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Annotation
In book the theory of positional coding of complex numbers and 
vectors is considered. The method of search of the radix of 
coding is described and the various radix of coding are offered. 
Some variants of construction of binary codes of complex 
numbers and vectors are allocated.
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Introduction

Let's briefly stop on history of a question. Computer arithmetics of 
complex mathematical objects originates in Shannon article about 
positional codes of real numbers on the negative radix [1]. This idea, very 
likely, for the first time has been realized in Poland [2] and has induced 
(apparently) several authors to development of methods of coding of 
complex numbers. Practically simultaneously the Knuth [3] has offered 
system of coding on the basis jÖ2. Khmelnik [4] has offered some 
systems, including on the bases jÖ2 and (-1+j). The basis (-1+j) has 
considered Penney [5] later. Khmelnik in the dissertation [6] has 
considered a complex of questions of designing of the arithmetic device 
for operations with complex numbers. These results developed then in 
works [7, 8, 9, 11, 12, 13, 14, 33, 34, 35, 44, 45, 46, 47].

In several works [16, 17, 18] methods of construction of multipliers 
of complex numbers are considered. So the basic attention is given ways 
of realization of these devices on the chip. For this purpose redundant 
systems of coding which, in opinion of authors, allow to construct big 
regular schemes are offered. However at that  other operations with 
offered to codes (for example, division) are not considered.

For codes of real numbers the method "digit-by-digit" [19, 20] for 
calculation of elementary functions by a hardware is known. It can be 
generalized on positional codes of complex numbers, that for the first 
time has been made Khmelnik in [6, 11]. So frequently it is enough to 
have hardware realization only for potentiation and taking the logarithm 
as since through these functions in complex area it is possible to express 
all elementary functions. Besides this method is applicable for 
construction of algorithms of the hardware decision of the transcendental 
equations and systems of such equations. At use of codes complex 
(instead of real) numbers the class of such equations extends, and 
algorithms of their decision essentially become simpler. In [6, 11] one of 
such algorithms is described.

The further development of idea of positional coding has gone on a 
way of construction of positional  codes of vectors [21, 22], matrixes [36, 
37], functions [23, 24, 25, 33], geometrical figures [22, 26, 27, 28, 32, 38, 
39]. It is necessary to note, that codes of geometrical figures can be 
considered as codes of numerical arrays and for them effective search 
algorithms [29, 30, 31] can be constructed. Many are generalized from 
these results in the book [32].
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The preference given to positional codes, follows, mainly, from that 
with them arithmetic operations are very simply carried out. So, without 
dependence from object of coding, addition of positional codes is 
connected to distribution of carries from younger categories to grown-
ups, and multiplication will consist of shifts (that is renumbering 
categories) and additions. The mentioned above method "digit-by-digit" 
in general is applicable only in a combination to positional system of 
coding.

It is important to note, that in programming for offered 
computers the existing mathematical methods, not taking into account, 
naturally, specific opportunities of these computers are used.  It is 
possible to hope, that at diffusion of such computers will be found not 
only other methods of the decision of problems, but also other 
unexpected scopes as it continuously occurs to existing computers. For 
example, there is a theory of functions spatial complex variable [40]. The 
algebra of four-dimensional vectors [21, 32], offered for their coding, 
coincides with the algebra of spatial complex numbers used in [40]. In 
this connection there is an opportunity of development of computer 
arithmetics of spatial complex numbers with calculation hardware  of 
function of this variable, as the further generalization of a method "digit-
by-digit" (just as it has been made for complex numbers [6, 11]). In it 
there is a practical sense because the theory of functions spatial complex 
variable is used in very difficult problems of theoretical physics [40].

In the offered project it is possible to find out many analogies to 
traditional computer arithmetics. It is possible to specify a number of 
books, where this arithmetics is in detail considered [41, 42, 43].
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1. About a method of positional coding.

In this section will be considered positional codes many-
dimensional vectors Z, based on their representation in kind of 
decomposition,

 
m

m mfrZ , , (1)

where m - number of the category,
  - basis of coding, number or vector,
 mf ,  - base function from number and the bases,

r - category of decomposition, number or vector, accepting 
significance from limited set

A a a a a aR j R { , , , ..., , ..., },0 1 2 1

containing R of various sizes a j . The positional code of a vector Z, 
appropriate to this decomposition, has a kind 

K(Z) =... m ...,
where  m  - digit, designating size rm .

