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Abstract

In this exploration, we introduce and define “dynamic iso-spaces”,
which are cutting-edge iso-mathematical constructions that are built
with “dynamic iso-topic liftings” for “dynamic iso-unit functions”.
For this, we consider both the continuous and discrete cases. Sub-
sequently, we engineer two simple examples that engage Fibonacci’s
sequence and Mandelbrot’s set to define a “Fibonacci dynamic iso-
space” and a “Mandelbrot dynamic iso-space”, respectively. In total,
this array of resulting iso-structures indicates that a new branch of
iso-mathematics may be in order.
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brot set.
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1 Introduction
A gigantic problem of pure mathematics, in the context of number the-

ory, is to establish a universal number classification system for describing
the physical laws of nature, such as the identification of all sets that occur
with numeric field axioms. During his relentless pursuit of this problem,
scientific pioneer R.M. Santilli successfully circumvented the original five
number field axioms [1] to create the new field of iso-mathematics [2, 3, 4, 5],
which became the foundation of hadronic mechanics [6].

Since its initiation, Santilli’s iso-mathematics [2, 3, 4, 5] has continued
to gain momentum in application and popularity, but this emergent disci-
pline is—to say the least—vast, relatively adolescent, and is currently not
considered to be “mainstream” in the community of science, technology, en-
gineering, and mathematics. Therefore, the iso-mathematics realm remains
largely unexplored, with unknown bounds on its utilization potential.

In this paper, we venture into iso-mathematics [2, 3, 4, 5] by consider-
ing iso-spaces that systematically change. In Section 2, we introduce the
notion of dynamic iso-topic liftings by assembling definitions for continu-
ous dynamic iso-spaces and discrete dynamic iso-spaces. Afterwards, we
give two examples that demonstrate how dynamic iso-spaces can be lifted
for fractal structures in Section 3. Finally, we conclude our exploration
with Section 4, where we recapitulate the results with brief discussion and
outlook on future modes of research.

2 Dynamic iso-spaces
Here, we introduce and define the dynamic iso-space with its dynamic

iso-topic lifting. For this, we follow Santilli’s methodology [2, 3, 4, 5] and
consider the following procedure:

1. Let S be a space.

2. Let St̂ be an iso-space that results from the iso-topic lifting S → St̂
for the iso-unit t̂ > 0 with the corresponding inverse τ̂ = 1

t̂
> 0, such

that
f(t̂) : S → St̂

f−1(t̂) : St̂ → S,
(1)

so clearly S and St̂ are locally iso-morphic.
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3. Dynamic iso-space. Now, we wish to show that St̂ is an iso-space
that is characterized by constant change, meaning that St̂ is a dynamic
iso-space. Hence, we will show that St̂ varies in accordance to some
function; here, this positive-definite function will serve as the dynamic
iso-unit that varies because its parameter varies.

4. Thus, let r > 0 be the parameter that varies as r →∞ for the generic
form of the dynamic iso-unit function

t̂ ≡ δ̂(r) > 0, r →∞, (2)

to consequently define the dynamic iso-space

St̂ ≡ Sδ̂(r). (3)

5. Continuous dynamic iso-space. First, we will show that the Sδ̂(r)
of eq. (3) can be rewritten and defined as a continuous dynamic iso-
space if its corresponding dynamic iso-unit function is continuous as
its parameter r varies; for this, the constraint is that r must take
on the values of an infinite continuous sequence of positive-definite
numbers. Hence, for example, if R+ is the set of all positive-definite
real numbers, then let r ∈ R+ be the positive-definite, real-valued,
varying parameter for the continuous dynamic iso-unit function

t̂ ≡ δ̂R+(r) ≡ 2πr > 0, r ∈ R+, r →∞R+ , (4)

to consequently define the continuous dynamic iso-space

St̂ ≡ Sδ̂R+ (r), (5)

where we rewrite eq. (1) to encompass the continuous dynamic struc-
ture of eqs. (4–5) as

f(δ̂R+(r)) : S → Sδ̂R+ (r)

f−1(δ̂R+(r)) : Sδ̂R+ (r) → S
(6)

