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1. Author-seminar paper 
 
 
 
 
Primary purpose of this work was to determine, if it is possible to specify the HUBBLE-

parameter with other methods than astronomic ones and if necessary even to calculate it. 
Until now, the determination was possible only by extensive astronomic observations, with 
which precision leaves to be desired indeed. With the improved technical methods, like e.g. 
the HUBBLE-Space-Telescope, it now succeeds to advance into space farther and farther 
obtaining new, more exact data. It becomes visibly with it, that it will be imperative more 
and more to have an exact model of the universe as whole in order to  interpret these data 
correctly because the farther one advances into the universe and with it, into the depths of 
time, the more effects appear, that can be hardly interpreted with the contemporary models 
or not at all. 

 
Object of this work now is to construct such a model, using data that is in the local area, 

which is accessible with the present-day technical methods particularly.  These would be the 
universal fundamental physical constants and their relations to each other as well as the 
electron charge, -mass and similar values and the known physical rules. For this as 
fundamentals serves a cosmologic model basing on a lecture, delivered in German language 
by Prof. Cornelius LANCZOS  on the occasion of the EINSTEIN-Symposium 1965 in Berlin. 
Except for [1] this lecture does not have been published furthermore (and never in English) 
according to my knowledge. Therefore, I put the English translation in front of this work 
declared as quotation. That even facilitates the evaluation of, in what extent the present work 
figures an expansion of his theory. 
 

In his model LANCZOS postulates the existence of a strictly agitated wave-field, which 
generally should be, according to his opinion, the real cause of the qualities of space-time 
and relativistic effects. For more details please read the lecture itself, which has got only 
seven pages overall. Because this idea is fascinating me and since LANCZOS has sketched his 
model even only in coarse outlines, I have tried to put an authentic model on the basis of the 
known facts and phenomenons, both fitting LANCZOS' demands and nevertheless not 
colliding with the yet accepted reality. 

 
Since LANCZOS' model is already quite unconventional itself, I too had to turn some 

unconventional bases on start. The most important is the existence of a specific conductivity 
of the vacuum different from zero, additionally to the influence- and dielectric constant, as 
cause of the expansion of the universe, which does not have discovered yet, since we have 
arranged well with the classic MAXWELL-equations. In the  course of the work we will see, 
that the real wave propagation in the vacuum might be take place a little bit more 
complicated. Even the  specific conductivity turns out to be the »missing link« in the system 
of universal nature-constants. 
 
With the help of this assumption a special explicit solution of the MAXWELL equations has 
been found, which fits on the one side the demands of LANCZOS' model, on the other side 
disposes of the properties the recently postulated HIGGS-field must have, if it should not 
violate already secured perceptions and observations. If both fields are identical remains to 
be seen at first. The solution presented in this work is designated as metric wave field. On 
the basis of this solution, finally a line-element (vacuum-solution) can be constituted 
describing explicitly the qualities of space-time even with stronger gravitational-fields and 
coincides  with the usual EINSTEIN- respectively classic relationships in case of weaker 
fields. The contemplation will be continued up to the determination of the particular 
curvature tensors, the energy-momentum tensor as well as the geometry. Since all these 
solutions are explicit, the application of the variation-calculus could have been renounced 
completely. 
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An alternative vacuum propagation function for EM-waves – under consideration of the 
above mentioned metric wave field – is presented, describing effects like the cosmologic 
red-shift and the unexpected results of the SN-cosmology-experiment,  completely without 
dark matter etc. Different from the generic interpretation they are caused by an additional 
parametric attenuation, that results directly from the expansion of the universe, being  
 
 
disregarded by the standard solution of the MAXWELL equations. A complete section is 
dedicated to the results and interpretation of the SN-cosmology-experiment. 

 
Furthermore the dominance of normal matter opposite to antimatter, the real meaning of  

PLANCK'S smallest increment as the real potential of gravitational-field will be explained as 
well as the meaning of SOMMERFELD's fine-structure-constant.  
 

At the end of the work an equation is presented, allowing to calculate the HUBBLE-
parameter from locally accessible physical values and there is taken up a comparison with 
the values obtained from this work and with the actual astronomic values. Even if many 
questions are answered overall, the present work is no complete cosmology however. 
 

The theoretical electrotechnics custom notation is used in the work (j instead of i). Even 
SI-units are used consistently, since I believe that the preset of constants to 1 (e.g. light-
speed), as usual in the RT, are leaving to a cover-up of as yet unknown interdependences at 
all. Since this work is strongly interdisciplinary I tried to present the stuff in such a manner, 
that it can be understood even by non-specialists. 

 
I ask for your understanding, that the concept MINKOVSKIan line-element is not being used 

in the sense of its real meaning in the beginning of the work. The reason is that I simply 
could not find another name for the physical object (MLE) that I want to describe with. 
Moreover there is constantly talked about a MINKOVSKIan line-element in LANCZOS' lecture, 
even if it is only approximately MINKOVSKIan. 
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3. Cosmologic model 

3.1. Fundamentals and hypotheses 
 

3.1.1. Starting point of the work 
 
Starting point of all contemplations is the lecture [1] delivered by Professor Cornelius 

LANCZOS on the occasion of the EINSTEIN-symposium 1965 in Berlin. On this occasion open 
questions, how for example the expansion, the existence and isotropy of the cosmologic 
background radiation should be clarified in the course of the work. Furthermore it will be 
examined, whether it is possible to determine the HUBBLE-constant from the universal 
nature-constants and other measurable dimensions mathematically. 

 
 

3.1.2. Tetrades-formalism and definite space-time-structure (quotation) 
 
»…EINSTEIN has turned away the empiric of MACH's school in his later years completely 

and the adoration of the „sense data“ (i.e. the immediate sensations) mocks of the something 
takes for pure coin, what is only the consequence of a much complicated situation. There are 
for example the pressure and the temperature of a gas - two observable numbers - which 
aren't however no more than macroscopic median values of an infinitely complicated 
process, of which we can grasp only statistically. Would it not be possible that could apply 
somewhat such also on the MINKOVSKIan line-element? There are now these gik, which 
should assume virtually constant values in the vacuum. Yes, however we know from certain 
quantum theoretical experiences, — like for example the so-called vacuum-polarization, or 
the zero-point energy, — that the vacuum can play in no way a so passive role, that would 
be characterized with a smooth quasi-euklidic geometry. In the forties I have permitted 
myself the thought that there happens somewhat much more dynamic, namely, that there 
exists a strongly agitated wave-field, which only therefore doesn't appear explicitly, since 
the frequencies are extremely high and the inertia of the matter reacts only to statistical 
median values, as similar as the pressure of a gas. In the last years, I have developed this 
somewhat vague picture by the assumption that one possibly not has to look with the 
solution of the geometrical field-equations for sphere-symmetrical solutions,—but after 
solutions, which are periodic, in all four coordinates. Then one gets a crystal-like structure 
for the metric plateau, that underlies the world-geometry. The constant gik of the 
MINKOVSKIan line-element would be only median values, caused by the extreme small 
lattice-constant. Indeed, one gets from the three dimensioned world-constants speed of light, 
gravitational-constant, PLANCK's constant a fundamentally-length of the magnitude 10–32cm, 
just an extremely small length, opposite to that the atomic dimensions are still macroscopic. 
Therefore it doesn't and can be considered to be a priori impossible to equate this 
fundamentally-length to the lattice constant. (I it would like to add here that I only found out 
by professor TREDERs works, that PLANCK itself already has recognized this length as 
fundamentally-length and has discussed this matter in his lectures about heat-radiation. In 
the English translation, I could not find any hint relating to this.) 
 

Now I have discussed the idea of such a wave-background in its more primitive version 
with EINSTEIN more often, and he does not have probably discarded the idea a priori, but his 
main objection was that a preferred frame of reference would be introduced by a so agitated 
background, which stands in contradiction with the fact of the LORENTZ-transformation. 
This objection is absolutely legitimate coming from EINSTEIN, who has celebrated so terrific 
triumph based on the non-existence of a preferred coordinate-system, that he could not avoid 
to consider this thought as final and irrefutable.  
 

And however one can argue also differently. We know the crystals of the so-called cubic 
symmetry-group, that absolutely behave macroscopically isotropic, although they are 
characterized by three well-distinctive orthogonal main-axes. The three main-axes are 
however macroscopically equivalent, which leads into the consequence of an apparent 
isotropy in as well as elastically like optical sense. If one transfers this contemplation into 
the four-dimensional, so one comes to the knowledge that a microscopically preferred 
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coordinate-system nevertheless can fake the equivalence of all LORENTZ frames of reference 
macroscopically.   

 
Let's employ us something in detail with the main-axes of such a crystalline lattice. In his 

incomparably beautiful examinations over bent surfaces GAUSS has introduced two 
fundamental quadratic differential-forms, the first and second fundamentally-form. With 
help of these two forms, the two main-curvature-directions of surface can be defined 
invariantly in each point. In a pure RIEMANN geometry, however only the first 
fundamentally-form is existing, and the question after the main-axes remains unanswered for 
the moment. Now, however there is just a second Tensor, namely the curvature tensor Rik  – 
or also the matter tensor Tik  – which is in accordance with our assumptions now in no way 
equal to zero. Therefore one has the two fundamentally-forms 
 

    and        (0.1) 
         (0.2) 

 
and accordingly the main-curvature-directions by the vectorial eigenvalue-problem 
 

               (0.3) 
 
can be defined. In order to not overburden the frequently used symbol of  we will rather 
mark the four eigenvalues with 1… 4 so that the main-axis-problem can be written in the 
form 
 

         (0.4) 
 
The first index of the quantities hik is a genuine contra-variant index, while the second one 
only is used for numbering, to distinguish the four main-vectors hi as first, second, third, 
fourth vector. 
 

Therefore the quantities of hik aren't to be understood as Tensor but as four vectors with 
altogether 16 components. Purely algebraically it follows these relationships 
 

 
 
 

               (0.5) 
 

Interestingly these are exactly the relationships EINSTEIN has introduced in his theory of 
„distance-parallelism“ in 1928. It was this exactly the year, in which I was assigned as his 
co-worker to Berlin. He was made happy by the new ideas very much, whereas I could not 
find the right enthusiasm for the new theory, since it appeared artificially to me wanting to 
graft something on the RIEMANN geometry, that does not stand with it in any organic 
relationship. And however EINSTEIN's theory seems to be very captivate and attractive. After 
all the possibility was given to add here another anti-symmetrical element to the 10 
symmetrical gik characterized by 6 quantities, that would be to be assigned so well to the 
anti-symmetrical field tensor of the electromagnetic field-strength. Now let's have a look at 
our main-axis-definition, we can see that these EINSTEIN hia quantities adjust themselves 
quite casually without taking reference on a distance-parallelism anyway. Naturally, these 
four vectors now have a quite different meaning. They install into each point a tetrade of 
four perpendicular vectors which are capable, to characterize our metric lattice. In addition, 
they yield not only the gik in algebraic form but also the Rik according to the equation 

 
Rik  = ahia hka                         (0.6) 
 
or even 

ds2  gikdxidxk

d 2 Rikdx idx k

Ri h   gi h   0

Ri h
k

kgi h
k

0

hia h agi

gik hia hka

gik hiahka

hiahka haihak  k
i
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Rik  = ahia hka.                (0.7) 

 
That now has its particular advantages, if the question is to lay down an action-principle, 

from which the field-equations should be derived for the geometry of the world. The 
EINSTEIN variation-principle makes use of scalary curvature 
 

        (0.8) 
 
and the action-integral becomes here 
 

         (0.9) 
 
where h means the determinant of the hia quantities. On the other hand if one works with a 
quadratic action-principle, to satisfy the calibration invariant, so the LAGRANGE-function of 
our action-principle now becomes 
 

L0 =  h      (0.10) 

 
where C is an a priori uncertain numerical constant. We see therefore that the difference 
between the different action-principles is not so big at all, if one operates with the hia as 
fundamentally-quantities. Of course there already supervenes as additional-condition that the 
Rik 's are given by a quite certain differential-operator, so that the complete action-principle 
is characterized by the LAGRANGE-function 
 

L   = L0 – pik h        (0.11) 
 
where I have marked with D(hik) the known differential-expression of second order in the gik 
symbolically. To the luck, the second derivatives of the gik  occur only linearly in it, so that 
one can immediately get rid of the second derivatives by partial integration and yields a 
LAGRANGE-function containing only the first derivatives of the action-quantities. The action-
quantities, which are varied freely, are given as follows at this: 
 

16hia ,   4 i ,   10pik , altogether 30 quantities. 
 

Of course I would not like to get involved in arithmetical details, my object is only to 
outline the train of thought and to register the results.  
 

The mentioned metric lattice is not yet the end. Rather it corresponds to the empty space 
only so far, what is translated with the MINKOVSKIan line-element usually. Instead, we now 
have our periodic lattice with the microscopic metric waves. The material particles are 
superponed to this lattice as modified solutions of the field-equations, to which the periodic 
margin-conditions are no longer applied. Once let's leave aside the question of the structure 
of these particles. What happens in a point of the world, that is far from material particles, 
just in the vacuum? This situation is similar to, as if we would take a crystal bending it. The 
inflection of the lattice just comes about by the action of distant masses and charges.  
 

Therefore we have a mathematical interference-problem to hand and we are forced to look 
for the interference on the LAGRANGE-function. Since we have gone out from an actual 
solution of the field-equations (because we assume that the metric lattice represents a 
possible, although not the only possible solution of the field-equations), so it depends on the 
second variation L depending on the varied action-quantities quadratically. Just there are 
the quantities hia of special interest and the linear field-equations, that must be found for. 
 

R   Rikg
ik

1 4  ,

W  ( )hdx1 dx4  ,

1
2 1

2
4
2 C( 1 4 )2

ahiahka D(hiahka)
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Let's think of our main-axis-problem now. A deformation of the main-axes can be split 
into two parts, namely a bare spin and an elastic deformation. We can suspect with EINSTEIN 
that the elastic deformation will correspond to gravity, the rotation to the electromagnetic 
field. What however is the cause that the electromagnetic fields overtop the gravitational-
fields so strongly? 
 
To this point is the following to say. We know that the so-called „cosmologic equations“ 
 

Rik  = gik          (0.12) 
 
fill the field-equations of the quadratic action-principle precisely. With this solution, all four 
eigenvalues become the same: 
 

i =            (0.13) 
 
and the direction of the main-axes remains uncertain. So the smallest interference can have 
the consequence of a whatever strong rotation of the main-axes. This case of degeneration 
won't be of interest for us. Probably however, we can assume that we are close to that case, 
i.e. that 
 

i = i          (0.14) 
 
applies, where the i are small opposite to the large constant . Then we have certain main-
axis-directions, but the preference of these directions is weak, so that a rotation especially 
easily comes into existence with an interference, while the metric alteration remains only 
small. So the outstanding strength of the electric actions opposite to the gravitational ones 
can be explained therefore. 
 
The variation of hia just can be attributed to a true tensor Fik by setting 
 

hia  = h a          (0.15) 
 

This tensor doesn't appear with EINSTEIN. He presupposes the Euclidean values for the 
fundamental field, 
 

hia  = ia          (0.16) 
 
since he assumes the MINKOVSKIan line-element for the non-interfered field. Then applies 
 

hia  = Fia          (0.17) 
 
whereas the tensor Fik is to separate strictly from the four vectors hia in our case. Now one 
can show, that in case of a bare rotation of the main-axes the tensor Fik becomes anti-
symmetrical and can be traced to a vector i according to the equation 
 

Fik = i,k – k,i .               (0.18) 
 

Regarding to the LAGRANGE-function of the superimposition-field we can already make 
certain quite definite prognoses out of the structure of the problem. We foresee that L= 2L 
d2L will depend on the effect-quantities quadratically, as similar as at the mechanical 
oscillations of a solid around the equilibrium, wherever the LAGRANGE-function starts with 
the quadratic members (the linear members disappear, since we have gone out from an 
equilibrium), while the higher members can be neglected because of the smallness of the 
oscillations. We just have the quantities Fik2, and that must come in with certain 
coefficients, that become dependent from the lattice-structure somewhere. It is plausible to 
assume that the four scalars i, – the eigenvalues of the main-axis-problem – will be suitable  

Fi
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for it particularly. In (0.14) we have accepted these i as virtually constant that only differ 
from the big constants  by the small quantities . Therefore, we will expect an expression 
for the coefficients, which depends on that i linearly in first approximation. The constant 
part must disappear however, because if all i are zero, that's just the degenerate case (0.12) 
in which even a finite rotation doesn't generate any metric alteration and therefore L=0 
applies. So it can be only an homogeneous linear function of the i as factor of Fik2, which 
must be symmetrically in i and k furthermore. The most natural is to assume i+ k as a 
factor. However with the help of universal principles it's possible to demonstrate that a 
modification of all i by the same constant must not generate any modification in L´. Just we 
have to correct i+ k as follows: 
 

                  (0.19) 

 
with the result 
 

L   i k
1
2 1 2 3 4  Fik

2  ,     (0.20) 

 
where  is a bare constant. This is the expression indeed, that yields the detailed calculation 
for L= L. 
 

This result immediately has the following consequence. The 6 terms, that appear in L  are 
reduced to only 3 terms immediately, since only the combinations 
 

              (0.21) 
 
appears, i.e., immediately we see that the electric and magnetic quantities appear with 
inverse sign in the action-principle. Let our metric lattice be only macroscopically isotropic 
concerning x1, x2, x3, x4, then we will get the usual invariant of the electromagnetic field 
immediately 
 

E 2 – H 2,                (0.22) 
 
from which the MAXWELL equations can be derived as you know. The particular negative 
sign usually derived from the MINKOVSKIan imaginary signature x4 = ict here comes about 
in a quite natural manner as macroscopic superimposition-appearance because of a weak 
interference on the metric lattice, evoked by an infinitesimal rotation of the fundamental 
four-leg. 
 

The alteration of a purely RIEMANN metrics to a metrics, in which Pythagoras's theorem 
appears in the form of 
 

s2 = x2+ y2+ z2 – c2t2         (0.23) 
 
mostly is been accepted as more or less self-evident without big discussion.. For EINSTEIN 
was the + + + – signature of the line-element an incomprehensible mystery, that one quite 
accepts, simply because it so is, without comprehending why it must be so however. In the 
implementations discussed here, the situation is quite different. We have gone out from a 
real, pure RIEMANN geometry, which is positively definite (without this demand we could 
not at all  guarantee the existence of real eigenvalues of the main-axis-problem generally). 
So, just from the beginning we are able to work with a rational geometry, in which the 
conditions of each rational metrics: 

 

             (0.24) 

i k
1
2 1 2 3 4

F12
2 – F34

2 , F23
2 – F14

2 , F31
2 – F24

2

AB BA

AB 0    i.e.     A B

AC AB BC
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are fulfilled (in case of the MINKOVSKIan signature the second and third condition gets lost). 
Furthermore we have taken as a basis an action-principle, that is quadratic in the curvature-
components, which satisfies the demand of the calibration invariance therefore. Therefore, 
we install a philosophy of maximum rationality. Nevertheless, it succeeds, for the 
macroscopic experience-space (whom all physically measurable quantities belong to) to 
derive a metrics, that behaves in a MINKOVSKIan manner avouching the usual propagation of 
all physically measurable quantities with speed of light. Namely the interference of the 
fundamental metric lattice yields a LAGRANGE-function having to interpret in a 
MINKOVSKIan manner, if one interprets it as primary and if one negates the fundamental 
lattice, from which it follows. 
 

Does we have the right to consider a theory of this kind as a natural development of 
EINSTEIN's ideas? The majority of my colleagues will probably negate this question, while I 
believe to may answer with a yes. In any deep academic discovery, quite one may 
distinguish essential and irrelevant elements. The incredibly large of the discovery of 
EINSTEIN was the geometry of the nature to be recognized as bent and to understand the 
physical „matter“ as a curvature-condition of the space-time-world, on reason of the 
equation 
 

Rik
1
2

Rgik Tik          (0.25) 

 
what may possibly be put as the biggest achievement of all times in the area of abstract 
thinking. Furthermore, it was EINSTEIN's endeavour to describe the interdependence between 
matter and field by field-equations. The equation Rik = 0 expresses the disappearance of the 
matter tensor, what only can have macroscopic value, without solving the actual problem of 
the matter, how that was probably known by EINSTEIN. But even assumed, that we have the 
right field-equations, so it still remains a problem to take the right selection from an infinite 
variety of possible solutions. EINSTEIN makes two assumptions from empirical reasons here. 
He searches for spherical-symmetrical solutions, and he assumes as margin-condition that 
the line-element in the vacuum, distant from matter, becomes virtually MINKOVSKIan. These 
two assumptions forced by empiricism (and therefore only macroscopic proven) I would 
consider as the accidental of EINSTEIN's theory, all the more, as EINSTEIN himself has not 
regarded the MINKOVSKIan signature of the line-element as the last word. 
 