The formula (1) includes operation of addition and multiplication. 
For existence of algorithms of operations with such decomposition (or, 
that one and too, with positional codes ) addition and multiplication 
should be associative and commutative, as well as to be subject to the 
distributive law. Hence, for a opportunity of positional coding of some 
set of objects this set should make ring. To such requirement set of real 
numbers and set of manu-dimensional vectors satisfies, in which 
operations of addition and multiplication on number are determined. For 
real numbers the positional systems are known. For indicated set of 
vectors a positional system with the real basis will be below constructed.

Set of complex numbers makes ring and for it positional systems 
on the real and complex basis will be also constructed.

For construction of a positional system of manu-dimensional 
vectors on vector basis operation of multiplication of vectors, 
subordinated set forth above laws should be determined. In other words, 
algebra in manu-dimensional vector space should be determined. It is 
made below.

In the beginning we consider two ways of coding of vectors, and 
then we pass to the more general and strict description of a method of 
positional coding.
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2. Two ways of synthesis of codes of complex 
numbers
The positional codes of manu-dimensional vectors can be 

received some composition of codes of real numbers on the negative 
basis. In the beginning we consider this method in application to coding 
of complex numbers. Here and further j - imaginary unit.

Let X  and X  - real numbers, given by binary decomposition 
on  to the basis   =-2, that is

X m
m

m
   

( )
, X m

m

m
   

( )
.

To these decomposition there correspond codes
K( X ) =... m ..., K( X ) =...m ...

There are two ways of association of these two codes in a united 
code of complex number. The first of them a pair of categories consists 
that  m  and m  is designated one digit  m . Thus a code

K(Z) =... m ...
of complex number Z = X  + j X  on the basis  =-2 with categories, 
accepting one of four significances will be formed:

 m  { 0, 1, j, 1+j }.
Let's consider complex function of the real whole argument

 
 
  

















oddif2

evenif2

2
1

2

2
mj

m
m

m

m

 (2)

Thus the considered code of complex number on the radix (-2) with 
complex values of categories can be considered as a code of complex 

number on the radix ( 2 ) with bits. To this code there corresponds 

decomposition of complex number as  
m

m
mZ 2 , where bits 


















oddif

evenif

mj

m

m

m
m 


 . For an illustration we shall write down 

codes of some characteristic numbers in this system:
K(2) = 10100, K(-2) = 100, K(-1) = 101,
K(j) = 10, K(-j) = 1010, K(2j) = 101000.
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The second way consists in construction of a sequence of interleaved 
categories  m  and m

... ...     m m m m m m   1 1 1 1
We designate  m m 2 ,  m m 2 1  and we copy a indicated sequence 
in other kind:

...     k k k k k k    3 2 1 1 2 ,
where k=2m. This sequence is binary code

K(Z) =... m ...
of some complex number Z. It is possible to show ( and it will be made 
below ), that the code, received in such a way, is a binary code on the 
radix

  =  j 2 ,
and coded number

Z = X  +  X .
Thus, some composition of binary codes of real numbers on the 

basis   = - 2 will form codes of complex numbers. At fulfillment 
algebraic the addition of complex numbers such codes can be considered 
as simple set of codes of real numbers and to execute the same operation 
with each pair of real numbers independently. At the same time with 
such codes operations of multiplication, and with the codes of the 
second type - and division are feasible. Thus the operations of 
multiplication and division consist, as usually, of cycles "shift - addition".
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3. Method of coding of points of the many-
dimensional space
A method of coding of points of the manu-dimensional Euclidian 

of the space should establish someconformity between these points and 
codes from some set. This conformity, generally speaking, can be not 
mutual - unequivocal. But for a opportunity of unequivocal decoding to 
each code there should correspond only one point of the coded space. At 
the same time even the limited area of the space contains 
nondenumerable set of points. Hence, set of appropriate codes also 
nondenumerably and among them there should be codes with infinite 
number of categories ( infinite codes ). However in practice of 
calculations final codes, and the set of final codes boundedly can be 
used only.

That in these conditions to preserve conformity between codes 
and points of the space, naturally the limited coded area G decompose on 
limited set of the areas  of determined size and configurations so that 
each point of the area G was in one of areas  . Then between set of 
final codes and set of the areas  it is possible to establish mutual - 
unequivocal conformity.

Such way of coding of points of the manu-dimensional space is 
approximate. Really, all points Z j i  there corresponds a unique 
code Ki . However at decoding of a code Ki  a unique point Zi will 
be formed. We designate A radius - vector of a point Z by a symbol Z . 
Difference Z Z Zj j i | |  defines a absolute error of coding of a point 
Z j .