so S and Sδ̂R+ (r) remain locally iso-morphic as r → ∞R+ . Note that

the 2π circumference scaling of eq. (4) is arbitrary for this example,
as we can make eq. (4) anything we want as long as the resulting
iso-unit t̂ is positive-definite and varies continuously as r →∞R+ .
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6. Discrete dynamic iso-space. Second, we will show that the Sδ̂(r) of

eq. (3) can be rewritten and defined as a discrete dynamic iso-space if
its corresponding dynamic iso-unit function is discrete as its parameter
r varies; for this, the constraint is that r must take on the values of
an infinite discrete sequence of positive-definite numbers. Hence, for
example, if N is the set of all natural numbers (positive integers), then
let r ∈ N be the positive-definite, natural-valued, varying parameter
for the discrete dynamic iso-unit function

t̂ ≡ δ̂N(r) ≡ 2πr > 0, r ∈ N, r →∞N, (7)

to consequently define the discrete dynamic iso-space

St̂ ≡ Sδ̂N(r), (8)

where we rewrite eq. (1) to encompass the discrete dynamic structure
of eqs. (7–8) as

f(δ̂N(r)) : S → Sδ̂N(r)
f−1(δ̂N(r)) : Sδ̂N(r) → S

(9)

so S and Sδ̂N(r) remain locally iso-morphic as r → ∞N. Again, note

that the 2π circumference scaling of eq. (7) is arbitrary for this exam-
ple, as we can make eq. (7) anything we want as long as the resulting
iso-unit t̂ is positive-definite and varies discretely as r →∞N.

At this point, the results of eqs. (1–9) indicate the existence of a new
family of iso-spaces called dynamic iso-spaces, where a member of this family
(continuously or discretely) deforms in accordance to Santilli’s topological-
preservations as r varies. Hence, we establish the following:

Lemma 1. A space S is locally iso-morphic to the dynamic iso-space Sδ̂(r)
under the topologically-preserving dynamic iso-topic lifting S → Sδ̂(r) for the

dynamic iso-unit function δ̂(r) > 0 with inverse δ̂−1(r) = 1

δ̂(r)
> 0, where

the positive-definite parameter r varies indefinitely.

Lemma 2. A dynamic iso-space Sδ̂(r) is a continuous dynamic iso-space if

the dynamic iso-unit function δ̂(r) is continuous as its parameter r varies.
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Lemma 3. A dynamic iso-space Sδ̂(r) is a discrete dynamic iso-space if the

dynamic iso-unit function δ̂(r) is discrete as its parameter r varies.

3 Application Examples
Here, we provide two short examples that engage the dynamic iso-space

concept. For this, we opt that both applications include fractals.

3.1 Fibonacci dynamic iso-space
First, we introduce and define a Fibonacci dynamic iso-space, which is

a specific type of discrete dynamic iso-space. The well-known Fibonacci
sequence is [7]

F = {0, 1, 1, 2, 3, 5, 8, ...}. (10)

Hence, we identify the nth Fibonacci number in the sequence F with the
“Fibonacci function” F (n), which returns the initial values

F (0) = 0, F (1) = 1, F (2) = 1, F (3) = 2, F (4) = 3,
F (5) = 5, F (6) = 8, ... .

(11)

Now suppose that we begin with the positive-definite r = F (1) and let
r ∈ F −{0} discretely varies or “jumps” according to Fibonacci’s eqs. (10–
11)—so in this Fibonacci case, as r → ∞Fib, r takes on only Fibonacci
numbers (excluding zero), which satisfies the discrete iso-unit constraints
that F−{0} must be an infinite discrete sequence positive-definite numbers.
Thus, the discrete dynamic iso-unit function of eq. (7) can be rewritten to
define the Fibonacci dynamic iso-unit function as

t̂ ≡ δ̂Fib(r) ≡ 2πr > 0, r ∈ F − {0}, r →∞Fib, (12)

to consequently define the Fibonacci dynamic iso-space

St̂ ≡ Sδ̂Fib(r)
(13)

with the Fibonacci dynamic iso-topic liftings

f(δ̂Fib(r)) : S → Sδ̂Fib(r)

f−1(δ̂Fib(r)) : Sδ̂Fib(r)
→ S.

(14)
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Here, we observe that t̂ strictly acquires “Fibonacci circumference” values
for the dynamic lifting because r is always treated as a “Fibonacci radius”,
which indicates that Sδ̂Fib(r)

iteratively deforms as r →∞Fib, where S and
Sδ̂Fib(r)

remain locally iso-morphic.
At this point, we’ve completed our first fractal example because we’ve

successfully defined a Fibonacci dynamic iso-space.

