =−E/1Ψ (40)

if we use P̂ =−ih̄∂ and a four column spinor Ψ . In a previous section we showed
that with the canonical DT DΨ = E2

h̄2 1̂Ψ we could treat Pauli spin relativistically
in a Klein-Gordon condition. Based on that result, it is not to difficult to show that
on the Dirac level we are also able to deal with /D /DΨ = E2

h̄2 /1Ψ . This results in a
extra term B ·βββΨ , the magnetic field Dirac spin interaction term. This indicates
that in our language, βββ is indeed the Dirac spin vector.
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By imitating Dirac’s jump from Pauli-spin to a double version of it, but at
the same time remaining in our spin-metric environment, we made it plausible
that our math-phys language has in principle the capacity to include the Dirac-
Weyl quantum environment. In the line of our anachronistic project, pre-YM and
pre-GR, only relativistic pre-GR gravity was not yet included in our math-phys
language. While working on a translation of the helicity formalism and the spin
half representation of the Lorentz group into our biquaternion spin-metric lan-
guage, it seemed only natural to extend the helicity formalism from 3D to a 4D
version. Unexpectedly, the necessary 4D rotation angle, as the 4D analogy of ra-
pidity, seemed of gravitational nature. This surprising possibility regarding the 4D
hyperbolic quantum rotator’s angle was the motivation to write this paper.

8 Helicity, 3D hyperbolic rotations and Lorentz transformations

We have the Taylor expansion of eAx as

eAx = 1+Ax+
1
2!

A2x2 +
1
3!

A3x3 +
1
4!

A4x4 +
1
5!

A5x5 + . . . (41)

If A2 = 1 but A 6= 1, this can be written as

eAx = 1+Ax+
1
2!

x2 +A
1
3!

x3 +
1
4!

x4 +A
1
5!

x5 + . . . (42)

and

eAx = (1+
1
2!

x2+
1
4!

x4+ . . .)+A(x+
1
3!

x3+
1
5!

x5+ . . .) = coshx+Asinhx. (43)

Of course, this only works if the norm of A can be split in two equal parts and
results in a scalar outcome, so when the norm of A is a perfect quadratic. And if,
with A2 = 1, we calculate (A+1)eAx we get an invariant product e−Ax(A+1)eAx =
e−x(A+1)ex = A+1.

We can apply this to Helicity, on the Pauli level first and then on the Dirac
level. We have (p · K̂)(p · K̂) =−p21̂= (ip)21̂ or

H2 =

[
p · K̂

ip

][
p · K̂

ip

]
= 1̂, (44)

which means that we have a perfect quadratic and can apply the above to write

1̂eHψ = 1̂coshψ +H sinhψ = 1̂coshψ +

[
p · K̂

ip

]
sinhψ. (45)

We also have (p · K̂)eHψ = (p · K̂)coshψ + ip1̂sinhψ and e−Hψ(H + 1̂)eHψ =
e−ψ(H + 1̂)eψ = (H + 1̂). About the effect of the hyperbolic rotation angle ψ , if
we look at the following expression

HeHψ = H coshψ + 1̂sinhψ = coshψ(H + 1̂ tanhψ), (46)
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we see that if ψ goes to ∞, tanhψ goes to 1 and coshψ goes from 1 to ∞.
On the Dirac level, helicity can be defined as Λ with

Λ
2 =

[
p ·βββ
ip

][
p ·βββ
ip

]
= /1, (47)

Again we can define a hyperbolic rotator as

/1eΛψ = /1coshψ +Λ sinhψ = /1coshψ +

[
p ·βββ
ip

]
sinhψ. (48)

As before we have a hyperbolic rotation invariant Λ + /1 and we have ΛeΛψ =
Λ coshψ + /1sinhψ = coshψ(Λ + /1 tanhψ).

Helicity is based upon the momentum 3-D vector p and the 3-D Pauli spin
K̂ or the 3-D Dirac spin βββ . What we are doing with these hyperbolic rotators is
rotating three momentum p relative to its norm p, the action of tanhψ . Actually,
we change the projection angle of p on its norm p. At the same time we scale both
up, the action of coshψ . Helicity is strongly related to Lorentz transformations.
Hyperbolic helicity rotators can be connected to the Lorentz transformation of
Pauli spinors. We had for the Lorentz boost of a Pauli two spinor Ψ L =UΨ . This
gives

Ψ
L =

[
e

ψ

2 0
0 e−

ψ

2

]
Ψ = cosh

ψ

2

[
1 0
0 1

]
Ψ + sinh

ψ

2

[
1 0
0 −1

]
Ψ =

(
1̂cosh

ψ

2
+

Î
i

sinh
ψ

2

)
Ψ =

(
1̂cosh

ψ

2
+

p · K̂
ip

sinh
ψ

2

)
Ψ = 1̂eH ψ

2 Ψ (49)

In this derivation we end up with the requirement that the particle moves in the
direction Î of the Lorentz velocity. Only then can we replace Î/i by (p1Î)/(p1i)
and then by H. If the particle has a different direction, we have to rotate the whole
reference frame including the moving particle until the directions are aligned.