By way of illustration we consider fig. 1, where the area Z j  of 
the two-dimensional space, broken on area   is represented.

On this drawing the area  i = ABCD is allocated, and area 
 i belongs also its bottom ( AD ) and right ( CD ) border. In the area 
 i a basic point Zi and some point Z j i is allocated. Length of 
a section Z j  characterizes a absolute error of coding of a point Z j .
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Fig. 1.

So, the stated principle of coding of points of the many-
dimensional space consists in following:

 the limited area G of the coded space is divided on limited set 
of the equal areas  i  (i=1, 2,..., N), and

G i �   and  i j�   at i j ;
 set of final codes Ki  (i=1, 2,..., N) is defined;
 between the areas and the codes establish mutual - 

unequivocal conformity.
At observance of these conditions we shall speak, that the 

system of coding of the area G of the many-dimensional space satisfies 
to a principle of coding and the area G is coded with step-type 
behaviour  . The following two lemmas are obvious.

Lemma 1. System of coding of the area G satisfies principle 
coding, if V=NU, and back, where

U - volume of the area,
V - volume areas G,
N - capacity of set of final codes.
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Lemma 2. System of coding of the area G, the coding satisfying 
principle, is total ( that is, any point there corresponds a final code ), 
nonredundant ( that is, each point there corresponds a unique final code 
) and approximate ( that is, subset of points - vectors, the module of a 
difference of which does not exceed some size, there corresponds one 
final code ).

Consider set of n-digit codes of a kind
K n k    1 1 0... ... , (3)

where  k  - digit, accepting one of Rk  significances, Rk >1 and integer.

Lemma 3. If the system of coding satisfies to a principle of 
coding, at a increase of word length of final codes and preservation of 
step-type behaviour of coding volume of the coded area is increased also, 
as capacity of set of final codes, and back.

Proof. The capacity of set of final codes
N Rn kk

n  1 . (4)
Let this set of codes satisfies to a principle of coding and codes the area 
Gn  with step-type behaviour  . Pursuant to of lemma 1 quantity of the 
areas, contained in areas  , also equally, and area Gn  has we increase 
volume

V N Un n . (5)
Now word length of codes at a unit, that is, we add the category  n , 
accepting one of Rn  significances. Obviously

N R Nn n n 1 . (6)
Let the new set of codes also satisfies to a principle of coding and codes 
the area Gn1  with the same step-type behaviour  . Quantity of the 
areas  , contained in areas Gn1 , equally Nn1 , that is, the area Gn1  has 
volume

V N Un n 1 1 . (7)
Combining three last formulas, we find, that

V R Vn n n 1 1 , (8)
that is, the direct part lemma is proven.

On a condition of a return part lemma formulas (5), (6), (8) are 
fair. From them follows (7), whence pursuant to lemma1 we receive the 
proof of a return part the given lemma.

We consider now a positional system of coding. In this system to 
each positional code

K Z n k m( ) ... ...   
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there corresponds a point Z coded many-dimensional space, possessing 
decomposition of a following kind:

Z k
k

k m
n     , (9)

where   - basis of coding,
k - number of the category,
 k  - k-category of a code ( digit or quantitative equivalent, 

corresponding to it in decomposition ), accepting one of Rk  
significances.

We notice, as   and  k  are also points coded of the many-
dimensional space. The positional code refers to as infinite, if m   , 
and - final, if m is limited. Number n refers to as by length of a positional 
code. If Rk =R, decomposition and code refer to as refers R-
decomposition and R-codes. So, we shall consider size a, accepting 
significance from sets

A a a a a aR j R { , , , ..., , ..., },0 1 2 1 (10)
containing R of various sizes a j . In practice of positional coding 
essentially that R is limited and does not exceed several units.

Positional code of a point Z on the basis   we shall designate 
and to record also as follows

    Z n k m       ... ... , ...1 0 1 2 , (11)
placing a point between zero and ( -1)-category ( index - basis will not be 
indicated, if significance of the basis clearly from a context ). A vector ( 
point ) Z, in a code of which, shall name   - whole. Accordingly are 
defined   - fractional ( correct and wrong ) vectors Z. In particular, 

    10 . (12)
Set   , AR  of the basis of coding   we and shall AR  

name sets as a system of positional coding. We shall speak, that the 
point of the many-dimensional Euclidian space represent in the given 
system of positional coding, if to it there corresponds decomposition of a 
kind (9) and positional code of a kind (11), in which the categories accept 
significances from set (10).