In the theory sketched here, one doesn't search for spherical-symmetrical solutions but for 
periodic ones (fourfold periodic) of the fundamental equations, by which a lattice-like 
structure of the space-time-world is caused about. A fundamentally-length immediately 
appears with it, namely the lattice constant of this crystal-like metrics. A second 
fundamentally-length, that is assigned to the cosmologic constant , immediately comes 
together with it. The reasons are 1st: the cosmologic equations are exact solutions of the 
field-equations and 2nd: the cosmologic constant in this theory becomes a calibration 
quantity of the microcosm (and not of the macrocosm). Just there are two independent 
fundamental lengths, well harmonizing with the so different magnitudes of HEISENBERG's 
and PLANCK's fundamentally-length, namely on the one hand 10–13, on the other hand 10–32 
cm. In addition, the theory succeeds in deriving the MAXWELL equations on the basis of an 
infinitesimal interference of the lattice. About the possibility, to regard the different 
subatomic particles as stimulated inherent-solutions of the field-equations, nothing yet can 
be stated in this approximation. However it's not excluded to link the lattice-oscillations with 
HEISENBERG's uncertainty principle. Relating to this however it is possibly not uninteresting 
to refer to the following. For the measurement of any physical quantity (i.e. a lattice overlaid 
one) only such lattice-points come into consideration, that lie congruently regarding the 
fundamentally-cell. Because only then you will measure the one on which it depends, 
without being disturbed by the metric oscillations of the lattice. Like this, a seemingly 
granulated structure of the space comes about just practically, with the lattice constant as 
smallest possible length. On the other hand, the HEISENBERG uncertainty principle yields,—
according to a remark of professor TREDER,—that smaller lengths as  PLANCK's 
fundamentally-length (interpreted as lattice constant in this case) basically aren't measurable. 
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3.2. Specification of the model 
 
In this lecture, it is just assumed that the metrics is built like a cubic (regular) space-lattice 

of MINKOVSKIan line-elements periodically in all directions, and we want to assume too, that 
it would be actually so. For mathematicians, however, these only exist on paper, while 
LANCZOS regards them more as physical objects. Thus we want to abbreviate them with 
MLE only. 

 
Object of the further contemplations should be the question, how such a MINKOVSKIan 

line-element is built, how it „works“, how the single line-elements are arranged, how they 
interact together and how the electromagnetic waves propagate in such a metrics. Then, still 
open questions should be answered, like the one for the expansion of the universe and its 
causes, the existence and origin of the cosmologic background radiation as well as its 
isotropy also at sources, that cannot have any causal connection on reason of their big 
distance from each other. The existence of this radiation could not yet be taken into account 
in the above-mentioned lecture, since it had been discovered first in the year the lecture was 
held. The structure of the physical matter is not object of this work, since it represents, 
according to [1], autonomous sphere-symmetrical solutions of the field-equations. In a 
separate chapter however we will deal with the peculiarities and the interaction of matter and 
metrics. Now we want to establish the first hypothesis the model is based on: 

 
 

 
I.  On the level of the metric space-lattice apply the legalities of the classic physics. 
 The relativistic effects result from the existence of this lattice and its structure. 
 

 
 
How the relativistic effects arise, will be considered in a later chapter. In the progression, 

we will apply just only the legalities of the classic physics. 
 
As first, we assume that the MINKOVSKIan line-elements (MLE), we want to examine 

here, are arranged in a (regular) cubic face-centred space-lattice (picture 1). Such a system 
behaves isotropically. 

 
Simply let's go out from the MAXWELL equations, that even beside the known methods 

according to [1], in fact should be to derive on the basis of an infinitesimal interference on 
the lattice. Now, at first we want to consider these equations less mathematically but more 
according to their content. 

 
div  B = 0        div  D = 
curl E = – BB   curl H = i + DD        (1) 

 
As well for the electric as for the magnetic field-strength the operator curl for rotation 
appears. Let's assume that a rotation would really take place here. Thereto we look at the 
model figured in figure 2 that is to imagine three-dimensional however. 

 
 

3.3. Forces in the model 
 
A ball-capacitor (figure 2) with the radius rc and the charge of q0 moves on an orbit with 

the angular frequency 0, the radius r0 and the velocity c=const (speed of light). The 
capacity results in C0= 4π 0rc. the energy stored in this capacitor in 
 

W0 =   
1
2

q0
2

C0

  =  
q0

2

8 0rC

        (2) 
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Figure 2 
MINKOVSKIan line-elements  
Physical dimensions and mutual coupling 

 
 

and with r0= 4 rc and C0= 0r0 
 

W0  
q0

2

2 0 r0

 (3) 

 
Furthermore this energy even should have a mass m0. Since this mass is rotating its mass-

moment of inertia results in 
 
J 0   mr0

2   (point-mass)       (4) 
 

According to our formulation, applies 0=c/r0 and we receive for the kinetic energy, that 
should be equal to the electric one, 

 
W0 =   =             (5) 

 
Since the capacitor does not have any mass itself, the mass m0 of the charge is given by 

 

m0 =   =            (6) 

  
The 2nd expression of (6) we get from the known relationship 

 
c   

1

0 0

 ,         (7) 

 
having a strong similarity with the formula for the resonance-frequency of a loss-free 
oscillatory circuit on the first look 

 

1
2

J0 0
2 1

2
m0c

2

q0
2

0c
2r0

0q0
2

r0
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 =     .          (8) 

 
Then for the centrifugal force (amount) Fz = m0r0  applies: 

 

Fz =    = 0  =      (9) 

 
Fz is directed outwardly. Expression (9;3) represents with the exception of a factor 1/4  

the COULOMB law (repulsion), only that there is no second charge, that could wield a 
repelling force, here. Centrifugal force and COULOMB-force would just be of same 
magnitude. To guarantee, that mo doesn't vanish in the infinite, a force is required, able to 
eliminate the appearing centrifugal force. Thereto it must be invert and of same quantity. 

 
Since we are concerned with the circular motion of a charge here, we can even talk about 

a current i0= 0q0. This current generates a magnetic field at which point even an inductivity 
occurs (1 turn). Simplifying, we now assume, that the inductivity should be L0= 0r0. That 
agrees with the equation for a coil with one turn as well: 

 
 
L= 0r ln

8r
r 

7
4

 ,         (10) 

 
 

 
Figure 3  
Magnetic field-strength in one and  
in several conductor loops 
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in which r represents the inside-radius, r´ the wire-radius of one single short-circuited turn 
( r=1). If r´=0.5114 r applies, the bracket-expression yields 1 and we get the aforementioned 
expression. This is, as said, only a model, since our coil doesn't consist of wire. Rather one 
should imagine the charge and current something like „spreaded“ across the space. 
According to [20] the magnetic field-strength H0 (in future always figured as vector, H is the 
HUBBLE-constant) in the centre of the conductor loop (left) amounts to 

 
H0 =               (11) 

 
er is the unit-vector. The negative sign results from the definition of the field-strength as 
difference between zero-potential (r= ) and potential in the distance R. The field-strength-
share of a current-element i0ds in the distance r of the centre (figure 3) calculates according 
to [20] as follows 

 
dH0=  d

q0cer

4  (r0 r2 )
 =   i0erds

4  (r0 – r2 )
       (12) 

 
Here the potential in the distance r0 takes the place of the zero-potential. For the field-
strength H0 in this point the following applies 

 

H0=     Hd  =   
)r–(r4

dsi
2

0

0

 

re       (13) 

 
To solve this integral, we better divide dH into the two shares H1 (right) and H2 (left), dH 
results from the sum of both shares then. The integration-limits lie at 0 and . 

 

H0 =          (14) 

 
Then in the centre the field strength prevails denoted in (11). That value is related to one 
isolated, single MLE only. In order to determine the real field strength, we must consider the 
adjacent line elements additively. Let’s have a look to the effect of one adjacent MLE 
(figure 3 right) in x-direction. To that purpose we can transform expression (14) in the 
following manner: 

 

0 0 0
2 2 2

0 0 0 00

i i r1 1 d
4 k 1 r r k 1 r r 2 r k 1 2 r r r( ) ( ) ( )

r r
1

e eH  (15) 

 
Since the single line-elements are arranged in a cubic-face-centred space-lattice (figure 1), 

altogether four line-elements are arranged along a field-line in fact in the manner depicted in 
figure 4. On this occasion, I already have jumped in ahead of coming findings by figuring 
the single tracks not as circles but as eight-shaped graph (eight-curve). This is necessary in 
order to figure the phase-relations. So far, we have considered even only one special-case, 
namely that one, at which q and H have its effective-values. One must assume however that 
it is about an oscillatable system overall (L and C) and there the single values will vary after 
an approximately sine-shaped function. A track-graph with a positive charge at one end and 
a negative charge at the other end however figures a dipole, that lines up in space according 
to a certain mode (vector E0). 
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i0er
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Figure 4 
Collocation of the MLE's at a field-line in x-direction  
at a cubic face-centred lattice 

 
Let's look at figure 4 now, so we first see the point A. This is the MLE, we are examining. In 
the point D there is the second MLE, whose influence we have determined in (15). There is 
also a connection with the point B. The field line intersects the two elements C with an angle 
of 0°, i.e. not at all, so that it doesn’t come into effect in x-direction. But with an interference 
(e.g. along the z-axis) they can change their orientation such, that they come into effect too 
or even take the place of A and B. Then the propagation takes place in z-direction. Under 
consideration of the four adjacent MLEs we obtain the following expression for H0: 

 

0 0
0 2 2 2 2 2

0 0 0

i r 1 4
2 r r r k 1 2 r r r( )

reH      (16) 

 
What interests now is the question of the actual size of k. Placing the values 1, 2 and π, we 
obtain the course depicted in figure 5 in x-direction. 

 

 
Figure 5 
Course of the magnetic field strength depending on  
the radius r and various lattice constants 
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For k=1 we can see, that there is a zero transit of H0 at r = r0/2, the average value of the 
distance A-D. Thus, the magnetic field at this point is equal to zero. That means, the charge 
q0 of D has taken on its maximum. Hence, there is a phase-shift of 90° between both points, 
exactly as with a resonance coupling. Differently with k=2, that would be connection A-B. 
Here the magnetic field has its maximum. Thus, one MLE always communicates with the 
next but one MLE via the magnetic field.  
 

But there are any more MLEs in the fc-lattice. Even the ones on face and farther away  are 
interacting with A. But we considered the four adjacent MLEs only. But since a cube with 
the edge length r0 also contains 4 MLEs, we can assume, that (16) applies to the average 
value of all influences too. With it, we can define a so called effective lattice constant. So we 
are looking for the value of k, at which expression (16) becomes equal to 1 in half the 
distance and therefore (17) applies. As we can see in figure 5, that’s the case at k=π. 
Herewith, the effective lattice constant has the value πr0, while the real lattice constant is 
equal to r0. For H0 applies: 
 

H0 =             (17) 

 
and for the magnetic induction 
 

B0=  0H0   =   =        (18) 

 
Simultaneously, we are concerned with a moved charge in the magnetic field. So, a 

LORENTZ-force Fm= q0(c B0) will apply. It is directed inside. For the simplification, we 
want to look at the system along the x-axis again. Therefore, we can set for the amount of 
the attractive force Fm= – q0cB0. We get using 

 

Fm=  – 0c
2q0

2

r0
2      =  – q0

2

0r0
2                 (19) 

 
Expression (9), just with inverse signs. Centrifugal force and LORENTZ-force cancel each 
other. Now, we can determine even the rest-mass of the magnetic field: 

 
W0 =   =  =      (20) 

 

m0 =            (21) 

 
As it can be proven easily, this expression is identical to (6). Now, we want to determine 

the gravitative attraction of the magnetic and the electric rest mass (we imagine it as point-
masses in the centre of the orbit). We can write on reason of the mass-equality 

 

Fg =      =   .         (22) 

 
We now look at the energy stored in C0 once again (3). Since this represents only the half of 
the total-energy of the MLE, we can write 

 

W0 =   =      0        (23) 

 
Then, following expression arises for the charge: 

 

0 0
0

q c
Z00c           (24) 
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In this connection, Z0 stands for the vacuum wave-propagation impedance Z0 = . 
This represents because of equation (7) a similarly invariable quantity like c. Herewith we 
have already »linked the lattice-oscillations with HEISENBERG's uncertainty principle« by the 
way, as it LANCZOS demands in his lecture. From (22) and (24) we get: 

 

Fg =  – G
c 0 0

2q0
2

r0
4    

G
c

q0
2

0

r0
4  (25) 

 
and after expansion with c2 

 

Fg =   
GG
c3

q0
2

0r0
4          (26) 

 
Now let's have a look at the first fraction Gh/c3 somewhat more exactly, so it represents, 

with the exception of a factor of 1/2π, exactly the square of the PLANCK's elementary-length, 
how we already know it from other models. If we now fix that 

 

r0 =  
G
c3  (27) 

 
should be, we also get for the gravitational-force expression (19) as well as (9) 

 

Fg
q0

2

0r0
2  (28) 

 
Now, the value of PLANCK's elementary-length is not G /c3  3 

The difference of 1/2  can be attributed to the fact, that it’s easier to count with the second 
expression with some models. In the course of the development of quantum mechanics it has 
also been shown that  is the more practical natural unit than the h chosen by PLANCK. Then, 
the same applies even to the derivations. But from a physical point of view always the same 
result turns out at the end, even if the factors possibly looks a little bit bulky. We decide on 
G /c3, because it’s better for our model. Further we get for the other PLANCK's elementary-
expressions: 

 

0   
c5

G
  W0   

c5

G
     m0   

c
G

    (29) 

 
The value for 0 amounts to about 1.8551·1043s–1. We were able to trace back centrifugal, 

COULOMB-, LORENTZ- and gravitational-force to a single expression. Interestingly the value 
of r0 is insignificant with the electromagnetic contemplation (MAXWELL equations). If 
however the gravitational-force is coming into play then for the value of r0 only equation 
(27) may apply. Incidentally MAXWELL shall has gone out from a similar model we are 
discussing here, however without expansion. 

 
Another important point of view is the propagation-velocity of an interference in our 

model. If we postulate that the angular frequency 0 of the electric dipole and 0 of the 
magnetic induction and field-strength are equally large, so an interference must spread in 
phase and/or amplitude with the velocity of πc/2 along the field-line H0. That means, the 
interference propagates along a straight line AB (not figured in figure 4) exactly with the 
speed of light. The same is applied even to the propagation in other, optional directions. So, 
there are also distances of 2... 3  available in the space-lattice. Now we must imagine 
the radial-velocity upon the field-line proportionally to the distance, so that the axial-
velocity is always c. If we regard the system L0C0 as a parallel-oscillatory circuit, so we get 
for the resonance-frequency: 
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0   
1

L0C0

     
1

r0 0 0

  
c
r0

 (30) 

 
and without r0 

 
c     

1

0 0

 (31) 

 
exactly expression (7). For the total-energy W0 of a MLE, that results from the sum of 
electric and magnetic energy, then we get 

 

W0   
q0

2

0r0

     
m0

2
c2 m0

2
c2   m0c

2  (32) 

 
For this reason, the energy of the mass of electromagnetic radiation amounts to m0c2 and not 
to m0c2/2. We get the same value here by solving the following equation (energy in the 
gravitational-field) 

 

W0    Fmdr0     
q0

2

0

dr0

r0
2    

q0
2

0r0

 (33) 

 
That is already the total-energy, since both masses are involved in it. Furthermore, the 
relationship W0= 0 applies of course. We get more important relationships for the 
magnetic flux 0, if we equate electric and magnetic energy 

 

W0    
1
2

q0
2
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1
2

0
2

L0

 (34) 

 
0

q0

   
L0

C0

    0

0

  Z0  (35) 

 
0     q0Z0     0c    Z0  (36) 

 
0q0 =  ħ (37) 

 
The last expression throws a marking light on the meaning of PLANCK's quantity of action 
and we have already realized the suggestion of [1] : »…to link the lattice-oscillations with 
HEISENBERG's uncertainty principle«. For the energy, one can also write W0= 0q0 0 or 
W0= 0i0 as well as W0= q0u0 (everything effective-values). One sees, almost all quantities 
can be attributed to simplest expressions. 

 
 
 

3.4. The MINKOVSKIan line-element as oscillatory circuit 
 
 
Having considered so far only the case of electric and magnetic mass which are equally 

large — charge and flux 0 would have its effective-values and m0 would describe an orbit 
in this case — the MLE doesn't behave quite so simply. So it suffices however to assume an 
orbit for later contemplations. As already more above suggested, there is an oscillatable 
system with a capacitor and a coil available, that shall (in the moment) be interconnected via 
a loss-free medium, namely the vacuum. So, we can make even an equivalent circuit for it 
(figure 6), the one of an undamped parallel-oscillatory circuit: 
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Figure 6 
Equivalent circuit  
of a static MLE 
 
 
 
 
 
 

Figure 7 
Courses of charge and induction 
with labelling of the track-points 
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We already have specified the equation for the resonance-frequency in (30). If L0 and C0 
behave like a parallel-oscillatory circuit however, even all values like q0, 0, H0, etc. have to 
change time wise according to harmonic functions. The same even is valid for the distance 
r0. The temporal course of q0 and B0 (H0) in detail of the marked track-points is figured in 
figure 7. The exact track-function arises from (33), (35) and (37) using the following 
formulation: 

 

W0 =  ħ 0  =   2 2 0t        (38) 

 
Rearranged to r0 by neglecting the fixe phase-angle π/2 with  =2 0t: 

 

r( 0t) =  q0

2  0 0 0

1
2

4 0t     c
2 0

1  4 0t       (39) 

 
r( ) = r0

2
1 2              or in x and y to      (40) 

 
Figure 8 

Real track-course in the xy-plane 
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y( ) =   
r0

2
1 2         (42) 

 
The exact course is figured in figure 8. In the xy-plane it corresponds exactly to the course 
of the envelope of the POYNTING-vector S (like r) of a HERTZian dipole [24]. 

 
For most further examinations, it suffices to go out from an orbit simplifying by 

consideration of effective-values only. 
 

 
 
 

Figure 9 
Idealized and real track of 
the MLE in three-dimensional presentation 

 
Significant is the shape of a dipole (vector E0) by the true track-course (figure 8 and 9), 

since the charge q0 is equally large at the respective bend points of the track however 
affected with opposite sign. This dipole can be oriented in all three directions at will.  

 
An eventual expansion of this of model is achieved by the temporal increase of r0. The 

model however is only valid, if the expansion-velocity of r0 is smaller than c/2. If it is larger, 
so there is no more rotation anyway. The motion proceeds rectilinear as well as curvilinear 
then. It has no more exact track-function declared. That would be also rather pointless, as we 
will still see later. 

 
 
 

3.5. Disadvantages of the static model 
 
With the described static model, we have realized case (0.13) and »the direction of the 

main-axes remains uncertain. The smallest interference here can have the consequence of an 
at will strong rotation of the main-axes.« The cause is following: With L0 and C0, it is a 
matter of ideal components. That means, the Q-factor Q0 of such an oscillatory circuit would 
be infinite with it, the bandwidth zero. The resonance-super-elevation is also infinitely with 
an infinite Q-factor however (voltage u0 and current i0). Therefore it has no exact phase and 
amplitude declared. This is just identical to the uncertainty of the main-axe's position 
however. 
 
Another disadvantage is that the model doesn't change time wise. That means, all median 
values including r0 remain constant forever. Now it is a known fact however, that the cosmos 
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is expanding and the same should happen with the metrics too. Maybe, this is even the cause 
of expansion? We use this supposition as base and formulate our second hypothesis with it. 
 

 
II. The expansion of the cosmos is evoked by the expansion of the metric lattice/ 
 radiation-field. 
 

 
Furthermore, the question of origin and isotropy of the cosmologic background radiation 
remains unanswered. In order to avoid these disadvantages, we want to make dynamic the 
model. 
 

4. Dynamic model 

4.1. Further contemplations 
 

If we want to achieve an expansion of the metrics, so we must see to take away energy 
from  the MLE. Now one assumes yet the vacuum as loss-free, since the propagation-
velocity of electromagnetic radiation is independent from the frequency. Let's introduce the 
conductivity 0=1/ 0, so for the complex wave-propagation-impedance (j is the imaginary 
unit, as used in the electrotechnics) applies 
 

Z =                  (43) 

 
and on reason of (30) for c 

 

c   =                (44) 

 
Two extreme-cases result from it. While (44) passes into equation (31) for a non-conductor, 
we get for an ideal conductor 

 

c   =            (45) 

 
Therefore generally applies: in a loss-affected medium, the wave-propagation-impedance 
becomes complex and with it c too. Since c determines the propagation rate  = +j =j /c, 
the attenuation rate would become unequal to zero and even moreover frequency-
dependent with the appearance of an imaginary part of c. It applies 
 

   =    =   (46) 

 
That means, additionally to the geometrically caused damping an additional damping e– x 

would appear and one could define a lower cut-off frequency for the space (–3dB/ ). Only if 
the conductivity is zero, that wouldn't be the situation. All this does neither has been 
observed in the vacuum and the wave-propagation occurs with light speed for all 
frequencies. The vacuum just acts like an ideal non-conductor [20]. 