This gives us Ψ L = UΨ = 1̂eH ψ

2 Ψ , which implies that U = 1̂eH ψ

2 and Ψ
L
=

ΨU−1 = Ψ 1̂e−H ψ

2 . But then we can write for particles that move in the direc-
tion of an applied Lorentz boost between two aligned reference systems PL =

U−1PU−1 = e−H ψ

2 Pe−H ψ

2 and for EM fields with the proper alignment, where
H ≡ (Î/i), BL =UBU−1 = eH ψ

2 Be−H ψ

2 . We see that in our environment, Pauli he-
licity as a hyperbolic rotator functions as half a Lorentz transformation. Helicity
provides the rotator structure and direction, whereas the rapidity contributes the
size of the boost. So most of the necessary information contained in the Lorentz
transformation is situated in the Pauli helicity operator, and a smaller part is given
by the rapidity.

If we go from helicity on the Pauli level to Helicity on the Dirac level, things
become complicated. On the Dirac-Weyl level, there is no simple relationship be-
tween helicity and the Lorentz transformation of Weyl-Dirac vectors like /P and
4-spinors. So what works on the 3D SU(2) level, connecting a hyperbolic quan-
tum rotator to the Lorentz transformation, doesn’t work on the 3D double SU(2)
level. In our perception, this had to be related to the fact that Dirac helicity cannot
be expanded into a 4D version.
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9 Weyl and Dirac hyperbolic rotations

Dirac helicity with p ·βββ cannot be extended to 4-D because the βµ ’s don’t form
a Clifford 4-set. So a perfect quadratic with the βµ ’s isn’t possible. But we al-
ready formulated perfect 4-D quadratics in the context of the Weyl and the Dirac
equations, using the two Clifford 4-sets γµ and (β0,γγγ). Because both are based on
perfect quadratics, we can define a new hyperbolic rotator using either the Weyl
equation structure or the Dirac equation structure. The Weyl rotator is the easiest,
due to its relativistic symmetry /P/P = E2/1, with E = i 1

cU0 = icm0. We get the
hyperbolic rotator

/1e
/P
E α = /1coshα +

/P
E

sinhα, (50)

with E/1e
/P
E α = E/1coshα + /Psinhα , and /Pe

/P
E α = /Pcoshα + E/1sinhα , which

can also be written as /Pe
/P
E α = coshα(/P+E/1 tanhα). Applied to (/P−E/1) we

get (/P−E/1)e
/P
E α = (/P−E/1)eα with the invariant

e−
/P
E α(/P−E/1)e

/P
E α = e−α(/P−E/1)eα = (/P−E/1). (51)

The tanhα part implies that we are changing the projection of /P on E/1 due
to the hyperbolic rotation with angle α . Clearly this rotator is not part of a helic-
ity representation of the Lorentz transformation, because then we would rotate p
relative to p and not /P relative to E/1. A Lorentz transformation can be seen as a
four vector internal re-balancing, but now we are re-balancing the four vector rel-
ative to its norm. This brings us outside known quantum territory. The following
equivalent tensor notation emphasizes the rotation aspect

/Pe
/P
E α = /Pcoshα +E/1sinhα =

[
E1̂sinhα Pcoshα

−PT coshα E1̂sinhα

]
(52)

which, when applied to (/P+E/1)e
/P
E α = (/P+E/1)eα , gives

(/P+E/1)eα =

[
E1̂eα Peα

−PT eα E1̂eα

]
(53)

Then compare this to the Weyl equation with spinor Ψ = ϒ eϕ , with aplitude ϒ

and phase ϕ , leading to

(/̂P+E/1)ϒ eϕ =

[
E1̂eϕ P̂eϕ

−P̂T eϕ E1̂eϕ

][
ϒR
ϒL

]
=

[
E1̂eϕϒR +PeϕϒL
−PT eϕϒR +E1̂eϕϒL

]
= 0 (54)

Things look similar but they aren’t. In case of operators we have (/̂P+E/1)e
/P
E α 6=