The task consists of construction of such positional systems of 
coding, in which represent the any point of the given space and are thus 
executed conditions of completeness, nonredundant and approximate, 
certain in lemma 2.

The sense of construction of positional systems consists of 
simplification of fulfillment of arithmetic operations with points ( vectors 
) of the many-dimensional space. On the other hand, existence of 
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positional codes, based on decomposition (9), probably only in the event 
that in the given space operations of summation of vectors are 
determined and multiplication of a vector on the basis   ( which can 
also be a vector ).

In one- and two-dimensional spaces multiplication on the basis 
 ( the multiplication on real or complex number ) corresponds to a 
increase of a module vector-multiplicand in |  | since, that is,

if Z Z2 1  , then | | | || |Z Z2 1  . (13)
It should once again note, that to multiplication Z1  there 

corresponds shift of a code < Z1> on one category to the left in any space. 
We require, that the condition (13) was executed also for any coded space 
and we prove some condition of existence of a positional system, using 
these two fact.

Theorem 1. Necessary and sufficient condition that any point of 
the h-dimensional Euclidian space, in which is satisfied condition (13), 
represent in the given system of positional coding, is a condition the

| | h R . (14)
Proof. Each code  Z2   of length ( n + h) at m    can be 

received by shift on h of categories to the left some code  Z1   of 
length n. But pursuant to (12) such shift equivalent to multiplication on 
the basis, that is, Z Z h

2 1  . Thus from a ratio (13) follows, that 

2 1Z Z h | | . Hence, the linear sizes of the coded area are 

increased in | | h  since ( besides the coded area, generally speaking, is 
turned concerning the previous situation ). Thus, the volumes of the 
areas Gn and Gn h  are connected by a ratio

V Vn h
h

n | | . (15)
Obviously, the restriction m does not change volume of the coded area. 
There is only discreteness behaviour of coding   Gm 1 . Taking into 
account (14), from (15) we receive

V RVn h n  . (16)
Comparing (16) and (8), from lemma 3 we find, that the system of 
positional coding at m    satisfies to a principle of coding, that is, 
owing to lemma 2, is total, nonredundant and approximate. The theorem 
is proven.
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4. Arithmetic systems of coding
Among positional systems of coding the heaviest interest present 

such, to which simple algorithms of addition and multiplication are 
aplicable. Just such systems we and consider hereinafter, but previously 
define  them more strictly.

Definition 1. System   , AR  of positional coding refers 
to as arithmetic, if following conditions are executed

 number (-1) is  - whole,
 the sum and product of any pairs of vectors, belonging to to 

set AR , are  - whole.
We notice, that the condition (13) can be executed and for a non-

arithmetic system.
Lemma 4. If in arithmetic to positional system represent vectors 

Z1  and Z2 , in this system represent and vectors  - Z1 , - Z2 , Z1+ Z2 , 
Z1 Z2 .

Validity  lemma follows from that, as will be shown below, for 
arithmetic positional systems there are algorithms of arithmetic 
operations.

Definition 2. Positional a system   , AR  refers to as 
normal, if A BR R , where

B RR  { , , , ..., }0 1 2 1 .
Lemma 5. Normal a system, in which

R k
k

k
n    1 , (17)

   R k
k

k
w  1 , (18)

that is, the codes of numbers R and -R are  -whole and have zero 
significance of the zero category, is arithmetic.

Proof. Any number from set BR  0 1  a Rj ( ) . Hence, for 
numbers from this set ratio   a a Rj k  and a a a Rj k m   , if 
a a Rj k  . are executed. Taking into account Of a condition lemma, 
we conclude, that the numbers (a j ) and (a aj k ) are  -whole. 
Obviously, the product a aj k  can be presented by a sum of numbers 
from set BR . On induction by virtue of existence of algorithm of 
addition we conclude, that such sum is also  -whole. Thus, the 
conditions of definition 1 are executed. Hence, the considered system is 
arithmetic.
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Lemma 6. Normal a system, in which number R has 
decomposition of a kind (17) and

R kk
m   1 , (19)

is arithmetic.
Proof. As follows from (17) and (19), in lemma systems, in which

R k
k

k
n

kk
n      1 1 .

are considered.
We consider following algorithm:

  3 2 10 carries
       3 2 10 carries
            3 2 10 carries
                 3 2 10  =  R  addend 1
                     2 10  =  X  addend 2
_____________________________________
  0   0   0   0    0   0   0 sum

Here the code of number R develops with code of some number  X, the 
categories of which will be formed so that

 1 1  R  and   1 2 2   R . 
Thus and owing to (19) the addition of digits each column will form 
number R, which forms carry and zero category of a sum. As a result of 
Infinite carries and zero sum will be formed. Hence, X=-R. Obviously, 
such algorithm of formation of a code of number -R execute at any R, 
appropriate to decomposition (17) or, that one and too, at any code of 
number R of a kind

 R   =   m ... 2 10 .
Result of this algorithm is a code of number -R of a kind

  R   =   w ... 2 10 .
This code corresponds to decomposition (18). By this lemma is proven.

We notice, that the decomposition (17) and (18) can be 
considered as a system of two power equations concerning unknown  . 
Deciding it, it is possible, generally speaking, to define some system of 
coding. However such reception not always causes to positive result 
because the given system or not solvable analytically, or not composes, or 
gives as the decision of result, the of theorem not satisfying to condition 
1, or gives as the decision real number.

Lemmas 4, 5, 6 will be used further at search of normal positional 
systems of coding.
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5. Codes of real numbers
For real numbers dimension of the coded space h=1. Hence, for 

positional codes of real numbers it is necessary to observe a condition
|   | = R.

Positional codes of real numbers are widely known and 
widespread, in which   = R and the categories accept significances from 
set BR . Here concern usual decimal (R =10) and binary (R =2) codes. 
However such codes it is impossible to represent negative real numbers, 
to representation of which has to apply artificial receptions, in particular, 
to use return and additional codes, that causes a number of 
inconveniences.

In a too time there are two ways of construction of positional 
codes, suitable for the image real - positive and negative numbers. First 
of them consists that to categories give positive and negative 
significances from set 
D r r r rR      { , , ..., , , , ..., , }1 1 2 21 1 0 1 1  and 

R r r r r    1 2 1 21 0 0, , ,  and basis, still, leave equal R ( at r1 0  
the set DR  is transformed into set BR ). Other way is based on 
application of the negative basis   = -R. Thus the sizes of categories can 
accept significances or from set BR , or from set DR . So, the known 
results, relating to positional coding of real numbers, are formulated as 
follows.

Theorem 2. Any real positive number represent in systems
<R, BR  >,   < R, BR  >,   < R, DR  >,   < R DR  >.

So, exists four systems of coding of real numbers:
1. system <R, BR>, for example < 5, { 0, 1, 2, 3, 4 } >;
2. system < R BR  >, for example < 5, { -2, -1, 0, 1, 2 } >;
3. system < R DR  >, for example < -5, { 0, 1, 2, 3, 4 } >;
4. system < R DR  >, for example < -5, { -2, -1, 0, 1, 2 } >.

We put examples penta-codes of codes of some numbers in 
considered systems, designating of size -1 and -2 digit 1  and 2 :

1. K(16)= +31, K(-13)= -23,
2. K(16)= 1 2 1, K(-13)= 1 22,
3. K(16)= 121, K(-13)= 32,
4. K(16)= 121, K(-13)= 1 2 2.
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Here it should pay attention on that codes in the first of these 
systems are accompanied by marks " + " and "-", which are away in all 
other systems, as far as in them a mark of number together with a 
module are defined by significances of categories of a code.

It is important to note, that among indicated systems there are 
only two systems of binary coding, namely system with figures { 0, 1 } 
and basis "2" and "-2".
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6. Codes of complex numbers
We prove in the beginning some theorems of existence of normal 

arithmetic systems of coding with the complex basis, designating through 
j a seeming unit.

Theorem 3. Any complex number represent in a normal system 
of coding on the complex basis   and this system is arithmetic, if

| |  R (20)
and conditions (17), (19) are executed.

Proof. For complex numbers the dimension of the coded space 
h=2 and at any   is satisfied condition (13). From here and from (20) 
follows, that conditions of the theorem 1. hence, any complex number 
represent in the given system of coding are executed. Further, the 
conditions (17) and (19) are conditions lemma 6. Hence, the given system 
is arithmetic.

The theorem 3 enables to reduce the proof of theorems about 
representability of any complex number in a normal system of coding 
and arithmeticality of this system to the proof that is satisfied condition 
(19) and   is a complex root equation (17). Just by these method of the 
proof we and shall take advantage hereinafter.