 
Nevertheless, we want to try to find a solution, taking all these facts into account. At first 

we extend our equivalent circuit by the loss-resistor RoR (figure 10), index R stands here for 
a series connection of circuits, as well as by the shunt-resistor R0. 
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Figure 10 Figure 11 
Equivalent circuit with Equivalent circuit with 
series-resistor shunt-resistor 

 
 
 
 

With our further contemplations, now we have to decide in favour of one of both equivalent 
circuits. For the conversion of both impedances applies 

 

R0   =             (47) 

 
We decide in favour of the second model, since a very large loss-impedance is the best 

approach to a non-conductor. Starting with figure 10 we first define the loss-impedance R0R 
which must be obviously very small in this case, in reference to a cube with the edge length 
r0 to 

 

R0R
1

0

r
A

                A r2                 R0R
1
0r

       (48) 

 
From it we obtain for R0 

 
R0     =   0r0                 (49) 

 
Evidently, our MLE is a system of second order. By introduction of R0, we can now 

define even two time constants, namely 
 

0     =            and  1    =     R0C0    (50) 
 
With 0, a time-constant of second order, it is with largest probability a matter of the reci-

procal of the angular frequency of our MLE. Which value in the nature then now that 1 can 
be assigned to? An additional temporal damping of electromagnetic waves doesn't appear as 
you know. Since R0 has to be very large, then the same is applied to 1. We now assume that 

1 can be identified with the reciprocal of the HUBBLE-parameter H. This hypothesis is 
substantiated by the fact that H is a time-constant of first order, whatever is valid for 1 too. 
We can write then 

 
2

0 0 0 0
2

0 0 0 0 0 0 0 0 0 0

r 1 1 1H
r R C r L C
0r0 1 .         (51) 

 
Furthermore generally applies H = n/t; n is a constant factor which depends on the used 

model (radiation-/dust-cosmos), t is the time and equates with the age here. Next we want to 
define the Q-factor of the oscillatory circuit according to [5] 

 

Q0     =         =            (52) 

 
and because of u0= – 0 0 as well as (36) 
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Q0     =      = 0r0Z0      =             =        (53) 

 
The numerical value is about 1.041·1061. If we go out from the last expression of (51), we 
can even write for H 

 

H       =       =      =        =             (54) 

 
Now we could think, up to the determination of H it is far no more. Unfortunately, the value 
of 0 is unknown however.  But it can be received from the astronomically determined value 
of H approximatively 

 

0      =                 (55) 

 
with  1.710·1093 AV–1m–1. In this connection a value of 55 kms–1Mpc–1, has been set up for 
H, that is 1.7824·10–18s–1. Possibly, this value is rather not up-to-date anymore. One 
recognizes the magnitude of 0 however. Furthermore applies G H = const. 

 
 
 
Now that further on our model. Using the relationship H = n/t and the third expression of 

(51) we are already able to determine the time-function of r0 
 

r0 =  and       (56) 

 

0r0r0  =         (57) 

 
with it we get for the HUBBLE-parameter H 

 
0

0

rH
r
0r0    =         and  0 0

2
0

r r 1
r

q 0 0r0 0 12
0

0 1
r0

0 0 1    (58) 

 
just the relationship for a radiation-cosmos. This is nor further remarkable, since we have 
assumed the MAXWELL equations however. q is the dilatory-parameter (do not mix-up with 
the charge). It follows n=1/2 and we can write 

 

r0      =        und  0
0 0

1r   
2 t0

1r   0 2
     (59) 

 

t          =        =            (60) 

 
With these relationships, we can now set about to put a differential equation for our 
oscillatory circuit. Let's look at it figure 12 for that purpose. 
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Figure 12 
Voltages and currents  
in the oscillatory circuit 

 
4.2. Differential equation and solutions 

 
4.2.1. Specification of the differential equation 

 
We have a parallel-oscillatory circuit with the inductivity L0, the capacity C0 and the loss-

resistor R0 on hand. Furthermore, the voltage u0 is connected to all components 
simultaneously. In the node A the three currents i1, i2 and i3 unify. The KIRCHHOFF's first law 
applies: 

 
i1 + i2 + i3 = 0          (61) 

 
Furthermore applies because of u0=d 0/dt and 0=i1L0 

 
 

u0  
d i1L0

dt
   (I)

 
 

u0  1
C0

i2dt
   (II)

 

 
u0  i3R0     (III) 
 

 
Now equation (I) can be resolved as follows 

 

u0 =   = L0 + i1       (62) 

 
and we get the following differential equation 

 
0

1 1
0

Li i
L1 1
Li i1
L
L

0L i0L  =  or       (63) 

 
y´+  f(t)y  = g(t)        (64) 

 

M(t) =      = =       =   L0 .        (65) 
 

Now, we are able to resolve for i1 [21] 
 

i1      =    

1 g(t)M(t)dt C
M t

       (66) 

 
With C = 0 we get then 

 

d i1L0

dt
di 1

dt
dL0

dt

u 0
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i1      =   dtL
L
u

L
1

0
0

0

0

    =       1
L0

 u0dt  .     (67) 

 
Now, we rearrange equ. (II) for i2: 

 

i2      =         =      (68) 

 
We receive the value of i3 directly by rearrangement of (III) so that we can write 

 
 

 
i1 =       (I) 

 
i2 =   

 
  (II) 

 
i3 =              (III) 

 
 
 

Put into (61) we obtain 
 

1
L0

u0dt C0
du0

dt
u0  

dC0

dt
1

R0

0  .      (69) 

 
Since 0 0u 0 equ. (69) changes into 

 

 0 0 0 0 0
0 0

1 1C C 0
R L
1

0 0 0 0
11

L00 00 000000 CCC
RR
1C 1C 1

0C00 R0        (70) 

 
and after division by C0 

 

 

0
0 0 0

0 0 0 0 0

C 1 1 0
C R C L C
C 1

0 0 0
1

L C0
C

0 0000
C
C R CC R C

0C 100C 10   .        (71) 

 
This is the differential equation of a parametric amplifier. But on reason of the definition of 
C0= 0r0 we also can write 

 

 

0
0 0 0

0 0 0 0 0

r 1 1 0
r R C L C

1
0 0 0

1
L C0

r
0 0000

r
r R CR C
0r0 100r0 10   .         (72) 

 
Of course it is somewhat difficult to imagine, that the capacitor quasi shall grow with the 
metrics. But considering C0 as a basic quality of space, whereat its size depend on the 
dimensions of the MLE, it should be somewhat less difficult however. If we now assume, 
that no expansion would take place anyway, equ. (72) would change into the normal 
differential equation for a loss-affected oscillatory circuit with shunt-resistor with the well 
known solution: 

d u0C0

dt
C0

du0

dt
u0

dC0

dt

1
L0

u0dt

C0
du0

dt
u0

dC0

dt

u 0

R 0
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0        .     (73) 

 
Then however, we would get for the speed of light: 

 

c          =          ,     (74) 

 
That would even mean that the (maximum-)speed of light is not constant. The constancy of 
the light speed however is a basic statement, that we may not negate. To the luck our metrics 
is expanding and the first partial factor of 0 in equation (72), namely H is 0. According to 
(51) furthermore both augmenters are identically and we can write 

 

0 0
0 0 0 0

2 1 0
R C L C

2 1
R C L C00R C 0   or       (75) 

 
2

0 0 0 0 02H 02
0 0 0 0 02H 2
0 0 0 0 00 0 02H 2

0 0 0 00           .      (76) 
 

Equation (76) is very interesting. If we want to determine the time-function of 0 however, 
we now have to insert (53, 54):  

 
0

0 0
0

1 0
t 2 t

01
t 2 t0

0
0t 0         or      (77) 

 
0

0 0 0
0

1t 0
2

0
0 0

1t 01
20 0t 0

00          .      (78) 

 
With it we have laid down the differential equation for our model. It deals with a very rare 
hyper-geometrical differential equation, that we want to solve in the next section. 

 
 
 

4.2.2. Universal solution of the differential equation 
 
During literature-study, this type of differential equation has not been found and the 

POOLE's equation [17] did not succeed anyway. To solve the equation therefore only comes 
into question the integration of power series approach [21]. We look at the following 
equation for that purpose: 

 
y x    +    A y    +    B y  =   0              (79) 

 
We first rearrange this equation to y 

 
y    =             (80) 

Then we expand y into a power series 
 

y = a0x0 + a1x1 + a2x2 + a3x3 + a4x4 +…+  anxn    (81) 
y =  0a0x-1 + 1a1x0 + 2a2x1 + 3a3x2 + 4a4x3 +…+ nanx n-1  (82) 
y  =  0 (-1)  a0x-2 + 1 (0)  a1x-1 + 2 1a2x0 + 3 2a3x1 + 4 3a4x2 +…+ n (n–1)  anx n-2 (83) 

 
In cumulative notation: 

1
L0C0

1
2R0C0

2

1

0 0

1
2 0 0r0

2

2

1
B

y x Ay 



 
 

32 

y     =          (84) 

 

Ay  =   =     =      (85) 

 

y x  =   =     =        (86) 

 
 

Now, inserting the last column's expressions into (80) we get: 
 

     =           (87) 

 
With it we can already specify the recurrence formula for the discrete coefficients of y: 
 

 
 

an+1  =        – an 
 

 (88) 

 
 

It results in the following coefficients then: 
 

a1 =   =        (89) 

a2 =   =               (90)  

a3 =   =    (91)  

…     …                

an =          (92) 

an =  (–1)n  (93)  

 
 

Another notation would be 
 
an =   ao (–1)n Bn        (94) 

 
and with (z)n= (z+0)(z+1)…(z+n–1) 

 
an =   ao (–1)n Bn   =   ao (–1)n Bn      (95) 

 

y  =   a0  

1
n!(A)n

 ( Bx)n

n 0

        (96) 

 
This is the general hypergeometric function 0F1 (;A;–Bx) however. 
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y        =    a0 0F1 (;A;–Bx)  (97) 
 

 
Herewith we have found a special solution of our differential equation. Now we must see 

just, if we can express the result by a more simple analytic function. Whether it's possible or 
not, depends on the parameter A however. Before we return to our model then, we still want 
to examine the behaviour of the universal solution (91). We look at two special cases 
thereto. 

 
 

4.2.3. Specific solutions 
 
 

4.2.3.1. The harmonic solution (A=1/2) 
 
We start with equ. (97) inserting the value 1/2 for A: 
 
y   a0  0F1 ;

1
2

; Bx  (98) 

 
This yields by setting the expansion-part ṙ0 r0 in (72) to zero as a solution of the differential 
equation  φ̈0 t + ½ φ̇ 0 + κ0 (2ε0) φ0 = 0 (model without expansion). According to [12] applies: 

 

0 F1  ;
1
2

;
1
4

z2      =    cos z also       (99) 

 

or      Bx –  =  z
4
1 2       (100) 

 
Bx4   =  z           (101) 

 

t=x
2
1=Bˆ=a    withBx4cosa   =y      

0

0
00 0    (102) 

 

000
0

0
 00 Qcosˆ  t2cosˆ   =      (103) 

 

t
t2

2cosˆ   =  

0

0
  00          (104) 

 
Considering the root-expression of eqn. (104) more exactly, so it would have to correspond 
to the angular frequency  and would be time-dependent. 

 

00
0

0
0 Z2  ˆ

t2
  =       (105) 

 
t2cosZ2 00 

 0                (106) 
 

Since it’s about a differential equation of second order, the universal solution had to be then: 
 

0 
  Z0 (c1 2 0t c2 2 0t)      (107) 
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(1) (2)
0 i 0 0 0 0ˆ (H (2 t) H (2 t))         (119) 

 
An analogy exists between equation (108) and (119). For our further examinations, we set c1 
and c2 in (119) equal to 1 for the moment. Then we get as specific solution: 

 

t2Jˆ 00i0      
0

0
0 i0

t2Jˆ          (120) 

 
Even a formulation with the Bessel-Y-function would be possible however. With the 

exception of an infinite initially-value no more differences arise then. Later, we will make 
use of  the sum of both (Hankel function). With it, the discussion, whether a finite or infinite 
initially-value is on hand, will have been proven as useless. 

 
 

4.2.3.3. Behaviour of solutions 
 
Depending on the coefficient A there is the following behaviour of solutions: 
 
 

 
A < 0.5  ascending amplitude 
A = 0.5  static amplitude 
A > 0.5  descending amplitude 
 

 
 
 
 

4.2.3.4. Consequences for the model 
 
We have got a solution with non constant amplitude (descending). With it the magnetic 

flux starts with a finite value however (gainful). Two problems result from it: 
 
1. It has no frequency defined in the real sense. 
2. The amount of Planck's quantity of action ħ= 0q0 is not constant. 

 
The first problem is relatively easy to solve by studying the asymptotic behaviour of our 

function (120). Even from (76) can be concluded on a frequency 0, that depends on the age 
i.e. the HUBBLE-parameter H. The second problem has extensive effects on nearly all 
physical laws and processes, that should be discussed in the course of this work in detail. 
Furthermore the gravitational-constant is also a variable quantity, which is being denied 
today by almost nobody more however. 
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4.2.4. Asymptotic expansion 
 
 
Since the Hankel function is difficult to handle, we want to search for a good 

approximation. Furthermore we are interested in the course of the function and of φ0 and q0. 
To the approximation we treat the single elements of the Hankel function Jn(x) and Yn(x). 
On presence of the following conditions: t»0, Re(x)»0, Re(n)> −1/2 according to [23] 
applies: 

 

Jn(x) ≈  2
x

cos  x
n
2 4

        (121) 

 
and for J0 and its derivative, that we require even later, (we use the equality sign from now 
on): 

 

J0 (x) =   2
x

cos x
4

   =      (cos x + sin x)    (122) 

 

J1 (x) =   cos  =  –  (cos x - sin x)    (123) 

 
For 0 we can write 

 

 0    =                   (124) 

 
For  0 applies then (approximation): 

 

0      =  
ˆ i

2 0 t
 (cos 2 0t + sin 2 0t)      (125) 

 
Except for one factor and a different phase-angle we get an expression equal to the 

harmonic solution (107) then. The phase-correction −π/4 can be omitted with greater 
arguments. The Hankel function even can be described by an exponential function in the 
phase (226). Deeper examinations show equation (123) to be very exact (figure 13 and 14). 
In [23] an additional approximation is presented: 

 

0      =    
 ̂i

(1 2 0 t)
  (cos 2 0t + sin 2 0t)          (126) 

 
But that one proves to be essentially more inaccurate than (121) and is no longer followed 
up therefore. Also significant is the effective value. But it is defined across one period 
minimum. Within the first period (t<2 1) and to the calculation of PLANCK‘S quantum of 
action it would be opportune to operate with the exact envelope func-tion divided by  
(addition theorem of Bessel functions  modulus of the Hankel function). It applies to 
Bessel functions (J and Y) of zeroth order and with very good approximation to Bessel 
functions of any order (real) and of course even to greater values of t: 

 
ˆ 

0   ˆ 
i J0

2 (2 0t) Y0
2 (2 0t)        Envelope curve  (127) 

 
Indeed, it starts in the infinity. Then, i is defined to the point of time the envelope curve 
takes on the value 1. But function (127) does not match correctly with smaller arguments. 
The reason is the root in the argument of the Hankel function. Therefore, we make use of the 
radical expression from (121), which is essentially more correct. Thus, the envelope curve 
and the effective value are defined as follows: 
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i
0

0

ˆ2ˆ   
2 t

         Envelope curve  (128) 
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0 0 0q Q Q2

00 q  Effective value  (129) 

 
The exact course of 0 (125), as well as of the approximate function of the envelope curve 
(128) and of the effective value (129) is shown in figure 13. Also depicted are the original 
Bessel functions,  however, because they are completely covered by the 
approximation. 

 
 

 
 

Figure 13 
Course of magnetic flux as well as of approximation-  
and envelope-functions across a greater time period 
 
 
Thus, with greater arguments, no differences are statable, neither in the amplitude,  nor in 
the phase. Most important for the quality of the approximation is the course in the striking 
distance of t = 0. The exact course of 0 as well as of the envelope functions (128) and (129) 
for small and very small values of t is shown in figure 14. The course of q0, the 1st derivative 
(123), has been omitted. The envelope functions likewise applies to 0 and q0 and they are 
important to the determination of the effective values and of ħ. 

 
In contrast to the normal Bessel function, which starts similarly to the Cosine function, the 

temopal function of the magnetic flux within the first part of the first period has rather a 
course like an RC-circuit of 1st order. The charge q0 starts similar to the function –sin x. With 
increasing phase-angle/Q-factor Q0 = 2ω0t both transition to a nearly harmonic function, at 
which point the frequency decreases proportional t−1/2.  

 
As we can see, the approximation can be used down to Q0=1, that’s the particle horizon. 

The maximum error at that point amounts to +1.44% in the real part and 8.17% with the 
imaginary part. But you can't get that close to the particle horizon and the beyond remains 
totally locked. That’s the realm of astronomers, physicists, astro-physicists and cosmo-
logists, on paper and in the lab. If you want to know more about the range Q0<1 you are 
forced to make use of the exact expressions. 
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 —————————————————————————————————————  

 
Figure 14 
Course of flux as well as of the approximate-  
and envelope-functions nearby the singularity 

 
 

4.3. Laplace-transform 
 

4.3.1. Time domain 
 
How does the solution-behaviour of equ. (115) actually look like? J 0 ( ) is defined for 

real arguments –   x  . For positive x arises the course already figured many times. The 
ambiguity of the root doesn't have any effect. To the negative region, a real solution submits  
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in form of the modified Bessel function I 0 ( ). This one manifests a course similar to cosh 
going towards infinite. In contrast, J1( ) and the charge q0=  –j I 1( ) becomes imaginary 
and shows a course like j  sinh( ). 

 
 For t < 0 don't arise any physically meaningful solutions therefore. A charge is not 

defined. The point of time t = 0 is just the beginning of the expansion of the universe. What 
was before, cannot be said, probably »NOTHING«. In such a case, the application of the 
LAPLACE-transformation offers itself in order to get more information. 

 
 

4.3.2. Figure function 
 
 
LAPLACE-transformation: This is suitable even to the solution of differential equation (78), 

provided, the re-transformation is possible. We just go out from (78): 
 

0
0 0 0
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1t 0
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1t 01
20 0t 0

00      or     (130) 

 
y x    +    y +   a y  =   0        (131) 

 
According to the differentiation-rule [22] applies:  

 

{y } =  p y(p) –         with     =      (132) 

 
Fortunately we have already solved the differential equation and know the initial values 

for t = 0. It applies therefore:  
 

{y } =  p y(p) – 1   .       (133) 
 
We get for the second derivative: 
 

{y } =  p2y(p)   p f 0
(0)  f 0

(1)  with the initial values 1 and 0  (134) 
 

{y } =  p2y(p) – p         (135) 
 

We require the LAPLACE transform for the product of y  and T however. According to the 
multiplication-rule and (133) applies: 

 
 {tn f(t)} =  (–1)n F(n)(p)        (136) 

 
dy (p)

dp
 =   2p y(p)  p2

 y (p)  (137) 

 
{y t} = 1 – p2 y (p) –  (138) 

 
Substitution in (131) results in: 

 
y (p)

a p
p2 y(p)  0   with the solution    (139) 
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C1 is in the form of a time-constant. The source-function is a differential equation of second 
order with a time-constant:  1 = 1/a = 2 0/ 0. This appears twice with it and we does not come 
into the embarrassment to examine which time-constant to be substitute at which position. 
The value arising from H (astronomically) has a magnitude of 1.035·10–102 s. In the figure 
domain applies for the magnetic flux then: 

 

 (p) =   ˆ 
ip 1  e

1
p 1

C

                  (141) 
 

For signals with a duration of t » 1 it's about an ideal D-gate (differentiating circuit). Unfor-
tunately this something out of common use figure-function cannot be found in any reference 
work making a retransformation into the time domain nearly impossible. So far, I did not 
have succeeded in finding a solution for the integral of retransformation. Since we already 
know the solution however this is not quite so bad. It would be interesting in that sense 
however, as the type of function, which the model was activated with at the point of time 
t =  0, could be found out on this way. Comparative contemplations lead to the conclusion 
that it could have been a DIRAC-impulse (t) with the LAPLACE transform  { (t)} = 1 
which even agrees with the model of big bang in the best manner. To the multiplication in 
the figure domain, the convolution corresponds in the time domain: 

 

o =    · (t) *J 0         (142) 

 
At the beginning, there was the »NOTHING« with the physical qualities 0, 0 and 0. Then, 
something was there suddenly (magnetic DIRAC-impulse). The DIRAC-impulse is an impulse 
with infinite amplitude and a duration of t 0. The integral below this impulse is equal to 1. 
This would speak in behalf of a finite initial value (Bessel-J). The response of the model 
(overswinging with a median value of 0) can also be observed on electronic systems of 
second order using a DIRAC-like agitation (needle-impulse) but not using a jump- or ramp-
function. The DIRAC-impulse is already known for a long time. Using technical methods 
however it won't be to realize whether at present nor in future. So far, there were even no 
parallels in the nature, only in form of an approximation as needle-impulse. This way, 
another mathematical function would have found its exact correspondence in the nature. In 
any case, it's about a forced process. 

 
 
On the assumption, that it was actually a DIRAC-impulse, we get promptly for the transfer-

function G(p): 
 

G(p) =  p 1  e
1

p 1
C

          (143) 
 

The course of transfer-functions for the magnetic flux and of the charge q0 (first derivative) 
is depicted in figure 15 by setting C = 0 at first, since it has only an influence on the scale of 
the y-axis. Both functions point out a pole at the position p = +0, a null with p = –0 and a 
minimum at the point of time  respectively /2. For longer impulses, the function 
changes into the one of an ideal D-gate (high pass contradiction?). 

 
The PN-diagram doesn't need to be figured separately (pole at p = +0, null at p = –0). The 
number of pole is equal to the number of the nulls (realizability-condition). There are no 
pole in the left half-plane (stability-condition). Since the pole is located in the point of 0, the 
system is loss-free anyway but still a „passive component“ however.  With pole in the left 
half-plane, the system could come into an oscillation by itself. With pole in the right half-
plane at p > 0, losses appear, so that the oscillation grinds to a halt after a certain time — 
contrary to reality, where the oscillation whether hasn't yet faded away even today nor 
probably in the future. The null in the origin (–0) points on a blocking of lower frequencies.