(/̂P+E/1)eα , a complication that we will study later on, so our hyperbolic rotation
angle isn’t just a disguised phase shift of the Weyl spinor in the Weyl equation.
The Weyl spinor has a scalar phase as starting point whereas our hyperbolic rotator
might reduce to a scalar shift of some kind under special circumstances.
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In case of the Dirac hyperbolic rotator, we have to replace γ0 by β0 in /P, giving
the rotator effect on /P as

/Pφ = /Pe
/P
E α =

[
(E sinhα + p0 coshα)1̂ p · K̂coshα

−p · K̂coshα (E sinhα− p0 coshα)1̂

]
(55)

= coshα

[
(E tanhα + p0)1̂ p · K̂

−p · K̂ (E tanhα− p0)1̂

]
(56)

which makes it clear that our hyperbolic rotator effect also differs from the effect
of spinors on the Dirac /̂P−E/1, because left and right spinors affect the Dirac E
and p̂0 in an identical way as a package, like for example (E + p̂0)1̂ϒR.

10 The metric Dirac-Weyl hyperbolic rotator

Instead of /P as the quadratic input for the rotator we can also take d/R with d/Rd/R=
ds2/1 and ds= icdτ and then our hyperbolic rotator, including its effects on d/R and
ds/1, is

/1e
d/R
ds α = /1coshα +

d/R
ds

sinhα (57)

d/Rφ = d/Re
d/R
ds α = d/Rcoshα +ds/1sinhα (58)

dsφ /1= ds/1e
d/R
ds α = ds/1coshα +d/Rsinhα (59)

with an hyperbolic rotation invariant (d/R−ds/1).

Interesting also is the product (dsφ /1)
2 = dsφ /1dsφ /1= ds/1e

d/R
ds α ds/1e

d/R
ds α . After

some calculations, using standard hyperbolic trigonometric relations, we arrive at

(dsφ /1)
2 = ds2/1e

d/R
ds 2α ≈ ds2(/1+2α

d/R
ds

), (60)

so if we may assume d/R
ds ≈ /1 we get ds2

φ
≈ ds2(1+ 2α). Now, in the real world

only one field is thought to be capable of changing ds2 and that is a gravity field.
Assuming such an interpretation, the rotation angle should be related to the grav-
itational potential as we have for example the GR familiar α = φ/c2. So suppose
α = φ

c2 =−GM
Rc2 . Then we get

ds2
φ ≈ ds2(1− 2GM

Rc2 ). (61)

We can look closer at d/R
ds , which gives in the Weyl case

d/R
ds

=
dr0

ds
γ0 +

dr
ds

γγγ =
dt
dτ

γ0− i
dr

cdτ
γγγ =

dt
dτ

γ0− i
u
c

γγγ. (62)

and, in the Dirac case

d/R
ds

=
dr0

ds
β0 +

dr
ds

γγγ =
dt
dτ

β0− i
dr

cdτ
γγγ =

dt
dτ

β0− i
u
c

γγγ. (63)
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So the approximation d/R
ds ≈ /1 comes down to low proper velocity circumstances,

or non-relativistic proper velocities. But this only makes sense in the Dirac case
with d/R

ds ≈ β0, giving

(dsφ /1)
2 ≈ ds2(/1+2α

dt
dτ

β0−2αi
u
c

γγγ)≈ ds2(/1+2αβ0), (64)

or

(dsφ /1)
2 ≈ ds2

[
(1+2α)1̂ 0

0 (1−2α)1̂

]
. (65)

This clearly goes beyond the relativistic pre-GR theories or gravity.
But there is an easier approach towards the metric effect of the hyperbolic

Dirac-Weyl rotator, one that remains within pre-GR results and is based on

dsφ /1= ds/1e
d/R
ds α . (66)

This can be written as
dsφ

ds0
= e

d/R
ds α ≈ eα . (67)

In terms of the proper time this gives

dτφ

dτ0
≈ eα . (68)

In the approximation we applied, time and proper time are set equal, so this gives
us the behavior of clocks under the low velocity approximation of our Dirac hyper-
bolic rotator. There is only one known field that can change proper time like this
and that is a field of gravity. If we set α = φ

c2 = −GM
Rc2 we have a correspondence

between the physical effect of gravity on slowly moving clocks and our theoreti-
cal Dirac hyperbolic rotator (see [28], p. 24). We can also relate this to Einstein’s
pre-GR 1913 equation (3) in [19].