Theorem 4. Any complex number represent in a normal system 
of coding on the complex basis

   2 2
2e Bj / ;  or      1 0 1j; { , }

and this system is arithmetic.
Proof. We assume, that   2 1100 . This condition it is 

equivalent to a equation  3 2 2  . Its decision coincides the 
condition of the given theorem. Hence, is satisfied condition (17). 
Obviously, that the condition (19) is also executed, as far as R=2. By 
virtue of the theorem 3 the given the theorem is proven. We notice, that 
in this system       R R 1100 11100, .

Theorem 5. Any complex number represent in a normal system 
of coding on the complex basis   and this system is arithmetic, if

  Re j ,        arcCos R R R( ), ( , )min2 2
and  - the whole positive number.

Proof. We assume, that   R   1 02 1 , where 
1 12 1 2       R, . This condition equivalent to a equation 
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    3 21    ( ) ( )R R . Its decision gives significance, 
adduced in conditions of theorems. By virtue of the theorem 3 the given 
the theorem is proven.

For a illustration we record codes of some characteristic numbers 
in this system, having designated through   number, integrated to 
number  :

K(R)=1( -1)(R- )0, K(-R)=1 0,
K(-1)=1 (R-1), K(  )=1( -1)(R- ),
K(-  )=1 , K(-  )=1 (R-1)0,
K(  -  )=2 , K(  +  )=1 (R- ).
In connection that  can accept some significances at constant 

R, there are some types of positional codes in systems of a considered 
kind. As a example in table 1 possible codes of number R are adduced at 
various R and  .

For an illustration we shall write down codes of some 
characteristic numbers in system with the basis     

1
2

1 7j , 

Having designated through   number, conjugate to number  : 
K(2)=1010, K(-2)=110, K(-1)=111, K(  )=101, K(-  )=1110, K(-  )=11, 

 K j 7 10101 ,  K j 7 1110011.

Table 1. Codes of number R.

R \  1 2 3 4 5

2 1010
3 1020 1110
4 1030 1120 1210
5 1040 1130 1220 1310
6 1050 1140 1230 1320
7 1060 1150 1240 1330 1420
8 1070 1160 1250 1340 1430
9 1080 1170 1260 1350 1440

From systems of the theorem 5 it is possible to allocate groups 
with fixed significance of argument of the basis, for example
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  2 3/ , if   R , that is, at R=4, 9, 16, 25, ...;

  3 4/ , if   2R , that is, at R=8, 18, 32, 50,...;

  5 6/ , if   3R , that is, at R=12, 27, 48, 75,..;
We consider now a positional system of a more general kind.

Theorem 6. Any complex number represent in a system of 
coding

       2 0 13
4 4

2 3 2 3e A A e ej j j/ / /, , { , , , , }and 
this system is arithmetic.

Proof. We notice, that ( ) 2 k
k

kl  , where

l e ek
j j ( , , )/ /1 2 3 2 3 

accordingly at k = ( 3m, 3m+1, 3m+2 ), where m-whole. Obviously, 
l Ak  4 . Hence, any degree of number "-2" אלטגאעסהונן in a indicated 
system of coding by one category. By virtue of the theorem 2 any real 
number X represent in a kind of decomposition on the basis "-2". But 
each category of such decomposition, presenting degree of number "-2" 
or 0, can be replaced by the category of decomposition in a indicated 
system of coding, that is, any real number represent in this system of 
coding.

Any complex number Z can be submitted as

Z u u e u ej j   
1 2

2 3
3

2 3 / / ,
where u u u1 2 3, ,  - some real numbers. In this sum all making represent 

in a indicated system as far as cofactors of real numbers u u u1 2 3, ,  

belong to set A4 . If this system is arithmetic, in it represent and given 
sum, that is, any complex number. Remains to show, that the indicated 
system is arithmetic. For it we make tables of pairs multiplication, 
summation and table of inverting ( multiplication on "-1" ) figures from 
set A4  - see tables 1.2, 3, 4. For convenience of record these figures are 
designated by symbols 0, 1, c, d. As it is visible from these tables, in a 
considered system of coding all conditions of definition 1. Hence are 
executed, this system is arithmetic, as was required to show.