ˆ 
i

2 0t

0
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 It is seen about a high pass physically. Since the null is in the left half-plane, it's still about a 
minimum-phase-system. Systems of this category have, according to [26], the quality of 
attenuation and phase being associated by the HILBERT-transformation. 

 
Since there are no conjugate complex pole available, even no resonance-effects appear. The 
minimum at  points out a phase-transition. 

 
 

 
 

Figure 15 
Transfer-functions (figure domain) 
for magnetic flux and charge (C=0) 

 
 
From the figure-function we have read that it deals with a high pass of 2nd order. In 

general, such a system has a frequency-dependent attenuation. This stands in contradiction 
to the observations however, resulting in a constant frequency response across all 
(technically observable) frequencies. To the calculation of the complex frequency response 
of our model we goes out from equation (143), in that we replace: p =  + j  A substitution 
p = j  doesn't emerge any useful result, since the system still is oscillating and, with it, the 
associated Fourier integral never converge. The convergence is forced with the term of . 
The frequency response of the magnetic flux gives also information about wave-propagation 
in the vacuum, since the discrete dipoles (MLE) are interconnected across the magnetic field 
(resonance-coupling). We obtain the value of  from the halve of the inverse of right factor 
of (77). 

 

G(  + j ) =  (  + j ) e
1

( j ) 1
C

        (144) 
 

 With  = 1/(2 ) =   = 1/(2t ) = 
0

0

 and  = 0 (G(j ) = 1) we get for C = –1. Then applies: 

 

G(j )  =   1 j

1

 e
j

1 j     .    (145) 

 
With   =  the following expression (complex frequency response) turns out: 
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G(j )  =  
1 2 1 2 j 

1 2 1 2  e
2

1 2  (146) 

 
Since the locus curve of frequency response doesn't cut the y-axis, there is no aperiodic 
borderline case in this system. 

 
 

 
 

Figure 16 
Frequency response locus curve 

 
For frequency and phase response further we get with  =  

A( )  =  1 2
 e

2

1 2         (147) 
 

B(
cosθ sinθ
cosθ sinθ

     =   φ             (148) 

 
The expression for the phase response can still be simplified. Both functions (BODE-

diagram) are shown in figure 17. The attenuation-course (–6 dB/decade) shows that it's about 
a system of 2nd order.  

 
 
Interesting is the cosine of the phase response cos B( ) = cos  as well. This value is used 

e.g. in the electrotechnics for the calculation of efficiency (power). It figures the measure of 
a coupling-factor of the discrete MLE's mutually. The calculation of this value by 
substitution of cos (arctan x) = (1+x2)–1/2 even leads to a simplified expression for (148): 

 

cos φ  =     und      φ  =      (149)  

 
 

Then equation (146) simplifies to 
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G(j )  =  
j)1(ln

2
1

112
2

2

2

2

2

e      e1)j         (150) 
 

The course of cos φ  is figured in figure 18. An appraisal takes place in 4.3.4. Still, even the 
course of the second term is to be seen in φ . One sees that it only comes to the validity at 
frequencies near . 
 

Figure 17 
BODE-diagram: Frequency response A( ) 
and phase response B( ) of the system 
 
 

 
 
Figure 18 
Course of phase angle,  
cos  and of the expression θ 
 
Finally, the phase- and group delay in dependence on the frequency should be examined. 
Both functions are depicted in figure 19. The phase delay is defined as: 

 



 
 

44 

TPh  = B( )      = 1
1 2 )      (151) 

 
For the group delay we get: 

 

TGr = dB( )
d

           2
2

1

        2
1

 

1 2

2

    (152) 

 
 

 
 

Figure 19 
Group- and phase delay 

 
 
 
 
 
 

4.3.3. Properties of the model 
 
The following statements are applied only to one discrete MLE. More exact statements for 

wave-propagation as such are worked out later. One sees here quite clearly that frequency- 
and phase response are proceeding approximately exact linearly (0 dB) and phase-true until 
one third of the frequency 1  10104s–1. A noticeable attenuation and phase-shift does not 
occur until approximate one tenth of 1. Since the amount of 1 is so extreme (the supreme 
measured frequency, cosmic radiation is about 1042s–1), this effect does not have been 
observed so far however. 

 
The amplitude is ascending strongly above 1 and it actually turns out a high pass-
behaviour,  the wave-propagation at  < 0 here just actually happens in the attenuation-
zone. Since the value of cos  is declining strongly from 1 /2 on however, and with it the 
coupling coefficient of each discrete MLE mutually, a wave-propagation is impossible 
above 1. Hypercritical photons cannot exist much longer than  therefore. 

 
The frequency response across two MLE's with the coupling coefficient k=cos  is shown 

in figure 20. It is about a group-delay-corrected low pass of 2nd order (2 MLE's that means 2 
circuits, therefore the square). The expression 1+ 2 even occurs in the filter-theory and 
corresponds to the form-factor of a calibrated equally-tuned dual-circuit filter with identical 
attenuation-course [26]. 



 
 

45 

 
 

Figure 20 
Frequency response for the transfer  
to the adjacent MLE 

 
In reference to the sampling-theorem we expect, that only frequencies below 0/2 are 

transferred. The previous statements apply strictly speaking only to the universal wave-field 
in accordance with [1]. The propagation of radio waves or photons, as we understand, in 
reality takes place as propagation of interferences of this wave-field. Since the MLE's figure 
non-linear systems, several side frequencies occur. Important is only the sum- and 
difference-frequency 0±  With the other frequencies, no power-conversion is achieved 
(property of a non-linear circuit). For the cut-off frequency of overlaid signals, even only the 
summary frequency is relevant. Because the overlaid signals are more red-shifted than the 
universal wave-field, the „relative cut-off frequency“, i.e. the spacing between the overlaid 
frequency  and the cut-off frequency 0/2, ascends with rising age continuously.  

 
The course of group delay shows that the „processing“ of changes of the magnetic 

induction of lower frequencies actually takes place „instantaneously“. The transfer to the 
adjacent MLE takes place on the basis of a resonance-coupling with a phase-shift of 
π/2 = 0tv. For the delay time of tv, one gets the following expression then: 
tv = π/(2 0) = π r0/(2c). For the transfer rate of c (the radius of the field-line of the vector H0 
proceeding through the centre of the track graphs of both MLE's is equal to the half of lattice 
constant, just πr0/2), we receive in accordance with figure 2 an amount of 

 
c  =

2
r0

tv

     
1

0 0

   c        (153) 

 
With it, the wave-propagation-velocity of the vacuum results directly from the phase-shift 

/2, that appears with magnetic resonance-coupling of two oscillatory circuits. This effect 
even can be observed macroscopically with discrete components which is figured in [26] 
extensively.  On frequencies near to tv the phase delay of TPh, multiplied with 2 , has to 
be added. An accurate formula for c for this case (critical photons) however cannot be 
declared here because of considering the discrete MLE only. We will work out an exact 
expression for wave-propagation-velocity in section 4.3.4.4.5. being valid near t = 0 as well. 

 
Furthermore we can say that the propagation-velocity c decreases the more approaching to 

1 This value however exactly corresponds to that point, in which the track-curve (figure 8) 
is no longer defined. A phase-transition occurs, the rotation finishes. There is only the 
rectilinear expansion. 
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With it the phase-shift to the adjacent MLE also adds up and achieves a value of , a 
destructive interference appears, a wave-propagation isn't possible at all (coupling-factor 
k = cos(π/2) = 0). Furthermore, c and even the wave impedance Z become complex, leading 
real- and imaginary-part to achieve same value. This corresponds to the case of an 
electrically conductive medium.  

 
All that arises from the going smaller and smaller value of R0, resulting from descending 

r0, and the Q-factor. That means, the impedance achieves the magnitude of the complex 
impedances XC and XL short-circuiting them more and more. Above ω0, R0 only determines 
the behaviour of the system then (electric conductor). However this is not applied to the 
wave-field as such. Reverse behaviour appears here. Near t = 0 as well as  = 0 the field-
wave impedance behaves like a non-conductor. First at larger distance, the behaviour 
approaches the one of an ideal conductor, as we will still see later. Decisive for it is the 
mutual coupling-factor of the MLE's however. 

 
Now a wave-propagation-velocity different from c does not contradict our primary 

assumption c = const and nor the SRT for so long, while its value is smaller or equal to c. 
This is always guaranteed even with frequencies near 1 respectively in the time just after 
the big bang. The previous results don't just stand in contradiction to prevailing discoveries. 

 
 
 

4.3.4. Propagation-function 
 
First we want to pass in review the classic theory of MAXWELL's equations once again, in 

order to work out, with the help of analogies, an alternative solution, fitting the requests of 
our model. The equation-system (1) is under-determined, so that there is more than one 
solution filling these equations. 

 
 

4.3.4.1.  Classic solution for a loss-free medium 
 
In accordance with the previous discoveries, the cosmic vacuum seems to be a loss-free 

medium. It applies  = 0 (space-charge-density) as well as  = 0. To the reminiscence here the 
MAXWELL equations once again: 

 
div  B = 0  div  D = 
curl E = – BB   curl H = i + DD        (154) 

 
 
Furthermore applies: 

 
D =  E     B =  H  i =  E           (155) 

 
Put into (154) we get (partial derivatives for x, y and z): 

 
div H  = 0 div E  = 

 
curl E = – HH  curl H  = EE  (156) 
    

curl E = –  curl H =  

 
Reapplication of the rotation-operation on (156) and substitution of the expression for curl H 
results in: 

 

curl curl  E = –     =    –  H)
t  =    –    (157) 

 

H
t

E
t

H
t

2E
t2
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Still formal-mathematically applies and due to div E = (∆ is the LAPLACE-operator): 
 
curl curl  E = grad div E - ∆E   =   –∆E      (158) 

 
Analogously applies for H: 

 

curl curl  H =     curl    =       E)
t

   =    –     (159) 

 
Just as because of div H =  

 
curl curl  H = grad div H – ∆H   =  –∆H      (160) 

 
Then for r = r =1 (vacuum) can be applied: 

 

∆E =   0 0   =      ∆H =   0 0   =       (161) 

 
The Laplace-operator  is nothing other than the vector of the second directional-derivatives 
however: ∆ = (∂2 /∂x2, ∂2 /∂y2, ∂2 /∂z2). With propagation only into x-direction, the partial 
derivatives for y and z become zero, and we can write too: 

 

   =   0 0     d2H
dx2

   =   0 0
d2H
dt2

     (162) 

 
After division by d2E respectively d2H, multiplication with dx2, division by 0 0  
and subsequent extraction of the square-root, we will receive the known expressions for the 
wave-propagation-velocity c (phase- and group velocity) as well as the field-wave 
impedance ZF = 0c: 

 

c  =    = 
oo

1  =  c        ZF  =  
o

0   =  Z0    (163) 

 
The underlining stand for complex values. Since the product r r is always larger than 1, the 
maximum wave-propagation-velocity is equal to c. It has an all-pass-behaviour on hand, no 
lower cut-off frequency exists and the wave-propagation-velocity is independent from the 
frequency. For the propagation rate   applies: 

 
  =   + j      =    ± j  /c    =   ± j oo       (164) 

 
In this connection is  the attenuation rate (  = 0) and  the phase-rate. Except for the 
geometrical attenuation (S ~ r 

–2) in this case just no additional attenuation appears. Then, for 
the propagation-function (into x-direction) we get (analogously for H): 

 

E    =    E  =    E        (165) 
 
This solution suffices the cases appearing most frequently in the nature. If the medium is 

not loss-free, it fails however. Even, the cosmologic red-shift cannot be explained so. 
 
 
 

4.3.4.2.  Classic solution for a loss-affected medium 
 
At a loss-affected medium (e.g. water)  = 0 applies as well as  > . E and H are 

understood as complex time-functions (underlined). Equation (156) is then: 
 

E
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curl  E = –          curl H =   E         (166) 

 
To the solution of the equations, MAXWELL works with the following ansatz: 

 

E  =  E ej t   H  =  H ej t      (167) 
 

 In this connection, the real-part corresponds to an orientation of the vector in y-, the 
imaginary-part to the one in z-direction, x is the propagation direction. This ansatz matches, 
except for the factor 2, the first term of equation (108) ej t i.e. the harmonic solution with 
static amplitude (static model without expansion). However, equation (108) does not treat 
the magnetic (or even electric) field-strength but the charge as well as the flux. To the 
conversion, a coupling-length rk, is required, depending from the model in use. At both 
MAXWELL solutions, the value can be chosen absolutely free. But it should be essentially 
smaller than the wavelength. The best choice would be PLANCK's elementary-length r0 
indeed. The magnetic field-strength submits to H = φ er/( μr k

2
 ) then. 

 

Now it is comprehensible enough, that MAXWELL first attempts to find an harmonic 
solution, this nevertheless corresponds to the long-time experiences (harmonic wave-
functions) and even to the current approaching in solving equation-systems. Furthermore, he 
achieved a solution, that agrees to the greatest extent with observations and experiments, 
delivering even technically applicable results, as well. The cosmologic red-shift however 
cannot be explained with it. It applies further: 

 

   =   j  E ej t   =   j  E    =   j  H ej t  =   j  H   (168) 

 

We get for the second derivatives: 
 

  =  – 2E ej t  =  – 2E       = – 2H ej t  =  – 2H        (169) 

 

Further applies: 
 

curl E =  –     =  –j H   curl H = E  =  (  + j ) E   (170) 

 

We apply the rotation-operation to both sides again: 
 

curl curl E  =  curl (–j  ) =   –j  curl H =  –j (  + j ) E   =  –∆E       (171) 
 

curl curl H  =  curl((  + j )E)) = (  + j ) curl E = –j (  + j ) H  = –∆H   (172) 
 

Furthermore applies: 
 

E  =   j (  +  j ) E =  – 2 j
E =  

j
 – 2 E  (173) 

 

H  =   j (  +  j ) H =  – 2 j
H =  

j
 – 2 H  (174) 
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On propagation in x-direction only, the partial derivatives for y and z become zero again and 
it applies ∆= d2 /dx2. Because of (169) one can also write: 

 
d2 E
dx2   

j d2 E
dt2

d2 H
dx2   

j d2 H
dt2         (175) 

 
For r= r=1, we get after division by d2E as well as d2H, multiplication with dx2, division 

by the double bracketed expression, de-parenthesizing of –j and extraction of the root the 
known expressions for the propagation-velocity c = dx/dt and the field-wave impedance ZF: 

 

c   
j

( j )
 Z F   

j
j

    (176) 

 
Or resolved for real and imaginary part: 

 

c =         (177) 

 

c =   as well as  (178) 

c =          (179) 

 
The root-expression in (177) even is the absolute value simultaneously. For the attenuation 
rate and the phase-rate  one finally gets  

 
2

0 0

0 0

μ ε κ ω 1 κ =   ω  1 1          sinh arsinh
2 ωε c 2 ωε

           (180) 

 
2

0 0

0 0

μ ε κ ω 1 κβ =   ω  1 1         cosh arsinh
2 ωε c 2 ωε

          (181) 

 
The propagation-function is the same like (164) however with the variant values for  and 

 (180, 181). For  = 0 this solution passes into case 4.3.4.1. The propagation-velocity is 
dependent on and and amounts to c at most There is a lower cut-off frequency. Since 

 ≠ 0, an additional attenuation of the electromagnetic field-strength (POYNTING-vector) 
appears to the geometrical one. With extreme values of  nonlinear distortions occur 
because of different group- and phase velocity. This solution describes wave-propagation in 
a medium of whatever qualities and a space-charge-density of 0. It doesn't explain 
cosmologic red-shift. 
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4.3.4.3. Alternative solution for a loss-affected medium with expansion 
 

4.3.4.3.1. Solution 
 
We start with the same formulation as in the previous case:  = 0 as well as  > . E and 

H are understood as complex time-functions again (underlined). Since in the time just after 
big bang there is a pure radiation-cosmos and because we are considering the MLE, just the 
empty space, here the vacuum solution only can be of interest anyway. Equation (156) reads 
then: 

 

curl  E   =      curl H   =  0 0 t
E   (182) 

 
In contrast to MAXWELL, who made use of the first term of equation (108) ej t as base, we 
now choose the first term of equation (119), which we have obtained as an independent 
solution of the differential equation (78). The coupling-length of rk cannot be chosen here 
freely. Because the imaginary-part of the Hankel function is coming from the infinite the 
initial value of  is defined at the point 2 0t=Q0=1. The coupling-length at this point is r1. 

 
E  =  E (2 0t)   H  =  H (2 0t)    (183) 

 

In this connection again, the real-part corresponds to the vector's orientation in y, the 
imaginary-part to the one in z-direction, while x is the propagation direction. As already 
noticed, an analogy exists among the exponential-function ej2 t and the Hankel function. 
Both are transcendent complex functions being periodic respectively nearly periodic. In the 
following, we want to find out, whether this base leads to a solution of the MAXWELL 
equations too. It is however to mark that 0 is time-dependent in this case. Therefore we will 
first work with the correct time-functions: 

 

E  =  E    H  =  H     (184) 

 
Let's proceed now like in 4.3.4.2. (analogously for H): 

 

 =     E  =   –  E    (185) 

 
The minus sign is caused by the derivative of the Hankel-function. Furthermore applies, 
according to the calculating rules for cylinder-functions [22]: 

 

  =    –  E  (2 0t) =   – t E      (186) 
 

  =    –  H  (2 0t) =   – t H       (187) 

 
As next, we de-parenthesize the expression for the Hankel function of zero order so we can 
write, because of (183), for the first derivative as expression of the original-function: 

 

  =  – t E        =  – t H        (188) 

 
We require the second derivatives as well. These we determine to the best, in that we 
differentiate the right expression of (185) once again (analogously for H): 
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2
(1)0 0
12

0 0

2 t   H    = (uv uv)
t t 2 t
E E Euv uv)Euv uv)uv          (189) 

 
For u and v, we get following expressions: 

 

u = 0 0u
2t

0u
2t

     (190) 

 
v =

 

(1)
1 0H 2 t  =   

  

(1) (1)
 0 0 0 2 0t H 2 t H 2 t   (191) 

 

  

(1) (1)
0 2 0 1 0

1v H 2 t H 2 t
2t

(1)
0 2 v H(1)
0 2H(1)
0 2  =

  

(1) (1)0
0 0 2 0H 2 t H 2 t

2
  (192) 

 
Replacement of the second expression of(189) results in: 

 
2 E
t 2    =      0

2 H
 0
(1)(2 0t) E   =  0

2
 E     (193) 

 
2 H
t2    =      0

2 H
 0
(1)(2 0 t) H   =  0

2
 H     (194) 

 
Now, we put (188) into (182) getting: 

 

curl H =  0 0 t
 E    =    

(1)
2 2 0

0 0 0 (1)
0 0

H (2 t)– t 1
H (2 t)

 E       (195) 

 
Expression (195) even can be written more simple: 

 

curl H =    

(1)
2 0 2 0

0 0 2 (1)
0 0 0 0

H (2 t)t – 1
t H (2 t)

E            (196) 

 

curl H =    

(1)
2 2 0

0 0 (1)
0 0

H (2 t)t 2 – 1
H (2 t)

E       (197) 

 

curl H =    

(1)
2 2 0

0 0 (1)
0 0

H (2 t)t 1
H (2 t)

E        (198) 

 

For   curlE    0
H
t

: 
 

curl E =  0 0
2t  1

H2
(1) (2 0t)

H0
(1) (2 0t)

 H        (199) 

 
We apply the rotation-operation to both sides again: 

 

        

(1) (1)
2 22 0 2 0

0 0 0 0(1) (1)
0 0 0 0

H (2 t) H (2 t)curl curl  = curl t 1   t 1 curl
H (2 t) H (2 t)

H E E     (200) 
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  H =   0 0 0
4t2

 1
H2

(1) (2 0t)
H0

(1) (2 0t)
 1

H2
(1) (2 0t)

H0
(1) (2 0t)

 H  H   (201) 

 

  H =   0
2

c2 0
2t 2

 1
H2

(1) (2 0t)
H0

(1) (2 0t)

2

 H   H     (202) 

 
The result for E is analogous. We continue like in section 4.3.4.2.: 
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t2  (203) 

 

H =   0
2t 2

c2  1
H2

(1)(2 0t)
H0

(1)(2 0t)
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 0
2 H   

0
2t2

c2  1
H2

(1) (2 0t)
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(1) (2 0t)
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2 H
t2  (204) 

 
With propagation only into x-direction, the partial derivatives for y and z will be zero again 
and it applies = d2/dx2 (analogously for H): 
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After rearrangement, we finally get for the wave-propagation-velocity c and field-wave-
impedance ZF: 
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We see that the propagation-velocity converges to zero for large t. The same is applied to 

the field-wave impedance too. We have to do it with a quasi-stationary wave-field (standing 
wave) filling very well the requests on a metrics. The propagation-velocity is complex again. 
A decomposition into real- and imaginary-part works out quite difficult, but it's 
mathematically possible however. The solution for c reads: 
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An  turns out, that can still be simplified someway 
however (210). A starts at +∞ converging to –1. The course resembles the function 1/A2–1 
approximately, which cannot be used well as approximation however. B has a course like 
1/B2 and is converging to zero. The same is applied even to then. The bracketed expression 
converges to 1 with it. 1/  is the value-function converging to 1/ 2 . 
 