3.2 Mandelbrot dynamic iso-space
Second, we introduce and define a Mandelbrot dynamic iso-space, which

is a specific type of discrete dynamic iso-space because we obtain each value,
one-by-one, as we systematically generate Mandelbrot’s set by iterating his
complex quadratic polynomial [8, 9]

zn+1 = z2n + c, (15)

where zn, zn+1, c ∈ C are complex numbers. Thus, imagine that we select
some c and z0 and continuously iterate eq. (15) to obtain the discrete
Mandelbrot sequence

M = {z0, z1, z2, z3, z4, z5, ...}. (16)

Hence, similarly to the Fibonacci case of eq. (11), we identify the nth
Mandelbrot number in the sequence M with the “Mandelbrot function”
M(n) that depends on c, which returns the initial values

M(0) = z0, M(1) = z1, M(2) = z2, M(3) = z3, M(4) = z4,
M(5) = z5, ... .

(17)

Now we need positive-definite values for our dynamic iso-units, so how do
we translate the complex-valued (and possibly negative-valued) results of
Mandelbrot’s eq. (17) as we did to Fibonacci’s eq. (11)? Well, there are
multiple ways to approach this rich problem, so honestly at this point it is
a matter of preference. Thus, for the sake of example simplicity, we opt to
use the real-valued modulus

|zn| =
√
z2nR

+ z2nI
(18)
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for the nth iterate of eq. (17) because it is positive-definite. Consequently,
we list the moduli of eqs. (16) and (17) as

MMod = {|z0|, |z1|, |z2|, |z3|, |z4|, |z5|, ...} (19)

and

MMod(0) = |z0|, MMod(1) = |z1|, MMod(2) = |z2|, MMod(3) = |z3|,
MMod(4) = |z4|, MMod(5) = |z5|, ... ,

(20)
respectively.

Next, suppose that we begin with the positive-definite r = MMod(0) and
let r ∈MMod discretely vary according to Mandelbrot’s moduli of eqs. (19–
20)—so in this selected Mandelbrot case, as r → ∞Man, r takes on only
the moduli of Mandelbrot numbers, which satisfies the discrete iso-unit
constraints that MMod must be an infinite discrete sequence of positive-
definite numbers. Thus, the discrete dynamic iso-unit function of eq. (7)
can be rewritten to define the Mandelbrot dynamic iso-unit function as

t̂ ≡ δ̂Man(r) ≡ 2πr > 0, r ∈MMod, r →∞Man, (21)

to consequently define the Mandelbrot dynamic iso-space

St̂ ≡ Sδ̂Man(r)
(22)

with the Mandelbrot dynamic iso-topic liftings

f(δ̂Man(r)) : S → Sδ̂Man(r)

f−1(δ̂Man(r)) : Sδ̂Man(r)
→ S.

(23)

Here, we observe that t̂ strictly acquires “Mandelbrot circumference” values
for the dynamic lifting because r is always treated as a “Mandelbrot radius”,
which indicates that Sδ̂Man(r)

iteratively deforms as r →∞Man, where S and
Sδ̂Man(r)

remain locally iso-morphic.
At this point, we’ve completed our second fractal example because we’ve

successfully defined one version of a Mandelbrot dynamic iso-space.
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4 Conclusion
The results of this work include original definitions and lemmas for con-

tinuous and discrete dynamic iso-spaces, and example constructions of Fi-
bonacci and Mandelbrot dynamic iso-spaces. These dynamic iso-spaces may
serve as important tools for future analysis and exploration. But there is
still much work to do, as we must continue to relentlessly scrutinize, chal-
lenge, and upgrade this emerging framework via the scientific method. In
particular, we suggest that in order to test the validity of our results and ad-
vance the general capability and applicability of these dynamic iso-systems
to subsequent levels, a thorough and rigorous iso-mathematical investiga-
tion should be conducted along this research trajectory. For this, we must
prove the said lemmas and expand the framework by instantiating addi-
tional pertinent families of dynamic iso-structures, and furthermore the
dynamic geno-structures, dynamic hyper-structures, and dynamic iso-dual-
structures.
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