We can apply the same rotator on E/1 = i 1
cU0/1, so on the rest energy of a

particle, slowly moving in spacetime. That also results in Uφ

U0
≈ eα , with Uφ as the

rest energy of a particle in a field of gravity compared to the rest energy of the
same particle in free space U0. This is the same result that Nordström arrived at in
his 1912 theory of gravity ([21], [7] p. 36). Mie had an almost similar result in his
1912 theory of matter ([23], p. 30), a result which he repeated in 1914 in reaction
to Einstein while indicating the difference with Nordström’s theory ([24], p. 174).

If we use the proper velocity quadratic as an input for the rotator, with /U =
u0β0+u ·γγγ = iγLcβ0+u ·γγγ and the Lorentz factor γL, we have the quadratic /U /U =
−c2/1 = (ic)2/1. The hyperbolic rotator connected to this quadratic, applied to ic
gives

icφ /1= ic/1e
/U
ic α . (69)

leading to a gravitational ajustment of the speed of light as cφ

c0
≈ eα . Now we

run into an interpretation conflict with the previous two rotator results. We have
ds = icdτ = icdt0 and E = iU0

c = im0c. The first two results, time dilation and the
conversion of gravitational energy into rest energy, were based upon a constant
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light speed c. But if c is the variable, then proper time and rest mass should be
invariants. The interpretation dilemma turns around

cφ

c0
=

m0cφ

m0c0
=

t0cφ

t0c0
≈ eα , (70)

more specific around the two options

cφ

c0
=

m0cφ

m0c0
�

mφ c0

m0c0
=

mφ

m0
, (71)

and the equivalent options

cφ

c0
=

dt0cφ

dt0c0
�

dtφ c0

dt0c0
=

dtφ
dt0

, (72)

This dilemma is not new [29], and we do not have to solve it. It is already quite
amazing that our hyperbolic rotator, when expanded from the 3-D helicity version
into the 4-D Weyl-Dirac version and then interpreted as a gravity rotator, repro-
duces the same dilemma’s as the ones faced by the early theorists of relativistic
gravity around 1912, see [7].

Another interesting observation relates to the fact that the experimental static
gravitational clock-time dilation factor, which can be expressed, in terms of the
clock frequenties, as νφ

ν0
= e−α , was compensated, in the first experiment di-

rectly verifying this gravitational clock frequency dependency [30], by a rela-
tivistic Doppler effect, which, using the Lorentz rapidity, gives νφ

ν0
= e−ψ . This

implies that in first approximation, the effect of a static weak field of gravity φ

can be ‘compensated’ or ‘balanced’ by a rapidity ψ , with φ = ψc2. This is not
pure theory but an experimental fact expressed in a somewhat different way as
it is usually presented. Thus, experiments give us a correspondence between the
scalar approximations of the 3D helicity rotator and the 4D hyperbolic rotator.

11 The hyperbolic rotation of the Dirac-Weyl equation

In the previous sections we focused upon the effect of the Dirac-Weyl hyperbolic
rotator on the energy-momentum vector and the metric vector in the Dirac envi-
ronment. Now we will apply the rotation to the energy-momentum operators. If
we replace /P by −ih̄/∂ and assume that the rotation angle stands for the gravita-
tional potential of a static, central weak field of gravity with α = φ

c2 =−GM
Rc2 , then

gravity force equations appear. We know that, for the momentum-energy, we have
the invariant Eqn.(51). What happens if we apply this to the Dirac-Weyl equation?
We start with the form (/̂P−E/1)Ψ = 0. With /̂P =−ih̄/∂ we get

(/∂ − i
E
h̄
/1)Ψ = 0. (73)

Then we apply the hyperbolic rotation e
/P
E α to get

e−
/P
E α(/∂ − i

E
h̄
/1)e

/P
E α

Ψ = 0, (74)
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so
e−

/P
E α /∂e

/P
E α

Ψ − i
E
h̄
/1Ψ = 0, (75)

and as a result, we have to examen what we get from /∂e
/P
E αΨ . Using Eqn.(50),

this gives

/∂ coshαΨ + /∂
/P
E

sinhαΨ =

coshα /∂Ψ + sinhα(/∂α)Ψ + sinhα
1
E
(/∂ /P)Ψ +

coshα(/∂α)
/P
E

Ψ + sinhα
/P
E
/∂Ψ = (76)

e
/P
E α /∂Ψ +

1
E
(/∂α)(/Pcoshα +E/1sinhα)Ψ + sinhα

1
E
(/∂ /P)Ψ = (77)

e
/P
E α /∂Ψ +(/∂α)e

/P
E α

/P
E

Ψ + sinhα
1
E
(/∂ /P)Ψ . (78)