   

1
2j (arctanθ π)

0 0 0 0

2 c 1 1 2 cc sin arctan θ jcos arctanθ       e
ρ 2ω t 2 2 ρ 2ω t

    (210) 

 
Unfortunately (210) cannot be transformed into an expression similar to (179) with area-
functions, so that the ambiguity of the arctan-function leads to a partially wrong result. We 
should better calculate with the following substitution therefore: 
 

   
2 2arctanθ arg 1 A B j2AB                  1 πargc arccot θ

2 4
  (211) 

 
While the real-part of c is defined as the velocity in propagation direction, the imaginary-

part can be interpreted as a velocity rectangular thereto. The appearance of an imaginary part 
in c means also that there is an attenuation anywhere (refer to figure 23). A numerical 
handling of (206) even can be processed with »Mathematica« resulting in the course figured 
in figure 21. Since the Hankel functions, with larger arguments, can be expressed well by 
other analytic functions, we will try to declare approximative solutions later. 

 
 

 
 
Figure 21 
Propagation-velocity 
in dependence on time (linear time-scale) 

 
 

In the coarse, the propagation-velocity behaves proportionally to t-1/4, as we will still see 
later. Overall, figure 21 strongly reminds to the smooth curve of a discrete MLE (figure 13). 
Near t=0 it looks somewhat differently however. A logarithmic scale helps on in this case 
(figure 22). As exact examination emerged, have real- and imaginary-part of c the same 
amount from 20 0t/ 0 on approximately. We must pay attention to this with the specification 
of an approximation function. 
 

We have to do with a case of inversion here. This manifests by the fact that the 
propagation-velocity ascends from zero to an amount of 0.851661c (with 0.748514 t1) first in 
order to descend asymptotically to zero again. 
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Figure 22 
Propagation-velocity 
in dependence on time (logarithmic time-scale) 
 

 
With it, the world-radius (wave-front) of this model doesn't expand with c but only with 

0.851661c which figures no violation of the SRT anyway. With it happens also that later 
transmitted wave-sections pass the wave-front quasi. Since the proportion of real- and 
imaginary-part is different in this case, it doesn't take place on the same track-curve - the 
wave-fronts rather cross each other. 
 

To specify the propagation-function, let's have a look at the classic solutions (165), (212) 
once again and at our primary function (183) too. 
 

E  =  E e
j t x

c                  =      E            =      E e j t j x      (212) 
 
Contrary to (165) the argument in the case with expansion is real. Strictly speaking, namely 
it's not the Hankel function but the modified Hankel function Z 0

(2) = I0(z) –j K0(z) being the 
equivalent of the exponential-function. It is valid for I0(z) = J0(jz) however only for pure 
imaginary arguments. With complex arguments, the real part cannot be drawn to a position 
ahead of the Hankel function as usual with the exponential-function, since the power rules 
aren't applied to Hankel functions anyway. It's possible first with larger arguments z. In 
general the modified Hankel function isn't used however. Therefore, we use for the base the 
„ordinary“ Hankel function adapting the propagation-function accordingly. To avoid 
contradictions with the classic definit -part equals attenuation 
rate, imaginary-part equals phase- -function should read as follows then 
(analogously for H): 
 

E  =  E H0   
1 2 0 t x

c
   =     E H0

1 2 0t j x      (213) 

 
This is not quite the classic expression for a propagation-function. Attention should be paid 
to the factor 2 which can be assigned both to the frequency, as well as the time-constant. 
With the definition of propagation rate = +j  it obviously belongs to the frequency since 

e j t x
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 depends on phase velocity dx/dt, but not on the half of dx/(2dt). By equating both 
arguments of (213) one gets then: 
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From (210) the reciprocal of c can be determined very easily. Due to (164) we get for : 
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Figure 23 

Phase-rate and attenuation rate 
in dependence on time (linear scale) 

 
With accurate contemplation one recognizes that and , evaluated by its action, are 

exchanged in fact ( = phase-rate, = attenuation rate). This is caused thereby that a 
rotation of about 90° (j) occurs during propagation (figure 26). x turns into y and y into –x. 
The attenuation , starting at the point of time t=0, starting off infinity, is decreasing 
exponentially. To the present point of time, one can say that there is basically no attenuation 
anyway. This doesn't apply however considering cosmologic time periods. 

 
At the point of time 0.897 t1 (Q = 0.947), the function  has a zero-passage. This supplies 

the somewhat particular course in logarithmic presentation (figure 24). It's about a phase-
jump of 180° in this case. Possibly, this is even that point, in which the wave-front, sent at 
the point of time t = 0, is passed by the faster, later transmitted. Furthermore, even the 
formation of the crystalline structure of space takes place approximately to this point of time 
(folding of parable into rotation). Up to this point of time, the space is closed, after it open. 
From the point of time 100 t1 on we are able to declare, referring to figure 24, the following 
approximation: 
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Figure 24 
Phase rate and attenuation rate 
in dependence on time (logarithmic) 
 
 

      (218) 

 
These relationships can be derived as well graphically from figure 24, as explicitly using 
(214) by application of (223). However, it's necessary to multiply (214) with j, in order to 
take account of the 90° turning (figure 26). Then, to the approximation  = 2 0/c is applied. 
The factor 0Z0 is the reciprocal of our r0 with a Q-factor of 1, marked with 1/r1. Phase rate 
and attenuation rate are the same from 100 t1 on approximately. This is the behaviour of an 
ideal conductor. Possibly a lot of known physical effects like e.g. superconductivity and 
electron conductivity of the vacuum are basing hereupon. 

 
Even interesting is the similarity of the course of the absolute propagation-velocity of 

metrics with the group delay specified in section 4.3.2. on transit of an interference through 
the discrete MLE. While the propagation-velocity of metrics is increasing near the 
singularity, the propagation-velocity of an overlaid wave is decreasing simultaneously, with 
the result of total-velocity remaining constant = c. 
 

At the world-radius, the universe expands with the maximum velocity of 0.851661c, in the 
inside with a velocity decreasing more and more. Since the wave count in the interior of a 
sphere with defined radius r(c,t) is decreasing, the deficit is balanced by an increase of 

 
 

Now, some problems appear, at which we want quickly have a look here, as well. Initially, 
the cosmos would not show the same physical qualities anyplace. We would have to do it 
with a weakened cosmologic principle then: 
 
 

 
III.  The cosmos offers the same sight to the same point of time. 
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This statement needs the interpretation: The universe is expanding into an even Euclidean 
space without time-definition. The calendar begins with the transit of the wave-front first. 
Therefore, the universe has a different age at different positions. The local time is always 
meant. To equations, that refer to the expansion-centre, the time is applied at this point, just 
the total-age. There is no universal world-time in this model, what agrees with the 
statements of the SRT very well. With it, the local age is a function of the distance to the 
centre, which can be determined by measurement of the local physical quantities, at least 
theoretically. The HUBBLE-constant turns into a local quantity. With it, we even would have 
solved the time-scale-problem, which would have been appeared here otherwise. There are 
just both areas being younger and such being older than the area, in which we are located 
(every time seen from the observer). If one moves in space, so one moves in time 
simultaneously. Thus the expression »space-time« is uniquely defined. 

 
The space outside would be equipped with the basic physical qualities 0, 0 and 0, 

allowing even a wave-propagation in accordance with the classic MAXWELL theory for the 
vacuum. The metric wave-field is just not required for wave-propagation anyway. In what 
extent matter can exist outside, should not be examined here further. Debatable in any case 
is the question, where this, respectively any other electromagnetic radiation should come 
from. We once assume that there is none. If this should be the case but yet, no possibility 
exists to cross the singularity at the world-radius R/2, neither into the one,  nor into the other 
direction. 

 
We have the real- and imaginary-part of c assigned to propagation in x- and y-direction. 

Let's have a look at the propagation of the wave-front now, transmitted at the point of time  
t = 0. If we figure it two-dimensionally, we will get the following track-curve (figure 25): 

 
 
 

 
 

 Figure 25 
 Track-curve for larger values of t 

 in dependence on time 
 
 
For larger t, the expansion of the wave-front proceeds approximately rectilinear. The 

behaviour 
curve of a discrete section of the wave -
a sort of parable, with larger t a hyperbole. A rotation of an angle of 90° appears in the 
propagation direction. Figure 27 shows the function of the absolute distance to the centre. 
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Figure 26      
Track-curve near the singularity 
in dependence on time 
 

Figure 27         
Radius r as the absolute distance to the centre 
in dependence on time for smaller values of t 

 
The functions have been calculated and figured with the help of »Mathematica« by 
numerical integration in the following way: 
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Cd=Function[-2*I/Sqrt[#]/Sqrt[1-(HankelH1[2,Sqrt[#]]/HankelH1[0,Sqrt[#]])^2]]; 
CdI=Function[NIntegrate[Cd[a],{a,0,#}]]; 
ParametricPlot[{Re[CdI[t]], Im[CdI[t]]},{t,0,1}, AspectRatio->1] 
Plot[Abs[CdI[t]],{t,0,1}, AspectRatio->1]           (219) 

 
The locus curve of the field-wave impedance is declared in figure 28. The value for t»0 is of 
particular interest.  Contrary to overlaid interferences of inferior frequency, to which ZF=Z0 
is applied, this value virtually becomes zero for the metrics on the other hand. Thus  
(virtually) no propagation-losses appear anyway. This „virtually“ could be the reason for the 
cosmologic red-shift. This idea should be examined in the following section. First however, 
we want to deal with the approximative solutions for larger t once again. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28 
Locus curve of the  
field-wave impedance 

 
 
4.3.4.3.2. Approximative solutions 

 
In [23] is an asymptotic formula for the Hankel function declared. It reads: 
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Put into (206), one sees that nearly all expressions can be reduced. The root-expression 
converges to a value of: 
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By expanding with [1 – O0(z-1)] and suppression of the quadratic terms we get: 
 

1/2 1/2 2 1/2 1/21 1 (t ) (t ) 2 (t ) 2 (t )2 0 2 0R = O O O O    (222) 
 
The root-expression just only depends on the remainder terms which is tending to zero as 
well. Therefore, this base is not suitable for our purposes. 

 
For we have already found an approximation, still remain c and ZF. In figure 22 we 

have already figured the course of c. To the graphic determination of an approximation, we 



 
 

60 

 
 

 
Figure 29 
Propagation-velocity 
in dependence on time (logarithmic) 
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4.3.4.3.3. Propagation-function 
 
Now we want to set up a propagation function. The normal form is E=Ê ejωt−γx with 

γ = α+jβ. But with the exact solution (218) there is a case on hand, at which  and  contain 
both damping- and phase-information and the wave function isn’t harmonic either. That way 
we aren’t able to form a reasonable propagation function.  

 
In the case t » t1 phase- and attenuation rate are of the same size. Thus, the model behaves 

similar to a metal.There α does not stand for a damping, but for a rotation, namely as long 
as, with vertical incidence, a value of π is reached so that the wave exits the metal in the 
opposite direction after a minimal intrusion. The depth of penetration depends on  
the material properties, the wave length and the angle of incidence. In case of this model the 
material properties aren‘t constant either, γ decreases with t and x. Hence it suffices to a 
rotation of  90° only and the wave remains in the medium (vacuum). In any case, there is  
a rotation too.  
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To cope with it, we do a rotation of the coordinate system about π/4. That corresponds to a 
Multiplikation with  and we get a purely imaginary solution. So becomes α=0 and γ=jβ 
and the exponentially related attenuation vanishes. Indeed, we still have to multiply the 
result with  and to replace x by r. Despite α=0 the amplitudes of E and H are decreasing 
continuously. That’s caused by the Hankel function alone, resp. by the radical expression in 
(226). With it amplitude and phase are firmly interlinked (minimum phase system). Now the 
rotation angle in space is equal to θ+π/4. But a separation of phase- and damping-
information isn‘t possible yet. But we can work with very high precision using the 
approximation equations in this case. To the general Hankel function H 0

(1)(ωt−βx) the 
following approximation applies (analogously for H): 

 
 

(1) j ( t x)
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Instead of γx only the product βx with the phase rate appears in the exponent, since the 
amplitude rate is already emulated by the radical expression. With t»0 the angle π/4 can be 
omitted. After rotation and transition x r and ω ω0 turns out: 
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E1 is the peak value of E with Q0=1. Indeed are both ω = 2ω0 and β = 2 β0 (with double 
frequency even the phase rate must be doubled) no constants at all. That means, they depend 
on t and r at the same time, limiting the manageability of the approximation very much. You 
can see that also with the phase velocity vph. It is defined in the following manner: 
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Thus, the phase velocity is equal to the double absolute value of propagation velocity. That’s 
caused by the factor 2, since phasing with double frequency propagates with double velocity 
too. For interest, also the group velocity should be stated here: 

 

      c2
ωdβd

1v
0
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Except for the algebraic sign both results are equal. That means, the propagation takes place 
free from any bias. Further to the approximation. With (128) in section 4.2.4. we had already 
found a very good approximation, almost exact, for the same temporal function.s 
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 (230)  an equivalent- α = α0 an equivalent-

 γ0 = α0 + j2β0 , in order to get it up to the normal form  for  propagation functions.  
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      (231)
  

That’s already a big step forward. Unfortunately, both 0 and  depend on time. It’s not 
critical for 2 0t, because it’s multiplied by t anyway. Else with , it should depend on r 
only. To the substitution of we firstly put (224) left-hand into t = r/|c|. The real 
propagation velocity becomes effective here and not vph or vgr. Then we rearrange after t. 
Putting into (230) right-hand we get: 
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With it,we obtain for  and the product r the following expressions: 
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Last but not least the time t can be completely eleminated. The value γ  is proportional to 

r –1/3 and, even more important, the product γ r is proportional to r2/3. Unfortunately, as 
already said, we can explicitely state γ (r) by approximation only. With the exact function 
(217) a separation, especially from t is impossible. But generally speaking, an exact solution 
is not required at all, since the approximation yields very good results until a striking 
distance to the particle horizon at Q0=1, see figure 14. Therefore, we won’t follow up that 
matter at this point. 

 
All hitherto stated approximations are based on the 4D-expansion-centre {r1, r1 1}. But 

it‘s more practicable to find a function, related to another centre. Most suitable seems to  
be the  point, where we are, the „point being“. At first we substitute the time according to 
t T~+t. The swung dash stands for the initial value at the point t=0 (nowadays) describing an 
inertial system. Hence it’s about a constant. Because of T~ = t1Q~0

2 we are able to factor out Q~0. 
The direction of time doesn’t change. To the temporal part applies: 
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For the spatial part β0 we build up the inertial system once again using the substitution 

r1 R~ . Because of R~= r1Q~0
2, as well as r̃  Q~0 = −r, now we are measuring from the other end, we 

can write for 2β0:  
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Actually I should have to write r̃  instead of r. But because it’s the argument of the function 
the tilde has been omitted. The right-hand expression considers the fact, that r0 as smallest 
increment never can be underrun. The value α0 is definitely determined by the envelope 
curve of the Hankel function, else it would be equal to zero. With it, we obtain for  and the 
product r: 
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With r0 we have already found one elementary length. But LANCZOS speaks about another 

one [1]. That’s the wave length of the metric wave field λ0=2 / . The approximation of λ0 
must be divided by 2 once again, due to the double phase velocity. Hence λ0=2 /  applies. 
To the comparison the expression for r0 once again: 

1,
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Though λ0 is smaller than r0 and not identical to HEISENBERG‘s elementary length with it. 

λ0 now is in the range of 10–68m. Thus, LANCZOS was wrong in that point. But it only has 
been a guess on his part. In fact, it’s about the wave length of the wave function forming the 
metric lattice itself. Expression (240) until (242) only represent the temporal functions. 
Then, the  functions of time and space read as follows. 
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The temporal course of λ0 (r=0), and of r0 (r=0) is shown in figure 30 and 31. Figure 31 is a 
little bit deceptive. It looks like r0 is smaller than λ0. In fact, the curve of r0 cuts the one of λ0 
with an argument of 450.592 at 15.0098 r1. The phase jump, barely visible in figure 31, 
occurs with an argument of 0.8968 
. 

 
 
Figure 30 
Exact course of λ0 logarithmic scale 
 
We only know the local age T, which results from the local HUBBLE-parameter (246). It 
quasi represents the temporal distance to the expansion centre. But we are able to determine 
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the spatial distance to the world radius R. This forms a spatial singularity (event horizon) 
with it. The value arises from the ansatz (247): 
 

 
 
Figure 31 
Course of λ0 exact and approximated 
as well as the one of r0 linear scale 
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Hence, the value of β0=1/r0 even can be obtained from (218), in that we replace the time 

with the HUBBLE-parameter. To R applies:  
 
R   

c
H

  =   –1.2188·1026m   =   –1.2918·1010ly   =   –3.950 Gpc         (250) 
 

That‘s about 12 billion light years (according to table 2). The local age amounts only to the 
half, namely 6,5 billion years, the local world radius is equal to cT. Longer time-like vectors 
up to 2cT are possible because of expansion and wave propagation of the metric wave field. 
Full particulars in section 4.5. 
 
 

The wave field examined here, forms the metrics of the universe (empty space), the real 
(nearly) MINKOWSKIan line element. We can already declare it here. Further contemplations 
are done in section 7.2.1. We act on (0.23) in it‘s differential form in that we replace the 
otherwise usual lightspeed c with the propagation velocity c of the metric wave field: 
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ds2 = dx2+ dy2+ dz2 – c2dt2        (251) 
 
ds2 = dr2+ r2(d 2+ sin2   d 2) – c2dt2       (252) 

 
Here immediately becomes clear, which physical meaning is assigned to the MLE. For the 
exact formula, we usefully apply polar-coordinates.. We now substitute the exact expression 
for c (r=0) obtaining: 
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with  = 2 0t – r. Interesting is the algebraic sign-reversal. The cone turns into a ball. The 
previous light cone however continues to be applied to overlaid signals always propagating 
with c. It adds up the local propagation-velocity (not expansion-velocity!). A( ) and B( ) 
determine the rotation near the singularity. The reciprocal of the expression in the 
denominator shows a behaviour like t1/2. Now still the approximation: 
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Hereafter, I’ll nominate the double-bracketed expression (260) as navigational gradient. 

Moving only in time and not in space, there is no spatial curvature at all. This type of motion 
is called time-like world-line (e.g. photons). With it, a curvature is synonymous with the 
motion of a mass. First this must be accelerated for this purpose. That type of motion is 
called space-like world-line then.  

 
Using the expansion-centre as origin of your coordinate-system, only a temporal 

dependence exists. Directly at the point r = 0 space-like world-lines aren’t possible, but in a 
striking distance of course. They are directed outside the singularity, the time-like ones 
inwards. A body would be repelled by the singularity. Thus, it's about a particle-horizon 
then. Another example for this type of singularity are white holes (if existing) and the local 
world-radius R/2. Letzterer kann daher z .B. von Photonen durchdrungen werden. 
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The non-existence of space-like world-lines at this point as well is a reason for the fact 
that there is no universal spatial coordinate-system defined. Such one, if existing, needs to be 
valid at each point anyplace. If there is only one single point, at which it doesn't apply, no 
universal spatial coordinate-system exists anyway. In contrast there are only space-like 
world-lines at the total-world-radius R. It's about a temporal singularity then (event-horizon) 
that cannot be passed through by photons. With it, there is even no universal time defined, 
exactly as the SRTpredicates. The time-like world-lines in the vicinity are defined outwards, 
the space-like ones inwards the singularity. A body would be attracted by the singularity and 
could even pass through. Examples here are e.g. black holes. 
 

Thinkable would be an universe, with the observer always located in the centre, both 
singularities equally far away, being quasi „connected“ outside space. This is strengthened 
by the fact that the product HR exactly fits the speed of light, that there is just an infinite 
curvature at both ends and even by the symmetry of the time-function of propagation-
velocity (figure 22). Crossing the point, the phase-jump appears, you will come out at the 
„other end of the world“. Such a model would expand, speaking in behalf of a big bang. 
 

Looking at the second expression of (236) we realize that it describes exactly the just 
proposed model. For an observer, there is only his local frame of reference. We just found 
out, that a motion in space also means a motion in time. But expression (237) shows clearly, 
that it doesn’t matter, into which direction we move. The temporal direction is always the 
same, opposite to the natural time-direction (because of r2).  

 
But it still means something else: Each observer has the impression to be in the centre of 

the universe at all times. Since the natural time-vector is always larger than that caused by 
motion, the observer is always moving in the natural time-direction, but even slowed down 
and (then) delayed. There ist just a temporal elongation t′/t = ( 1− ( ∫a∙dt+γ0v0)2⁄c2)1⁄2 during 
acceleration ( r const), but only throughout the actual acceleration phase. Once switched-
off the engine ( r const), time passes normally again.  

 
Because of the relative velocity to the original inertial system, induced by acceleration, 

only altered scales, like length and velocity, are observed from there — and vice versa. The 
observation however plays a greater role, than generally assumed. It is identical to the 
physical reality on the place of the observer, because impacts are observed too.   

 
The behaviour during the acceleration phase is equivalent to the behaviour during the stay 

close to greater masses, only that we cannot just turn off the gravitational field. Hence time 
dilation is a pure GR-phenomenon, with constant relative velocity only the SRT applies. 

 
With it, a lot of questions relating to the twin-paradox can be answered. The one twin 

accelerates, and time passes more slowly for him during the acceleration phase. The 
direction of the acceleration does not carry weight. After switching-off the engine he quasi 
„hangs behind“ the normal time vector, the EINSTEIN-train is behind schedule. After the 
homeward journey, returned to the starting point, he is really younger than his brother. The 
cause are the at least four acceleration phases during the voyage. 
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4.3.4.4. Solution for a loss-affected medium with expansion and overlaid wave 
 
 
4.3.4.4.1. Model 

 
We assumed, that the vacuum is not loss-free by introduction of a specific conductance 0. 