20

Table 2. One-digit multiplication
* 0 1 c d
0 0 0 0 0
1 0 1 c d
c 0 c d 1
d 0 d 1 c

Table 3. One-digit summation 
+ 0 1 c d
0 0 1 c d
1 1 dc0 1d dc
c c 1d d10 c1
d d dc c1 c10

Table 4. Inverting category 
x 0 1 c d
-x 0 c1 dc 1d

Table 4. Inverting category.
X 0 1 c d
-X 0 c1 dc 1d

We notice, that in this system very idle simple a kind there are 

codes of complex numbers of a kind e jk60
�

, where k - integer - see 

table 4a. Besides for this system in table 4b codes of numbers 2k  and 

( )2 k , where k - integer.

Table 4a. Codes of numbers e jk60
�

.
j 0 60 120 180 240 300

code 00 1d 0c c1 0d dc
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Table 4b. Codes of numbers 2k  and ( )2 k .
k ( )2 k 2k

-4 0.000d 0.000d
-3 0.001 0.0c1
-2 0.0c 0.0c
-1 0.d 1.d
0 1 1
1 c0 dc0
2 d00 d00
3 1000 c1000
4 c000 c000

Further we only shall more strictly state the results received in 
section 2.

Theorem 7. Any complex number Z represent in a positional 

system  2, RAR , where set hRA  consists of complex 

numbers 
21
mmm jr    and numbers m RB .

In particular, there is a system <-2, {0,1,j,1+j}>.
Theorem 8. Any complex number Z represent in a normal 

positional system,  RBRj , .

For example, there is a system  }1,0{,2j . 

For an illustration we shall write down codes of some characteristic 
numbers in system   = j 2 : K(2) = 10100, K(-2) = 100, K(-1) = 101, 

 K j 2 10 ,  K j 2 1010 .
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Table 5. Binary systems of coding.
Preffered 
number 
systems

 < 2 > < -2> <- 1> Theorem Fig.

System 1
 m2

 

 



































oddif
2

evenif
2

2
1

2

2

m
j

m
m

m

m

10100 100 101 Formula 
(2)

1

System 2
2j

 j 2 10100 100 101 Theorem 
8

2

System 3
1 j

 1 j 1100 11100 11101 Theorem 
4

3

System 4
 17

2
1

 j  1
2

1 7  j
1010 110 111 Theorem 

5
4

-2 110 10 11 Theorem 
2

2 10 Theorem 
2

Obviously, for systems from theorems 7 and 8 the condition (14) 
is satisfied. The proof of these theorems is based on reasonings of 
section 2.

Let's result for an illustration and comparison binary codes of 
numbers in all specified systems of coding, including systems of coding 
on real (positive and negative) and complex to the radix - see table 5.

Further we shall stop on four binary systems of complex 
numbers - see a column «Preffered number systems» in table 5 in more 
detail. In figures the first 4 values of base function for the preffered 
number system  are represented.
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Fig. 1
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3
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2*Sqrt(2)
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Fig. 3.
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1

3

Re
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Fig. 4.
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Let's result still table 6 four-valued codes of numbers ' 4 ' and '-4 ' in all 
systems of coding considered above (in this table '-1' it is designated by 
sign 'h').

Table 6. Four-valued coding system.

 A4 < 4 > < - 4 > Theorem

4 {0,1,2,3} 10 2
4 {-1,0,1,2} 10 h0 2
4 {-2,-1,0,1} 10 h0 2
-4 {0,1,2,3} 130 10 2
-4 {-1,0,1,2} h0 10 2
-4 {-2,-1,0,1} h0 10 2

2
2 3

e
j {0,1,2,3} 1120 120 5

2 3e j
{0,1,c,d} d00 1d00 6

-2 {0,1,j,1+j} 100 1100 7

4 {0,1,2,3} 10300 100 8

2 j {0,1,2,3} 10300 100 8
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7. Codes of many-dimensional vectors
The stated method of construction of codes of complex numbers 

can be integrated and is used for coding of multidimensional vectors. For 
it we consider set of real numbers { X i }, each of which is given by binary 
decomposition on the basis  = - 2, that is

X i m
i m

m
  
( )

, (i=1, 2,..., n).

To each such decomposition there corresponds a code
K X i m

i( ) ... ... 
We consider now n-dimensional vector

Z E X E X E Xn n   1 1 2 2 ... ,
where { Ei } - base of n-dimensional vector space. Set of codes {K X i( ) } 
it is possible thus interpret as a uniform code of a vector Z on the basis 
"-2". Each m-category of this code is represented by set { m

i } binary 
categories. Having designated these sets by figures  m , we receive a code 
of a vector

K(Z) =... m ...,
appropriate to decomposition (1), where the vector

r E E E Em m m i m
i

n m
n     1

1
2

2   ... ...
is represented by digit  m .