In this derivation we simplified a step, skipped a problem, because /∂ /PΨ is in
some cases not simply (/∂ /P)Ψ + /P/∂Ψ due to the non-commutative math, but we
still used that as an outcome. So the result in the rest of this section, being based
on that assumption is indicative, not definitive. This brings us at

e−
/P
E α /∂e

/P
E α

Ψ = /∂Ψ + e−
/P
E α(/∂α)e

/P
E α

/P
E

Ψ + e−
/P
E α sinhα

1
E
(/∂ /P)Ψ . (79)

which implies for the equation

(/∂ − i
E
h̄
/1)Ψ + e−

/P
E α(/∂α)e

/P
E α

/P
E

Ψ + e−
/P
E α sinhα

1
E
(/∂ /P)Ψ = 0. (80)

Now let us assume that we have the condition /∂ /P = 0, a condition that we ex-
amined before as ∂ T P = 0, see Eq.(24). That were the conditions of a conserved
force field. Then we get

(/∂ − i
E
h̄
/1)Ψ + e−

/P
E α(/∂α)e

/P
E α

/P
E

Ψ = 0, (81)

an equation of which we just assume that it can be simplified to

(/∂ − i
E
h̄
/1)Ψ +(/∂α)

/P
E

Ψ = 0. (82)

And with /P
E =−i /Uc we get

(/∂ − i
E
h̄
/1)Ψ − i

1
c
(/∂α)/UΨ = 0. (83)

So we get an extra condition /∂ /P = 0 and an extra term containing (/∂α)/U . If we
add α = φ

c2 and assume it to be a time independent static field we get c2 /∂α =
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/∂φ = γγγ ·∇∇∇φ =−γγγ ·g =−/G. The conclusion is that, given our simplifications, we
‘rotated’ gravity in the Dirac-Weyl equation, resulting in an approximate

(/∂ − i
E
h̄
/1)Ψ + i

1
c3

/G/UΨ = 0. (84)

If we translate the above to a possible Lagrangian density resulting from the
hyperbolic rotator, we might start with L = Ψe−

/P
E α(−ih̄/∂ −E/1)e

/P
E αΨ . If our

assumptions leading to Eq.(84) can be applied, the Lagrangian density would be-
come

L =Ψ(/̂P−E/1)Ψ +Ψ
h̄
c3

/G/UΨ (85)

with the square of the Planck length l2
p = h̄G

c3 in the last product. But due to the
many the assumptions we had to make to get at equations (84) and (85), these
results are only indicative. They are indicators of the math-phys structural richness
that arises when applying the 4-D quantum rotator of equation (50) to the Dirac-
Weyl equations.

12 Conclusion

Initially we hoped that our math-phys language, part of the development of which
is presented in this paper, would bring a new spirit in the discussions regarding
the problem of the electron as the problematic non-zero divergence of its EM
self stress-energy tensor. We tried to replace the Minkowski-Laue paradigm with
a different math-phys language for relativistic dynamics, a language that should
be beyond symmetric and anti-symmetric issues, that could integrate the full spin
matrix formalisms and the Dirac QM treatment of the electron and at the same
time include the pre-GR attempts to formulate a relativistic theory of gravity.

Now we are curious to what extend our 4D hyperbolic quantum rotator is
beyond the level of the failed pre-GR attempts to formulate a relativistic theory of
gravity. We are of course still pre-GR and pre-YM and within the environment of
the Dirac equation. But we might have expanded the reach of the Dirac equation
by exposing it to our 4D rotator. To what extend have we thus entered the physical
realm of quantum gravity? If we interpret the 4D rotator in analogy to the 3D
helicity rotator, in which the rapidity contains the info concerning the magnitude
of the Lorentz boost and helicity harbors the rest of the info, then the Dirac-Weyl
/P part of the rotator should contain the gravity transformation info that is not in
the scalar α = φ/c2. If verifiable, then how more quantum could gravity become?

But of course, our whole math-phys language, including the 4D quantum rota-
tor, is just a math-phys construction without verification. Is it internally consistent?
Can it harbor QM and relativistic gravity beyond our anachronistic pre-YM and
pre-GR context or will it turn out to be a dead end as soon as we go any further?
Is it perhaps just a matter of trying out the idea of the 4D quantum rotator in the
standard math-phys language without this papers spin-metric math-phys alterna-
tive, by connecting it for example directly to a metric interpretation of the Dirac
matrices as proposed by Fock and Iwanenko already in 1929 [31]?
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