With it, we could find a maximally rational solution of the MAXWELL equations, which fills 
the requests to a metrics, being not in contradiction to Special Relativity. According to [1], 
the propagation of photons happens as an interference of this wave-field. Furthermore we 
had determined, that this takes place exactly with the speed of light. That agrees with the 
observations and experiments very well. Solution 4.3.4.1. (Classic solution for a loss-less 
medium) very well describes the propagation-behaviour of photons without metrics, but the 
cosmologic red-shift cannot be explained however. To do so, we are forced to favour 
another solution. For this, solution 4.3.4.2. (Classic solution for a loss-affected medium) at 
first comes into question. 

 
If we simply equate = 0, we will obtain a solution  with a wave-propagation-velocity 

close to zero, which doesn't agree with reality quite obviously. Solution 4.3.4.2. even only 
describes wave-propagation in absence of a metrics. In section 4.6.5.4.1. will be analyzed , 
how such a wave would behave. The wave persists in the aperiodic borderline case state, it 
does not really propagates. There is only an expansion, and it survives even only the first 
periods.  

 
However other circumstances are on hand with a propagation as an interference of a 

metric wave-field according to 4.3.4.3. Solution 4.3.4.2. as you know, can be obtained even 
as solution of equation (72) without expansion, which bases on the equivalent circuit figure 
11, when R0 ∞. With solution 4.3.4.3. R0 depends on place and time  and is also close to 
infinite. Doing a reverse-calculation with the base = 0 we get a value, which is close to 
zero. In order to come again in correspondence with reality, we are just forced to use another 
model. 

 
In section 4.3.2. we had determined that the MLE as per figure 11 behaves like a low pass 

of 2nd order for overlaid signals. Therefore, we want to transform the equivalent circuit of 
the MLE into a low pass. The exact procedure is presented in figure 32. First we disconnect 
the circuit at the marked position elevating the coil L0. Thus, the proper low pass (centre 
right) is ready. Although, the therein contained loss-resistor R0 characterizes only the losses 
within the MLE. If we now want to model wave-propagation, we must daisy-chain a lot of 
these elements (figure 33).    

 
We consider the coupling of two line-elements in the interval r0, at which point the 

coupling-factor should be equal to 1. The coupling itself takes place via the magnetic field 
(figure 4).  And exactly with that coupling there's going to be more losses, which are not 
characterized by the impedance R0. It's possible to interpret it as exclusive losses of the 
capacity C0,  

 
For the coupling-losses, we now introduce another impedance R0R, which we already 

know from figure 10, assigning it to the inductivity L0. It are about losses with the inductive 
transfer indeed. The value of R0R calculates generally by analogy with (48). The interesting 
is now, that all these values R0, R0R, L0, C0 and G0 change over time, but only very slowly, 
so that we speak of a quasistatic process. But quasistatic changes can be neglected with the 
solution of differential equations, describing the real wave propagation (E(t,r)). Nevertheless 
they have an effect all in all, as we will see later. 
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Figure 32 
Conversion of the equivalent-circuit of the MLE into a low-pass 
under consideration of the additional coupling losses 

 

 
 

 Figure 33 
 Line-equivalent-circuit with shunt-resistor 

 
Thus we use the model of a conduction to the description of wave propagation in the 
vacuum. As a result, we hope to find a propagation function similar to that, we found by 
application of the classic solution for a loss-free medium (□=0), which is not in contra-
diction to the observations.  
 
At least, we already transform the impedance R0R into an a second parallel loss-resistor R0, 
with the help of (47), bunching both together to the total-loss-conductance G0 with which 
G0 = 2/R0 applies. Figure 32 centre and right are equivalent. 

 
 

4.3.4.4.2. Approximative solution 
 
First we want to check, whether we cannot use solution 4.3.4.2., if we apply a substitution 

to 0. This is the case indeed. But we don't get a constant in this case, since R0 is not static. 
We introduce a substitutive value 0R to it. With the help of (53), (59), (218) and (247) we 
obtain: 
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R is the world-radius 2ct. Then, inserting (263) into (176) we obtain for the complex 
propagation-velocity c and the field-wave-impedance ZF: 

 

c =        ZF =     (264) 

 
Now light speed is achieved in infinite time only. Nevertheless, the propagation-velocity is 
close to c.  The remainder is filled up by the propagation-velocity cM of the metrics so that 
the total-velocity is equal to c in turn, which was a basic assumption of this work. The same  
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result we get by solving the telegraph equation [5] (265) for the transient state (c1 = 0) using 
the values for C0, L0, G0 as well as R0 = 0. Figure 33 shows the associated equivalent circuit. 
In addition we still derive with respect to ∂r, i.e. each low pass-gate now represents the 
properties of a conducting-section of the length ∂r. The discrete components turn into the 
capacity, inductivity and conductance covering C0, L0 and G0. Since the vacuum in this 
model has a finite structure with the smallest increment r0, applies ∂r  r0. Fortunately r0 is 
sufficiently small, so that we can work with the difference-quotient. Then, we get C0 = 
C0/r0 = 0, L0 = L0/r0 = 0 and G0 = 0/t = 0R for the coverings. With it, the fundamental 
physical constants 0, 0 and the substitutive value 0R are identical to the capacity, 
inductivity and conductance covering of our „conduction“, i.e. the vacuum. 
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This corresponds to a loss-affected line in general. Because of E=–u/r0 as well as H=–i/r0 we 
obtain after division by r0: 
 

E
r

 0
H
t

  ˆ E   H
r

 0R 0 t
 E     ˆ H      (269) 

 
In this way the MAXWELL equations can be derived directly. Unlike 4.3.4.2. the parameter 

0R however decreases steadily in this case. The solution itself is not loss-free. An 
attenuation-factor, different from zero, which can be attributed to the variable parameter 0R 
Therefore, it is also named parametric attenuation. Starting with (266), we get for the line-
/field-wave-impedance (ZL = ZF): 
 

ZL =  

R 0 j L 0
G 0 j C 0
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0 t j 0
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j t
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    (270) 

 
That's the same solution as (264). Because of Z0= 0c, even the expression for c applies. 

Altogether it's about an autonomous solution with different properties as the hitherto 
introduced ones. Since no discrete components are involved, the attenuation takes place 
completely free of noise. The solution is distortion-free. Even no scatter occurs with it. 
Because of the currently low value of 0R (2.1779·10–29 Sm–1), the attenuation is not 
detectable nowadays. Thus, it seems, that wave-propagation would proceed according to the 
classic loss-less solution. But strictly speaking, it applies only in a universe without 
expansion ( 0 = 0R = 0) and figures a special-case of the solution introduced here. Now, let's 
have a look at the propagation-velocity c in detail. 

 
 
IV. The metric wave-field behaves for overlaid electromagnetic radiation-fields 
 like a conduction with variable coefficients. This conduction behaves in the 
 first approximation like the classic loss-less vacuum solution of MAXWELL’s 
 equations.  
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c  cM c         c  =          (271) 

 
Now let's have a look at the value-function: 

c2 cM
2 c2      c2 = c2
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This expression is even achieved from the MLE (259) after division by dt2 with c2 = ds2/dt2. 
cM is the propagation-velocity of the metrics. With it, the overlaid wave is moving always 
rectangular to the metrics with exact c (figure 34). After rearrangement of (271) we get: 
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Since with expression (273) it's about an approximative solution, we want to try, whether  it 
already can be simplified. With y = 1/(2 0t) we get for 2 0t » 1: 

 

   (274) 

 
We finally receive after substitution: 
 

      (275) 
 
Because of H = 1/2t the frequency is decreasing according to  ~ t–3/4. We are particularly 
interested in the wavelength  = π/  = πc/ . The sign of (250) has been neglected. The factor 

 stands here instead of 2, as even already with 0, to cancel rotation around π/4 of the 
coordinate-system up taken with the definition of the approximative formula of (r). Then we get 
the following result: 
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To this we must remark that we have assumed, for the previous contemplation, the 
expansion-centre as basis of the coordinate-system, at which no length is actually defined. 
More essential qualities result from it for the two singular points. 
 
 

 
For the spatial singularity (expansion-centre) applies: Each length, measured 
from this point, always has the quantity r1/2. Each period, measured at this point, 
always has the amount T, each frequency 2H. It's about an event-horizon. It's a drain 
of the electromagnetic field. To the approximation applies r=∞, t=0. 
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For the temporal singularity (wave-front) applies: Each length, measured 
from this point, always has the quantity R/2. Each period, measured at this point, 
always has the amount t1, each frequency 2 1. It's about a particle-horizon. 
It's a source of the electromagnetic field. To the approximation applies r=0, t=∞. 
 

 
The spatial singularity only is suitable as basis of a space-independent temporal, the 

temporal singularity as basis of a time-independent spatial coordinate-system. As basis of a 
four-dimensional space-temporal coordinate-system, both singularities are equally 
inappropriate. Seen from the spatial singularity, all time-like vectors have an equal 
frequency and wavelength. We must pay attention to this on a coordinate-transformation to 
our local coordinates. It applies for t=T+t´ and for the wavelength λ: 
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C is an arbitrary constant, it disappears on a retransformation. Expression (278) represents 
the temporal dependence. To the determination of spatial dependence, we must visualize that 
this case differs from the preceding λ0 and r0.  

 
Having to do until now with a wave-field which shows different conditions at different 

places (quantity of r0, propagation-velocity etc.—therefore different dependences of space 
and time), the circumstances are deviating in this case. It is about a purely time-like vector, 
which propagates everywhere with the same velocity, namely c. The dependence on space 
and time is identical to it, following the same function. Even R/2 expands time-like with a 
constant velocity of c. Just only, we have to replace t by r. Therefore we expand the fraction 
in (278) with 2c obtaining: 
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With it, the overlaid wave doesn't behave like the metrics r0 as well as λ0 concerning 

wavelength and frequency. But differences exist also between r0 and λ0. There are even more 
differences then again. So, the distance, the light covers from the source to the observer, is 
different from the distance, a material body must cover. Latter one amounts to R/2 
maximally, while theoretically whatever large distances are possible in the first case. This is 
clearly the behaviour of a particle-horizon. We call the first one time-like, that second one as 
space-like distance (see also section 7.5.2.). The conversion takes place in the following 
manner: 
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We got both expressions, in that we have taken up a bond at the SRT with c=R/(2t) and 
v=r/t. With help from (279) we can also find a substitution for the expression , that is 
applied to signals, which are overlaid the metrics. In contrast to (236) that applies to the 
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 metrics itself, we get for the phase rate  of the overlaid wave (not equal to the phase rate of 
the metrics 0) because of  = 2 c/  = 2 / : 
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We introduce the two right functions to the better presentation. With the propagation of 

overlaid waves,  is not identical to  obviously. We obtain  and  from (180, 181) by 
replacement of 0 with 0R  

 

 =       =        (282) 

 

 =       =       (283) 

 
For t »1 outside the near field of a beaming dipole (inside other relationships apply 

anyway), with help of the approximations arsinh  ≈ , sinh  ≈ , cosh  ≈ /2 follows: 
 

 =                   =           (284) 

 
Here, we get for the phase rate  a deviant result, namely the same, as with the classic 

solution for a loss-free medium. The cosmologic red-shift is not just caused by the electric 
qualities of the line as well as the space but by the line itself. Just once imagine the 
following: A line is flowed through by an alternating current. A certain wavelength appears. 
If this line is manufactured from an ideally elastic material now and one pulls at an end, so 
the line is stretched. Simultaneously, also an enlargement of the wavelength occurs with 
simultaneous diminution of the conducting-velocity (c in sum). 

 
Since ≠0, even an attenuation of the amplitude appears. It is however so small, that it 

becomes effective only in cosmologic time periods. For the electric and magnetic field-
strength applies (amplitude response): 
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 dB    (286) Figure 34 
Propagation velocity of the metrics and 

of an overlaid electromagnetic wave 
 

 
or A´= –1Np/R. Because of c = const, both expressions are equivalent. With it, the half-life 

period (–6dB) is about 1.382T, the half-life width about 0.691R. The attenuation is just so 
small, that it can be neglected mainly, it is far below the geometrical attenuation however. It 
obviously also appears with the metrics included. With it, it is unattached from the metrics 
indeed, as one easily can realize in (270). The influence of the metrics is given by r0 and, as 
one sees, all r0 cancel each other. With it, our solution completely emulates wave-
propagation and -attenuation admittedly, but not the cosmologic red-shift. Therefore, we 
divide the portion  (the attenuation rate  is not affected) by the bracketed expression of 
(279) obtaining our substitute- , c and ZL, it applies R = r0Q0: 
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˜ H 
c

j
˜ 
c

(r)       c = c   ZL = Z0      (287) 

 
Expression (287) is the propagation rate for signals, that are overlaid the metrics, (  = +j ). 
The geometrical attenuation of course still appears. It cannot be neglected, but it's not 
figured here. The solution is applied to the entire domain r»r0, however not in the proximity 
of the (of a) temporal singularity and with very strong gravitational-fields (black holes). We 
require the complete solution 4.3.4.4.4 to it. 

 
 
 

4.3.4.4.3. Propagation-function 
 

We assume the solution of the telegraph equation for the transient state [5]. The equation-
system is also known as conducting-equations. 
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In this connection, the index means the input-signal 1, the index 2 the output-signal. We now 
replace in the following manner: 
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er is the unit-vector. Furthermore, ZL ≈ Z0 applies (transient state) and u = iZ0. Then we get as 
solution of (288): 

 
                         ˜  (t)   (290) 

 
This solution is identical to (165) but it considers the cosmologic red-shift only for  (287). 
We also must notice the temporal dependence of the expression j t, i.e. at the source of the 
signal. The right expression of (290) is used for it. With it, we have found a solution 
explaining as well the propagation as the cosmologic red-shift of electromagnetic waves. 
 
 

 
4.3.4.4.4. Complete solution 

 
If we want to find a solution, being valid even in the proximity of very strong gravitational 

fields  and/or of the temporal singularity, we are forced to calculate with the complete 
formula. In section 4.3.2. we had noticed that the space owns also an upper cut-off 
frequency. Solution (290) shows all-pass behaviour and doesn't reflect the real 
circumstances anyway, but it's adequate for more than 99% of all cases. A solution with 
consideration of the cut-off frequency (downward the frequency is really restricted by the 
age only) must be a complete solution. Therefore, let's try to find first an approach for a 
complete solution with and without consideration of the cut-off frequency. We go out from 
(271), however using the correct expression for the propagation-velocity cM of the metrics 
(210): 
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We look at the value-function again, at which point it's however necessary to pay attention 
to the fact, that the angle , depending also on , may be unequal to /2 (figure 96). 
Therefore, the cosine-rule applies:  
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analogously for Z0= 0c. After reiterated substitution, we get the following solutions: 
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The second solution is applied to space-like photons. Similarities exist obviously with the 
reciprocal of (274). The value of y tends to 1 for Q0 »1. Since the real transfer-function is 
independent from the metrics, (284) is also applied to the complete solution in the far field 

t »1. We continue as in 4.3.5.4.2. To that purpose we first transform: 
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The transition from the exact solution to the approximation will be descripted more exactly 
in section 5.3.1. The factor 2 turns out by itself with it, that means, with the exact solution 
the rotation of the coordinate-system is automatically done by the function. We are 
interested in the wavelength =2π/ =2πc/  once again: 
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C is that arbitrary constant to the conversion upon the R4-coordinate system once more. The 
function R(r) describes the exact dependence of R concerning the phase-angle/Q-factor Q.  
The definition of A and B can be taken from (209). We were already able to set R(t) 1 t ˜ T  
in the approximation. With the complete solution it is unfortunately impossible, because R is 
propagating and expanding at the same time (see section 6.2.2.1). The relation R = r1Q02 
exactly applies only for Q0 »1. The spatial and temporary dependence of R for zero-vectors 
is given by the right expression of (297). Furthermore ˜ Q ˜ Q 0 and R( ˜ Q ) = ˜ R  applies. Finally, 
we get for the wavelength and frequency: 
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All values except c and are a function of the phase-angle/Q-factor Q0 = 2 0t. For just two 
kinds of photons and neutrinos we define the eight functions2 x(r) and  x(t): 
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1 See (621) relativistic dilatation factor  with v=cM, see also section 5.3. 
2 Siehe Abschnitt 5.3.1. 
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Responsible for the insertion of the right relationships (substitution r = ct) is the reader 
himself. But the function is explicitly calculable yet. (287) and (290) are applied. This is the 
complete transfer-function without consideration of the cut-off frequency. It is valid even in 
strong gravitational fields and at the „edge“ of the universe. 
 
 
 
4.3.4.4.5. The cut-off frequency 

 
In section 4.3.2. we have worked out the transfer-function of a discrete MLE of the size r0 

The solution has been applied to the metric wave-field itself. But it's valid even for overlaid 
waves however, if we understand the overlaid wave as an interference of the differential 
equation (76). In this case, we have to use 2 0 for  in (144) instead of 2 1, it applies 

  0.5 / 0. First, let's have a look at the part of the total attenuation factor , caused by g, 
which can be calculated from the amplitude response A( ). Only the real part is being 
transferred. In connection with the phase-angle  in reference to the length r0 = c/ 0 applies:   
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By the way, the part ( ) here depends on space and time, since it depends on , the ratio 
of two frequencies, changing both according to different functions ( ~ t–3/4, 0~ t–1/2). So the 
change don't cancels out. ~ t–1/4 applies in the approximation. 
 

But the cut-off frequency has even effects on the phase rate  The more approaching the 
cut-off frequency, all the more the phase-shift  (149) is making noticeable, caused by the  
ascending phase delay TPh (151) during transfer of one MLE to the other (t1 t0). Since the 
phase-defects add up, there's going to be a retardation of the overall phase-shift ).  This 
causes a ramp down of the propagation-velocity onto values smaller than c (permitted), 
remaining  unchanged, declining on the other hand. The smaller value of |c| is affecting 

 and in the same manner. With the now manageable frequencies, the phase-defect is 
practically equal to zero however.  Before calculating on, we must already convert the 
phase-shift ) into units of wavelength however. It applies ( ) = 1+TPh/T , where T  is 
the period of : 

 

( )  1 1
2 1 2   ( ) 1   for « 0   (304) 

 
With it, we can declare the following universal propagation-function for the vacuum: 

 
             ˜  (t)    (305) 
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(r)  ( )        |c|  ≤  c  |ZL| ≤  Z0  (306) 

 
The complete solution with frequency response is not required in most cases. With later 
contemplations we will work further with (306) however. In that cases, in which the cut-off 
frequency plays no role, applies ( ) = 1.  

E2 E1  e j t r H2 H1  ej t r
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One quality of the universal propagation-function is that electromagnetic waves with 
critical frequency, i.e. with a frequency near 0, have only a small-scale reach, since with 
approach to 0 both, the phase- and group velocity are degrading with different value. This 
is however synonymous with the appearance of non-linear distortions, finally causing a total 
destructive interference to the wave. The behaviour resembles the one of the wave-
propagation in an ionized plasma. The signal factually dissolves in noise, an effect, as it 
everyone knows, who has been observed or executed radio-traffic on shortwave before now. 

 
Theoretically, waves would be possible with hypercritical frequency as well. For these 

applies the same, said in the preceding paragraph. Even a propagation without aid of the 
metrics doesn't work across longer distances because of the giant conductivity 0. If you 
should be interested, please look up in section 4.6.5. 

 
 
 

4.3.4.4.6. The cosmologic red-shift 
 
From (279) an expression for the cosmologic red-shift can be derived directly: 
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v is the escape velocity. Now one often claims in the literature that this could be also larger 
than c. But this is not the case. Reason for the wrong claim is a cardinal-mistake that is liked 
to do even by experts again and again and, I don't want to exclude myself here, in the first 
edition also by myself. One simply substitutes ˜ R  with the current value at the observer, 
obtaining escape-velocities larger c then.  

 
As further wrong conclusion arises that signals with z > 1.28 should have come from areas 

behind the event-horizon ˜ R 2c˜ T  or better, they should have covered a distance longer than 
˜ R . This stands in contradiction to the observations indeed. 

 
While the options of observation were restricted to smaller z-values, it has not been 

attracted attention to. Meanwhile, already objects with a red-shift of z =  6 have been found 
and the red-shift of the cosmologic background-radiation has even a value of 
z = (2Q0)3/2

  ≈ 1090, as described in section 4.6.4.2.3. Now, the reason for such giant values of 
z is not an universe which is, in reality, much larger than assumed — even if it would be so, 
there could not exist zero-vectors with a length larger than ˜ R 2c˜ T , because they would 
return to their starting point after this distance, i.e. they are closed in itself. 