In particular, at n=2 codes of complex numbers on the basis "-2," 
considered higher will be formed. At n=3 codes of three-dimensional 
vectors will be formed, in which categories accept one of to eight 
significances:

rm  { 0, i, j, k, i+j, i+k, j+k, i+j+k },
where i, j, k - unit vectors of rectangular coordinate axes.

For coding three-dimensional vectors, similarly previous function 
from real whole vector argument

 
 
  





























23if2

13if2

3if2

2

1
2

kmk

kmj

kmi

m

m

m

m ,

can be entered. Thus the considered code of a three-dimensional vector 
on the basis (-2) with vector values of categories can be considered as a 
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code of a three-dimensional vector on the basis ( 2 ) with bits. To this 
code there corresponds decomposition of a vector as 

 
m

m
mZ 2

.
We construct now, as earlier for complex numbers, sequence of 

interleaved(alternated) binary categories  m
i :

... ... ...       m m m
n

m
n

m m m
n

m
n

 


 


1
2

1
1 1 2 1

1 1
1

In other designations this sequence is a binary code
K(Z) =... k ...

some vector Z. Thus the basis of coding is also a vector   E n
2 2 , 

where E2  - second unit vector of base { Ei  } n-dimensional vector space. 
The coded vector Z is defined(determined) in this case under the formula

Z X X X Xi
i

n
n      

1 2
1 1  ... ... .

Completely similarly positional codes of vectors (including 
complex numbers and multidimensional vectors) are under construction 
on the basis of association of positional codes of numbers - projections 
of vectors on the radix R , where R - an integer. In this case, for 

example, instead of function 
m
2  as the radix of coding of complex 

numbers function 

 
  

















oddif

evenif

2
1

2

mRj

mR
m

m

m
R ,

should be considered, instead of function 
m
2  as the radix of coding of 

three-dimensional vectors function

 
 
  































23if

13if

3if

3
2

3
1

3

kmRk

kmRj

kmRi

m

m

m

m
R ,

should be considered, etc.
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Here we only more strictly state results, received in section 3. 
Thus special algebra in the manu-dimensial Euclidian space, described in 
chapter “Multiplication”, section 2.

Theorem 7a. If in h-dimensial space with base { Ei } is 
determined algebra, any point Z of this space  represent in a positional 
system     R A

Rh
, , where set A=r consists of vectors

r E E E Em m m i m
i

n m
n     1

1
2

2   ... ... ,
and number m RB .

In particular, for complex numbers there are systems 
    R A

R
, 2 , for example, < -2, { 0,1, j, 1 + j } >, and for 

three-dimensional vectors with orts i, j, k – oct-valued system, where 
each category accepts values rm  { 0, i, j, k, i+j, i+k, j+k, i+j+k },

Theorem 8a. If in h-dimensial Euckidian space with base { Ei } is 
determined algebra, any point Z represent in a normal positional system

    E R Bh
R2 , .

In particular, for complex numbers there are systems 

  j R B
R

, , for example,   j 2 0 1, { , } , 

and for three-dimensional vectors with orts i, j, k – binary system 

 }1,0{,23j
. 

In last system we have:
<i>=1, <-i>=1001, <2i>=1001000, <-2i>=1000.
<j>=10, <-j>=10010, <2j>=10010000, <-2j>=10000.
<k>=100, <-k>=100100, <2k>=100100000, <-2k>=100000.

For three-dimensional vectors with orts i, j, k is also four-value a system 

 }3,2,1,0{,43j , where <4i>=1003000 and <-4i>=1000.
Obviously, for systems from theorems 7a and 8a is satisfied 

condition (14). Proof of these theorems is based on reasons of section 3.
With positional codes of vectors operations algebraic addition, 

vector, scalar and special multiplication are feasible. Algorithms of these 
operations contain cycles algebraic addition of codes of numbers and 
shift of a code of a vector, that is, will be easily realized technically. It can 
be used at construction of processors, operating with vectors as a whole. 
Such processor requires more simple algorithm for the decision of tasks 
with vectors, and at the given algorithm works under the shorter program 
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and has increased speed. For valuation of these sizes it is possible to 
indicate, for example, that the program to vector multiplication of 
vectors, given by three numbers, contains 6 operations of multiplication 
and 3 operations of subtraction.
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