 
The real mistake is the misinterpretation of (309a). The expressions are namely based on 

the propagation-function (290) and this is always being related to the starting point of the 
wave, the signal-source. So it applies to outgoing vectors only. Therefore, we must always 
substitute ˜ R  with the value at the source to the point of time of radiation, and all distances 
and the velocity v  are always been referred to the source then. The expansion of the 
universe since the point of time of radiation is namely already included in the exponent 4/3, 
as one easily can recognize with the help from (277) . By the way, this is applied also to 
calculations according to the classic model of cosmology, even if the exponent can differ 
from 4/3 there. For this reason, I have marked both values with the upward-arrow  for 
outgoing vectors. It reminds something to the wiring sign of a transmitting aerial, which may 
serve as mnemonic device. 
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Now we don't know the exact value of ˜ R  indeed, which is associated with the distance 
between the source and the observer, the value we want to determine originally. What we 
however know, is the value ˜ R . Since the distances r  and r  as well as the velocities c  and 
c  are equal, a simple relationship, that works with the value ˜ R  at the observer, can be 
found. We do the following approach: 
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After reducing to r, we get the following expressions for r and v: 
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The expressions (309a) and (309d) yield the same result when substituting the right values. 
The contradiction has been solved with it. But it is not yet the whole thing. What applies to 
the value r, applies also to ˜ R , ˜ r 0, ˜ H , ˜ 0  and  ˜  in the propagation-function, i.e. if we are 
working with ˜ R , also these values must be corrected. One always only reckons either with 
the values at the source or with those at the observer. In more final case, the expressions  
and  must be multiplied with a correction-factor. For the world-radius R applies: 
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By using of (308) can be shown that the expression (z+1) is corresponding to the relativistic 
dilatation factor . Then further (z+1)2/3

 ~ 
2/3

 ~ Q0–1 applies and on the basis of table 5: 
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An exception forms the frequency . In contrast to H~Q0–2 resp. 0~Q0–1 applies ~Q0–3/2:  
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To the correction of  and , we next consider the product r: 
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With it, the parametric attenuation is really unattached from the frame of reference, exactly, 
as determined by the solution of the telegraph equation. The remaining quantities depend on 
the respective frame of reference however. With it, we can define the universal propagation-
function using the values at the observer. At first however once again correctly with arrows 
for the values at the source: 
 

E2 E1  e j t r           H2 H1  e j t r   ˜  (t)    (309l) 
 

 

˜ H 
c

˜ 0
c

( ) j
˜ 
c

(r)  ( ) |c|  ≤  c  |ZL| ≤  Z0  (309m) 

 
These expressions are even applied to passing through signals, that are followed up into 
future. In this case, one inserts the values of the observer instead those of the source, doing 
just so, as if the observer would be the source. The distance r indeed is defined in reference 
to the observer then. The same applies even to z. At the place of the observer applies z = 0, 
which is not favourable straightaway, since z is defined absolutely in general, namely on the 
basis of the red-shift of the absorption-lines of stars. Therefore, a propagation-function, 
using the values of the observer, with which r and z are however defined in reference to the 
source, would be suitable better. This arises to: 
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After having figured the real relations extensively once again, it was simply necessary, we 

now come to the real topic. In table 1, which has been gathered from [27] in excerpts, some 
quasi-stellar radio-sources are figured with distance-information. The values marked with an 
* have been taken from the original, the rest has been calculated. 
 

*              
         
Source 

*         
          

z 

 
Escape 
velocity 

[v/c]  

 
Escape 
velocity 
[v/c]  

* Distance
photo-
metric  
[Gpc]  

Distance  
[Gpc]  

Eq.(309a)  

[H=76]  

Distance  
[Gpc] 

Eq.(309a)  

[H=55]  

*            
Distance  
geometric 

[Gpc]  

Distance  
[Gpc] 

Eq. (309d)  

[H=76]  
3C  273B 0.158 0.108 0.089 0.470 0.427 0.588 0.420 0.484 
3C   48 0.367 0.259 0.170 1.100 1.023 1.408 0.800 0.928 
3C   47 0.425 0.302 0.188 1.270 1.194 1.644 0.900 1.025 
3C  279 0.536 0.386 0.218 1.610 1.528 2.103 1.070 1.187 
3C  147 0.545 0.393 0.220 1.630 1.555 2.141 1.090 1.198 
3C  254 0.734 0.542 0.260 2.200 2.143 2.950 1.310 1.416 
3C  138 0.759 0.562 0.265 2.280 2.222 3.059 1.340 1.441 
3C  196 0.871 0.653 0.283 2.610 2.583 3.555 1.450 1.542 
3C  245 1.028 0.783 0.305 3.080 3.100 4.267 1.590 1.662 
CTA 102 1.037 0.791 0.306 3.110 3.130 4.308 1.600 1.668 
3C  287 1.055 0.806 0.309 3.160 3.190 4.391 1.620 1.681 
3C  208 1.109 0.852 0.315 3.320 3.372 4.642 1.660 1.716 
3C  446 1.404 1.110 0.345 4.200 4.392 6.046 1.870 1.877 
3C  298 1.436 1.139 0.347 4.300 4.506 6.202 1.890 1.892 
3C 270,1 1.519 1.214 0.354 4.550 4.802 6.610 1.940 1.929 
3C  191 1.946 1.612 0.382 5.830 6.376 8.777 2.160 2.078 
3C    9 2.012 1.675 0.385 6.030 6.627 9.122 2.190 2.097 

 
Table 1: Some quasi-stellar radio sources 

 
For the interpretation of the measuring results, the author used, willy-nilly, the classic 

model of cosmology with several parameters (parabolic and elliptical). Since the elliptical 
model with q=1 has the best fit with my model, the elliptical values have been taken over. 
Therefore, one must not expect an exact agreement with the values calculated by me. In 

4.3
4.39

4.
4.308
4
3.
4.267.26
.555

67

059
55

0.7
0.80

0.7
.791

0.
0.6
.783783

5
.653

3

562
3



 
 

79 

order to document the mistake in the first edition more exactly, in column 3 have been 
figured the escape-velocities >c calculated with the wrong value of ˜ R . Column 4 is 
containing the right values. 

 
Column 7 shows the incorrectly calculated distances according to (309a) for a value of 

H = 55 kms–1Mpc–1. One can see, that the values are too high, H has been estimated too low. 
One furthermore sees, that the author of [27] has committed the same cardinal-mistake obvi-
ously. Indeed, the values are only shifted in reference to the photometric distance in the 
logarithmic representation (figure 35), which corresponds to a multiplication. The 
corresponding factor has been determined with statistical methods. It amounts to 1.38±0.08. 
That results in a probable value of the HUBBLE-parameter of 75.9±4.4 kms–1Mpc–1 (column 
6). The correlation-coefficient to the photometric values is 0.792. The value of H is within 
the limits determined with modern methods. Obviously, one can achieve right results even 
with wrong data comparing two wrong results…  
 

All results of table 1 are visualized in figure 35. One sees that the values, calculated cor-
rectly according to expression (309d) with H = 75.9 kms–1Mpc–1 also fit well the geometrical 
distance (light-way) calculated by the author of [27]. The correlation-coefficient between 
this two data-series amounts to 0.795. This corresponds to the one of the incorrectly 
calculated values approximately. In the further course of the work, we will use a value of the 
HUBBLE-parameter of H = 75.9 kms–1Mpc–1 therefore. This will be specified in section 7.5. 
once again. 

 

 
 
Figure 35  
Distance in dependence on the 
red-shift for elliptical models (q=1) 
 

 
The difference in the ascend of both pairs of curves is to be attributed to the application of 

the classic model of cosmology. 
 

 
4.3.4.4.7. The HERTZian dipole 

 
In the section 4.3.4.4.2. we have worked out an expression for the line-wave impedance of 

the vacuum (264). Furthermore we have determined that the spatial singularity behaves like 
a HERTZian dipole. The HERTZian dipole is the interface between an electronic system and 
the vacuum. Both can be figured also as a four-terminal network. We just expect circ-
umstances analogical as with a voltage divider. From [20] we understand the legalities in the 
near field of a beaming HERTZian dipole. The coordinate-system is descripted in figure 36. 
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HERTZian field-equations (complex) radiation-field in the point P:
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For the two electric field-strength-vectors applies: 
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Figure 36 
The HERTZian dipole 

 
Looking at these equations more exactly, one recognizes that they implicitly contain the 
expression for the field-wave impedance ZF of the vacuum (264) found by us, namely in the 
spatial part. We try to depict these equations as a function of ZF without changing the 
physical content therefore. It applies r / c = t as well as I= U / Z0 
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These are the relationships for a HERTZian dipole of the length l in the matching-case (Z0). 
Actually certain similarities exist with the voltage divider rule with complex impedances. 
Applying Z0 (classic loss-free solution) instead of ZF, we would get a result, with which the 
wave seamlessly passes over to space. Because this never has been observed in reality, it is 
an indication, that wave propagation rather takes place according to the model presented 
here. In the case of the spatial singularity,  on the basis of the particular qualities, becomes  

l = R/2 as well as K/2. It appears due to it, that the dipole shows equal dimensions into all 
directions, it has been mutated to a ball-emitter. Therefore, the metric wave-field is not 
polarized anyway. 
 
 

4.4. Current values of the universal nature-constants 
 
Having updated the value of the HUBBLE-parameter, it is opportune to depict an overview 

of all dependent and independent universal fundamental »constants« (table 2). Invariables 
are marked with the symbols (• ). One sees that there are actually only five universal 
fundamental (•) physical constants ( 0, 0, 0, hi and k). 

 
The speed of light is also a genuine constant admittedly, however not fundamentally at all, 

since it can be combined from 0 and 0, just as r1, 1 and t1. The initial value of PLANCK's 
quantity of action hi as well as some other values will be described later for the first time. 
These and all other ones are no genuine constants. They can be figured by combination of 
the five fundamental values as well as the corresponding space-time-coordinates.  

 
 

  Constant Symbol C Value Unit of 
measurement 

 

Speed of light c  2.99792458·108 m s–1  
Induction-constant 0 • 4 ·10–7 Vs A–1m–1  
Influence-constant 0 • 8.854187817·10–12 As V–1m–1  
Conductivity-constant 0 • 1.23879·1093 A V–1m–1  
Boltzmann-constant k • 1.380658·10–23 J K–1  
Planck's init. quant. of action 1 • 7.95297·1026 J s  
Planck's quantity of action   1.05457266·10–34 J s  
Gravitational-constant (init.) G1  1.55558·10–193 m3kg–1s–2  
Gravitational-constant (Nwt.) G  6.67259·10–11 m3kg–1s–2  
Poynting-vector metrics (init.) S1  3.3907·10426 W m–2  
Poynting-vector metrics S0  1.38959·10122 W m–2  
Fine-structure-constant   7.2973530·10–3 1  
Q-factor/phase metrics (g00

–1) Q0  7.5419·1060 1  
Planck's mass m0  2.17661·10–8 kg  
Planck's energy W0  1.95624·109 J  
Planck's length r0  1.61612·10–35 m  
Planck's time-unit t0  2.6954·10–44 s  
Circular frequency of metrics 0  1.85501·1043 s–1  
Wave impedance vacuum Z0  376.73  ≈  2 · 60   
Cut-off frequency vacuum 1  1.3991·10104 s–1  
Smallest time-unit vacuum t1  3.57372·10–105 s  
Smallest length vacuum r1  2.14127·10–96 m  
Hubble parameter H  75.9 ± 4.4 km s–1M pc–1  
Hubble parameter H0 ( –1)  2.45972·10–18 s–1  
Total age 2T  1.291818·1010 a  
Local age T  6.45909·109 a Table 2:     
Local age T (t–1)  2.03275·1017 s Fundamental 
Local world-radius R  3.9500 Gpc physical constants 
Local world-radius R (r–1)  1.21881·1026 m standard model 

0
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4.5. Supplementary contemplations to the metrics 
 
 

 
Just particularly is this a matter of the mutual distances of material bodies. These follow a 

function, which differ with the considered distance, since quantity and expansion-velocity of 
the PLANCK elementary-length is changing with ascending distance to the coordinate-origin. 
But only distances with their starting-point in the origin should will be considered here. Of 
considerable importance for deeper contemplations is even the number of line elements 
(MLEs) along an imagined line with the length r (wave count vector Λ). We distinguish two 
cases in this connection: Wave count vector with constant r and r with constant wave count 
vector. More final case to the best fits the existing circumstances, since we can assume that 
no point is distinguished to other points in the cosmos. The average relative velocity against 
the metrics at the coordinate-origin is equal to zero at free fall. This should be so everywhere 
then. With it, the expansion of the universe can be traced back to the expansion of the 
metrics alone. This corresponds to the case of a constant wave count vector. 

 
 
 
 
 

4.5.1. Constant distance 
 
Because of the real lattice constant r0 for smaller distances r the wave count vector Λ  is 

defined in the following manner: 
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er is the unit-vector. In the following, we consider only the figure  however. For larger 
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for r0: 

 

21
320

1 drd   
r 2r(1 t )

R

1
20r0 (1 t )t ) 32r

RR

    with         (317) 

To the solution we replace as follows (it applies ): 
 

rd
ra

r
r~
R~

2
3  d  22

2

0

         with  
1
3

R
r 2r 32r

RR

1
2 22 3dr Rr dr

2
a (1 t ) 2Rr dr2    (318) 

 

  
*)

2

0 02 2

3 r 3 r  Q dr Q a artanh r
2 a r 2 a02 02 2 0Q00Q0

2r 32r 2 32 r*) r33 r*) r*)dr Q0
rQ0 Q3 r*) rra artanh )a artanh )t h*) r*)a artanh ra artanh

                                            
 (319) 

 
1
3

11
34

1
4

0

2r
3 t 2rRQ 1 artanh

t2 T R1
T

32r
2222Q00Q0

ttttQ0
t11 t111
T

1 32rartanht h44 R
1artanh 1artanh

R4T 1 R1artanh
T 1artanh

ttt11111

2Rt
T

TTT
4 R4tt

     0
0

0

QRdef 
2r 2

 (320) 

 

t 
t
˜ T 

 *) arcoth for | r | > ct 
    (behind the particle horizon) 



 
 

83 

Figure 37    
Wave count vector as function 
of distance r and t 

 
The wave count Λ follows the blue function depicted in figure 37. Approaching to half the 

world radius (R/2), it seems to be, that Λ strives towards infinity. If we want to define a 
finite wave count 0, we take only a certain part of the world radius to calculate the wave 
count for it. Because of R/(2r0) = 0/2 we opt for that value. The value amounts to 
0.273965 R, that is 54.79% of the distance to the particle horizon (cT). In total however an 
infinite value will not be reached, since r0 becomes smaller and smaller going to r1. Out 
there, at Q=1 is the back of beyond, we reached the particle horizon. At first I guessed the 
value to be Λ1=Q0

2, since even R=r1Q0
2 applies. But that’s not the case. The little more 

ambitious calculation for r =  R/2−r1  1−10−120 under application of the power series for 
(1−x)⅓, multiple substitutions up to the transformation of the function artanh   arsinh  ln, 
turns out Λ1 = ⁄   = 63 using the values from table 2. For Λ1 
applies t' ≡ t ≡ 0 i.e. a constant wave count vector. But by expansion and wave propagation 
„outwards“ the phase angle 2ω T = 0 : t½ increases continuously. And because of (53) 
Λ1(T) = ⁄     applies with b = 2κ0/ε0. 

 

 
Figure 38 
Temporal dependence of the wave count vector 
for several distances r 
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The temporal dependence for several initial distances r is shown in figure 38. The larger 
the considered length, the later on the point of time, the wave count vector is defined from. 
That’s easy to understand, we can regard a length as existent only then, when the world-
radius is larger or equal to. If the world-radius is smaller, so such a length doesn't exist. 
Therefore, lengths larger than 0.5R aren't defined at present and function (320) does not 
have a real solution before a value of e.g. t = 0.75T is reached (t = 0 is the present point of 
time). Altogether, the wave count decreases. That results from the fact that we are 
considering a constant length with expanding r0. So it happens, that MLEs are permanently 
„scrolled out“ at the „tail“ leading to a degradation of the wave count vector at the same 
time.  

 
4.5.2. Constant wave count vector 
 
4.5.2.1.  Solution 

 
At first we start with the left expression of (320) for t = 0 (a = 1). It specifies the quantity 

of the wave count vector at the present point and at each point of time, if we want to assume 
it as constant. We just look for the function F(a, ) being nothing other as the temporal 
dependence on a given length .  
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An explicit reduction by differentiating and zero-setting (the left expression turns to zero 

on this occasion) leads to the trivial solution F = 0. Otherwise, only an implicit solution can 
be found as solution of the equation: 

 
a  artanh 

˜ r F
a

artanh ˜ r ˜ r (F 1)   0     r(t)  ˜ r F3 (t)   (322) 
 

or in »Mathematica«-notation F1[t,r]: 
 
Fa1=Function[a=FindRoot[#1*ArcTanh[#2/#1*x]-ArcTanh[#2]- 
#2*(x-1)==0,{x,1}, MaxIterations->30]; (Round[(x/.a)*10^7]/10^7)^3];      (323) 
F1=Function[Fa1[(1+#1)^.25,(2*#2)^(1/3)]]; 

 
In this connection we have to be particular about the method (tangent-method) and the initial 
value. There was a problem using secant method. The temporal course is shown in figure 39. 
 
 

Figure 39         
Temporal dependence  
of a given distance r 

 ̃r 
 ̃r 
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There is only a limited definition-range for the solution. It is temporally bounded below by 
the spatial singularity, the considered length is greater than the world-radius and doesn’t 
exist yet. The greater the considered length, the smaller the definition range. With world-
radius the space-like vector R/2 = cT is meant.  
 
 
4.5.2.2.  Approximative solutions 

 
A simple solution for small r explicitly arises from (322) under application of the two first 

terms of the TAYLOR series for the function artanh: 
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     for   r ̃≤ 0.01 R̃      (324) 

 
This exactly corresponds to the behaviour of PLANCK's elementary-length (MLE) and is 
valid until 0.01R approximately. For larger distances, the ascend is larger. First we examine 
the course in the proximity of t = 0 (figure 40) as well as the ascend r/ t with t = 2·10–3. 
With root-functions the ascend (dr/dt) is equal to the exponent m in this point: 

 

r    ̃r  1
t
 ̃T 

m

            (325) 

  
This is shown in figure 40. It is in the range of 1/2…3/4. Using the function Fit[] approxi-
mations of different precision for the exponent m can be found: 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40 
Ascend of several 
given distances in 
the proximity of t=0 

 
 
mmm = {{0, .5}};  
For[x = 0; i = 0, x < .499, (++i), x += 0.01;  
AppendTo[mmm, {x, N[F1[0.0001, x] - F1[0, x]]/0.0001}]]    (326) 
Fit[mmm, {1, m, m^2, m^3, …}, m] 

        

m ≈ 0.513536 + 0.17937r + 0.490927r2      with  r = r/ R~ 
 
m ≈ 0.500822 + 0.50052r  − 1.13082r2 + 2.16233r3         (327)  
m ≈ 0.500843 + 0.598206r − 3.45991r2 + 18.3227r3 − 42.6995r4 + 38.0733r5 
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The third equation of (327) is very exact and suitable even for calculations with more 
extreme demands. Indeed, there is a need to consider the restricted definition-range, which is 
not being co emulated automatically by the approximative solution. It is pointed out here 
once again that the distances and velocities, regarded in this section, are a matter of space-
like vectors having nothing to do with the time-like vectors considered in section 4.3.4.4.6. 
Cosmologic red-shift. 
 
 
 
 
4.5.2.3. The HUBBLE-parameter 

 
Having defined the HUBBLE-parameter only for small lengths and PLANCK's elementary-

length (r0) until now, which are following the relationships for a radiation-cosmos (m = 1/2), 
we have to correct our statements for larger distances. With m = m(r) the HUBBLE-parameter 
H = r r becomes also a function of distance: 

 
             (328) 

 
The course is shown in figure 41. The metrics examined by this model is a non-linear 
metrics. With it, the question has become unnecessary, whether our universe is a radiation- 
or dust-cosmos. The answer is — as well, as. It's a question of the dimensions of the 
considered area. For small lengths, the distance behaves like a radiation-cosmos, in the range 
between zero and 0.5R like a dust-cosmos, with 0.5R like photons overlaid the metrics. 
 
 

 
 
Figure 41 
HUBBLE-parameter as a function of the 

 

 
However, more latter distance is not an area of infinite red-shift as in other models. It

shows with the dilatory-factor q very well.  The course is depicted in figure 42. 
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Figure 42 
Dilatory-factor as a function of the 

 
 
The expansion-velocity H0r as a function of the distance is shown in figure 43. The speed 

of light is reached in an essentially minor distance as with the standard-models, but only on 
paper. While the size of r0 at 0.5 R = cT tends to r1, the expansion speed along the time-like 
world line at this point is not infinite, rather it’s smaller than c (0.75c). Otherwise we found 
out, that the maximum propagation speed ǀcmaxǀ of the metric wave field only amounts to 
0.851661c. But furthermore the world-radius should be cT, whereas time-like vectors with 
up to 2cT should be possible. So we have to do with four different distances resp. velocities, 
which all does not seem to fit together anyhow. But using this model it’s possible to solve 
this conflict. Let‘s have a look on figure 44, which except for rK, is a true-to-scale 
representation. As we can see, the wave front of the metric wave field propagates straight-
forward with 0.851661c (propagation share). The part rM of the world-radius caused by it 
  

 
 
Figure 43 
Expansion-velocity as a function of the 
distance for t=0, the  



 
 

88 

Figure 44    
Expansion-velocity and world-radius in the model 
 
amounts to 0.851661cT. As noticed furthermore, the constant wave count vector rK up to the 
vicinity of R/2 is running on the same track as the incoming time-like vector rT with 0.75 c 
(arc length 0.75 cT). But it’s tilted about the angle α1, so that we have to sum geometrically. 
In addition the partial vector  is curved. But the object we are looking for is the space-like 
vector rR (expansion share). Flattening the partial vector  by bending it up to  by the 
angle φ1 of the metric wave function φ = arg c = α − π/2 with  = 1 we realize it to be too short. 
See expression (211). There is a better fit with φ/2. I’m able to provide the following 
solutions with α1 = 2.31893 132.865°: 

 
2 2 2 2 2 2 2 2 2
M R M K 1 1 1c   c c c c sin α cos φ 2 c 0.851661 0.75 0.5 sin α 1 sin α  

 
2 –3c  c 0.7253265 0.28125 0.73296 1.73296 0.99356c Δ –6.4 10  (330a) 

 
2 2 2 2 2 –3
M K 1c   c c cos α c 0.851661 0.680271 0.99279c Δ –7.2 10  (330b) 

 
Expression (330b) is based on the directional derivative  and is similar exact. Interestingly 
enough the following expression yields a good result too: 
 

–2
M K

2 2c   (c c ) (0.851661 0.75)c 1.01965c Δ 1.9 10
π π

 (330c) 
 
maybe a fluke, perhaps a hidden principle? The differences are even smaller than the ones 
accepted in the QED. But because of the curvature an exact result would have surprised me. 
A further reason for the differences could be, that the maximum speed ǀcmaxǀ isn’t at  = 1 
really, but at  = 0.865167 exactly. But using that value we get yet an even greater deviation. 
More information about the time-like vector rT you can find in section 7.5.2. The 
conclusions obtained here essentially carry weight on the calculation of the entropy of the 
metric wave field. 
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4.6. Energy and entropy 
 

4.6.1. Entropy 
 
Now we will consider the discrete MLE and our model from the energetic point of view. 

Since entropy is much more important than energy for the thermodynamician, we will take it 
into account by examining entropy first. We want to mark entropy with S henceforth. In 
order to avoid confusions with the POYNTING-vector, we will always figure it bold as vector 
(S). If we write S, we always mean entropy and with S always the POYNTING-vector. 

 
From the statistic point of view, the entropy of a system is defined by (331) where k is the 

BOLTZMANN-constant and N the number of all possible inner configurations. 
 
S = k ln N          (331) 

 
With a single MLE (N = 1) entropy would be equal to zero theoretically, by application of 

(332). That’s wrong of course, since statistics necessitates a minimum number of N to be 
applied at all. With N = 1 the result, mathematically can take on a whatever value without 
offending the „statistics“. Therefore we want to try to find out, if there is another possibility 
to determine the entropy of this single MLE. 

 
Strictly speaking the MLE is a matter of a ball-capacitor with the mass m0 (29) moving in 

its inherent magnetic field. We don't know what happens inside the capacitor. Basically it 
behaves like a (primordial) black hole. According to [5] the SCHWARZSCHILD-radius of such 
a BH is defined as: 

 
          (332) 

 
Now let's substitute m with m0 here (29). We get rs = 2r0, substantiating our foregoing 
assumption. The surface of this black hole yields with it to A = 4π r0

2. It’s interesting that the 
expression for the SCHWARZSCHILD-radius can be derived even without aid of the SRT or 
URT. Because both, SRT and URT according to this model are only emulated by the metric 
fundamental lattice. Such relationships must be basic qualities of the lattice itself. They 
apply as well microscopically as macroscopically then. 

 
In [4] pp. 211 a method is figured to determine the entropy of a black hole. It is based on 
quantum physical considerations fitting our MLE very well. The author assumes the KERR-
NEWMAN-solution of the EINSTEIN-vacuum-equations Rik =0 with stationary rotating, 
electrically loaded source and external electromagnetic field (333) with R  r2

 – 2mr + a2  
and 2

  r2
 + a2cos2 , M =  mGc–2 und a = Lm–1c–1; m is the mass and L the moment of 

momentum.  
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     (333) 

 
We don't want to engross it here. The author finally comes to the following statements for 
the radius r± of the black hole and its surface A: 

 
   

2 2 2 2 2r  M M a           A  8 M M M a        (334a) 

 
2 2

0 0 0 L
0 0 0 0 0 0 L

2t 2t 2tr  r r r (r )
μ κ μ κ μ κ

   (334b) 

 
The result depends thereon, if the MLE disposes of a moment of momentum or not. With 
m =  m0 under application of (29), (53), (59) and (695) we obtain the following values for the 
SCHWARZSCHILD-radius: Without moment of momentum (L =  0) for r−= 0, r+= rs= 2r0 as well 
as A = 4π r02. With moment of momentum L =  ħ, here the brackets apply, we get two identical 
solutions r± = r0. The surface yields A = π r02.  

rs   
2mG

c2
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Furthermore, the author refers to a work of BEKENSTEIN (1973), according to which the 
entropy of a black hole should be proportionally to its surface. The exact proportionality-
factor has been determined by HAWKING (1974) in a quantum physical manner to: 

 

Sb     
kc3

4GG
A            k

A
4r0

2       k
A

(4)rs
2     (335) 

 
k is the BOLTZMANN-constant, the bracketed number applies to L =  . Interestingly enough, 
the expression contains PLANCK's elementary-length and even with  according to our 
definition instead of h. If we now re-insert the values, we get: 

 
Sb = 4  k  for L =  0 as well as    Sb = k    for L =   (336) 

 
Now we want to examine, whether the MLE actually owns a moment of momentum. We are 
based on our model (effective-value) developed in section 3.3. For the moment of momen-
tum L applies generally: 

 
L  r p  m (r v)         (337) 

 
With m  =  m0, r  =  r0, v = c, c  r we get after application of (27) and (29) for the amount L: 

 
L  m0cr0      and because of   c = 0r0           (338) 

 
W0   m0 c2   0            (339) 

 
Expression (339) is apparently right. With it, we have explicitly proven, that the MLE owns 
a moment of momentum. It’s equal to PLANCK's quantity of action or vice-versa: 

 
The PLANCK's quantity of action is defined by the effective-value of the 
moment of momentum of the MINKOVSKIan line-element. The inherent moment 
of momentum (spin) is identical to the track moment of momentum. 

 
The last statement is justified by the fact that it's a matter of effective-value here. In reality, 
r0, m0 and the track- and inherent moment of momentum are temporally variable, almost 
periodic functions. PLANCK's quantity of action is the sum of track- and inherent moment of 
momentum then. It’s equal to , at which point one time the track-, the other time the 
inherent moment of momentum becomes zero. Such an interdependence even is called 
dualism. Naturally, PLANCK's quantity of action can be defined not only as moment of 
momentum. Another possibility is e.g. q0 0. 

 
Going back to entropy. We see that the BOLTZMANN-constant figures an elementary 

quality of our metric fundamental lattice, as elementary as 0, 0 and 0. Here, someone may 
say, this cannot be correct, since k is a purely statistical constant. Just we can answer this 
interjection: »The BOLTZMANN-constant is so elementary because it’s statistical«. Even π 
allows to be defined statistically. 

 
We have determined the entropy of one discrete MLE. How does it look with a larger length 
then again? Since the single-entropy is a multiple of the BOLTZMANN-constant, we can 
calculate-on with the already known statistical relationships (331). In this connection the 
(absolute) maximum number of possible inner configurations within a volume with the 
radius r is given by the number of MLE's contained in this volume. With a cubic-face-cen-
tred crystal-lattice, the number of MLE's within a cube with the edge length d is defined as: 
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0

d dN    4       4
r

                (340) 
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is the lattice constant in this case. The fc-cube just contains 4 elements in total. Then, 
within a ball with the diameter d = Λr0 and the volume /6 d3 there are 

 
33

30

0

Λr2 d 2 2N π π π Λ
3 3 r 3

      (341) 

 
individual MLE's. As long as ρ is not too large, we can insert (316) for Λ, otherwise (320): 
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0 1 1N πQ artanh 2K 2K( ) ( )

1 1 1 1
4 4 3 3t t r r3

0Q3
0Q tartaartaartaartaarta        with  r = r/ R~ 

  and   K1 = 1 (343a) 

 
That‘s the number of elements within a sphere with the radius r. The course is shown  

in figure 45 curve . If we insert the expression Λ1 = ⁄  into (341), we obtain even  
a result for N1. Here t ≡ 0 reapplies. Then, the whole universe would contain altoge- 
ther N1 = ⁄   = 8.35202∙10189 elements. Because of the propagation of the metric 
wave field this value is increasing continuously too (see figure 47), and that according to 
N1(T)  = ⁄     with b = 2 κ0/ε0.  

 
 

     
 
Figure 45 
Number of MLE´s in dependence on the radius linear and logarithmic 
 
 
But for the calculation of the entropy S these values are sparsely helpful. As is known S is 
about a statistical value and (343a) violates a basic rule of the statistics: A value must not be 
counted repeatedly. The relations (341ff) namely apply for a „normal“ 3D-sphere only.  
 

But at the universe we have to take into account the particular 4D-topology. An observer 
in the free fall only imagines to be located in the spatial centre of the universe. In reality he 
is situated at a temporally singularity, the event horizon {0,0,0,T}. He is unable to overcome 
it, because beyond there is the future. Indeed, it’s not about a point, but about a hyper-
surface. All other observers at their own 3D-locations reside widespread at the same surface. 
Since T proceeds steadily, the temporal radius increases too and the observers are quasi 
„surfing“ on the „time wave“. If one observer wants to visit another, he must accelerate. 
Thus, his temporally course is slowing down. Indeed, he does not travel to the past, but he is 
only „broken away“ from the unbraked time lapse. He suddenly finds himself inside the 
sphere. With v = c the time stands still for him. Now he is situated at the real spatial centre, 
but only, because it came up to him. 

 
That means, the spatial 4D-centre is not with the observer, but in the distance cT at the 

coordinates {cT,cT,cT,0}. More correct would be t1 instead of zero here. With the spatial 
centre it’s also about a hyper-surface, a spatial singularity, the particle horizon. We cannot 
overcome even that. Like the temporal radius it‘s expanding steadily. Altogether it’s about a 
closed system.
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If two observers could swap their positions, they would find the same conditions on both 
locations. Since overall in the universe the same physical laws apply. Interesting thereat is, 
that we observe different conditions in a definite distance r. The reason is the finite speed of 
light. The universe is not hot-wired, there is no instantaneous interconnection between 
whatever points (except for quantum entanglement). For all observers the universe consists 
of the local conditions plus all forces and signals resulting from prior states, delayed by 
t ≥ r/c. The farther, the elder the condition, that caused the impact. 
 

 
 

Figure 46  
Factor K in dependence on the radius for 
the 3 solutions (schematic presentation) 

 
And exactly that is the reason, why 
we cannot use expression (343a). 
Approaching the distance cT, the 
MLE-density within Λ is increasing 
enormously indeed. But similarly, 
the universe in that distance, at that 
time has had an essentially smaller 
world radius, a smaller surface. 
That means, the cross section must 
be smaller than at solution . The 
larger the distance r, the smaller 
the surface A, the opposite way 
around, as with a „normal“ sphere. 
 
Even e.g. the spherical shell in the 
distance R/2−r1 namely consists of 
only one single element. If its con-
dition changes, it has a simulta-
neous effect on all vectors coming 
from all directions. But we are 
allowed to count only one element. 

 
 
In fact that‘s good for MACH’s principle, spatial damping cancels out, the strongest force 

is coming from the „edge“, but not for the statistics. That’s why we are forced to find a 
function, which considers these special conditions. In doing so the reference to the time t 
should not get lost. Because I’m not a topology-expert, I tried to find such a function, at least 
roughly by introduction of a correction factor K; the whole by trial and error. So it’s not 
about a correct derivation here. With small r a possible solution should run similarly as with 
a 3D-sphere, likewise as solution . In the vicinity of R/2 it should flatten out however. 
Either the border R/2 should not be passed. 

 
In addition to  two more possible solutions are depicted in figure 46 to the correction of 

one single coordinate. With solution  (343b) I assumed the volume of the inverse sphere to 
decrease with r. Solution  (343c) additionally considers the curvature in the vicinity of R/2 
under consideration of the angle α. 
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The angle α(r) calculates as follows (applies only in connection with (343c)!!!) 
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It’s even only a rule of thumb. The course of both functions is depicted in figure 45. As 
we can see, function (343b) is less suitable, because it exceeds the R/2-border at 
N = 2/3π (1.1955∙ 0)3

 = 2/3π (2.3909∙Λ0)3 — a crooked value. There isn’t a flattening either, 
but a pole outside R/2.  

 
Function (343c) on the contrary fulfils all demands. It proceeds as with a 3D-sphere, like 

solution  at small r and there is a flattening in the direct vicinity of R/2. Indeed, the 
function is defined beyond R/2, but without pole, and the value re-drops to zero at 2cT. That 
means, it’s about a time-like vector remaining inside the world radius. That’s easy to 
understand. When rushing through the 4D-centre {cT,cT,cT,0} or passing it within spitting 
distance, the vector re-approaches the observer and N has to decline again. The maximum is 
at the „magic“ value N0 = 2/3π ( 0/2)3

 = 2/3π Λ0
3

 = 1.12308∙10182. The reason, why the func-
tion hits its maximum already on the verge of R/2, is its curvature. The arc-length becomes 
effective here.  

 
By the way, all time-like vectors with the length 2cT, regardless of continuous or discon-

tinuous (virtual), are coming from a point with the coordinates {r1/2, r1/2, r1/2, t1/4}. That’s 
behind the particle horizon, previous to the phase jump at Q = 1, from a time, at which event- 
and particle-horizon still overlapped each other (Q = 1/2). The real world age is T, the length 
2cT is the result of curvature, propagation and expansion (see figure 139). 

 
Thus I’m sure, that (343c) fits the actual conditions to the best. Then, N0 would be 

identical to the total number of possible micro-states of the universe and candidate for the 
calculation of the entropy S0. The temporal dependence of N according to (343c) for several 
constant distances is depicted in figure 47. The course of N0(T) and N1(T) in the comparison 
is shown top right. The rule of N1 has been scaled down about 108, because both values gape 
apart too much.  

 

 
Figure 47 
Number of MLEs in dependence on time 
according to solution  

 
Needless to say, the temporal functions are defined from N0 on only, above they are 
cropped. Solution  proceeds similarly, but N1 is orders of magnitude greater, so that the 
crop takes place much higher in a range running nearly vertical up, which can no longer be 
processed by the plot program. And there is another difference. Distances >R/2 aren’t 
postponed into future with solution  and  similar to the dashed blue line (not to scale). 
That’s correct. In contrast, solution  shows them, as if it’s about a distance <R/2, which is 
also correct. Of course, there is even such a line with solution  (example 0.8Rʹ), but it’s 
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not being emulated by expression (343c). That’s correct too, since there is a nearly infinite 
number of solutions already in the example range 0.5…0.8R and beyond, depending on Rʹ. 

 
Now let’s get down to the entropy. Generally (331) applies here. As determined more 

above, the entropy of the MLE calculates similar to that of a black hole according to (336) 
right (Sb). Thus, we have to multiply (331) with π. However, that applies to the metric wave 
field only and not to the CMBR. All other problems may be calculated with the conventional 
ansatz and (331). In doubt just divide the results by π. 

 
The course of the entropy S in dependence on the radius is shown in figure 48. Starting 

with a value of πk = 4.337465∙10− J K−1 with r = r0 the entropy  rises continuously with 
increasing r, runs through a phase of minor ascend and skyrockets towards infinite with 
r  cT. But an infinite value will not be achieved, since the number of line elements until the 
edge is limited to S1(Λ1). 
 

 
Figure 48 

Entropy in dependence on the radius 
 

Because of the pole solution  is less suitable. For solution  we obtain the huge value of 
S1 = 3π k (⅔ + ln 0 + ln ln 0)  ≈ 1312 πk = 1.89701∙ −20 J K−1. For solution  the entropy 
S0 applies. It’s defined as follows:  

 
3 3 20 1

0 0 0
2 1S πk ln π Λ πk ln πQ 1.81821 10 J K
3 12

1.833 1 8Q0Q33Q00      (344) 

 
The temporal dependence of S0 for the case r = const is depicted in figure 49. Interestingly 
enough the values of regions with fixed size decrease steadily. Maybe that’s the „motor” of 
the evolution from the lower to the higher. In the case constant wave count vector the 
entropy S(r ≠ R/2) remains constant across the whole definition range. It calculates according 
to (345) on the left. For S0 the right expression applies: 

 

0 0 0
tS S 6π k lnS   π S 3π k ln 1k n 
T

 l N t0 0S 600 k l S 30 π k ln 1S 600 π k ln S 30 π k ln 1
T

11111t
TT
t     (345) 

 
To calculate S1 we advantageously substitute 0 with ˜0 t2 in the expression in the paragraph 
below figure 48. The entropy with constant wave count vector isn’t defined across all times 
for all radii either. Certain distances don’t exist, until the radius of the expanding universe 
has reached that length. Then S gets the value S0 resp. S1 exactly on entry. It applies: The 
later the entry, the higher starting entropy. Curves are being cropped even here in turn. 
Solution  looks similar like figure 49. The curve S1 proceeds far beyond the plot however. 
Initial distances > R/2 are moved into future too, with solution  into the range < R/2, just 
like with N1 and N0. 
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Figure 49           
Temporal dependence of the entropy 
for r=const (linear scale) 
 
The temporal functions S0 and S1 are tending to ∞, as we can easily see by application of the 
limit theorems. Concerning the future of the universe we can say, that we don’t have to fear 
a heat death. A thermodynamic equilibrium will never occur. The reason is the propagation 
of the metric wave field, as well as the expansion of the universe. That was a close shave! 
 
 
 
4.6.2. Particle horizon 

 
As shown in section 4.6.1. the MLE disposes of an inner SCHWARZSCHILD-radius with the 

value r± = r0. It has the property of a particle horizon. Because of the relations R = r0Q0 and 
r1 = r0/Q0 it may be possible, that such a particle horizon also exists on a macroscopic scale, 
for the cosmos as a whole. The HUBBLE-parameter H0 = ω0 Q0

−1 has the character of an 
angular frequency, just as ω0 = ω1 Q0

−1. Thus, it may be possible, that even the whole universe 
owns an angular momentum in the amount of ħ1 = ħ Q0. The MLE with its spin 2 lets 
suppose, that the universe also owns a spin of the size 2. That would explain a lot of 
phenomena. Therefore, with this information, we want to try, to calculate such a hypothetic 
SCHWARZSCHILD-radius R± with (L = ħ1 = ħQ0). 

 
We start, in that we multiply (334b) with Q0 resetting the bracketed expression to the 
definition a = ħ m–1c–1. The value M1 is determined using the right-hand ansatz and (695): 

 
2

0 12
0

1

Q
R Q r R R

2M c

2
111       with (346a) 

 
2 2 2 2 2

0 0R R R Q r R R R R            (346b) 
 

As result a double solution with R± = R turns out, exactly as with the MLE but on a larger 
scale. The universe inside is larger then outside apparently, maybe due to the curvature of 
the time-like vectors. Notably interesting is the value M1=1.73068∙1053 kg (Q0 as per table 
10). That’s the total mass of the metric wave field and identical to MACH’s counter mass. 
Dividing it by the volume V1 = π R3 we obtain a value of 1.94676∙10−29

 kg dm−3 for the 
density. This one is about 3/2 times greater than the value G11(R/2) calculated in section 
7.2.7.2. Well, we are living in a black hole actually and we can use nearly 100% thereof. Or 
is there yet an „outside“ and the universe is nothing other than a huge line element? 

   1
2 μ κ

c
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4.6.3. Temperature 
 

Now we want to assign a temperature to the discrete MLE. According to [4] it arises from 
GIBBS’ fundamental equation as well as from (23) and (32) to: 

 
              (347) 

 
TbdSb  d(m0c

2) d( 0 )   0 Tb  0  K    (348) 
 
because of 0 ≠ const. This agrees with the observations very well. The famous expression 
mc2 =  is just nothing other than a special case of the GIBBS fundamental equation for 
Tb = 0 on the level of the metric wave-field. This one, thermally seen does not comes into 
picture — For the case L= 0 namely following expression would arise for the temperature: 
 

Tb  
c3

8 m0Gk
  

W0

8 k
 Tb  5.638 1030K   (349) 

 
The result (349) deviates from the one which we would obtain using WIENs displacement 
law. The magnitude is correct however. Indeed this is even only applied to black radiation, 
whereas, in our case it's about a discrete, very narrow spectral-line. The temperature would 
be proportional Tb~ t–1. Since this is not the case, it applies: 
 

1. The temperature of the metric wave-field is equal to zero.  
2. The discrete MLE owns the moment of momentum of  . 
3. The inner SCHWARZSCHILD-radius of the MLE is equal to r0 . 
4. The inner SCHWARZSCHILD-radius of the local universe is equal to 2cT. 

 
For this reason PLANCK's quantity of action is also a fundamental quality of the metric 

wave-field. However it is not a constant, so that we will dedicate an individual chapter to it 
(4.6.4.1.). 

 
Because of the integer spin, the MLE is subject to the BOSE-EINSTEIN-statistics formally. 

In what extent this is of meaning, cannot be said here. It is possible however that effects like 
e.g. superconductivity are based on the existence of the metric wave-field still owns the 
MLE a charge, its effective-value is near the electron charge: 

 

e301378.3  As10288807.5  
Z

 q  
19

0
0        (350) 

 
With the superconductivity, it works around the shape of Cooper-pairs consisting of two 

electrons with inversely directional spin and FERMI-velocity, just having a charge of 2e and 
integer spin of zero quantity. They are likewise Bosons with it. So it would be possible that 
such a COOPER-pair occupies the position of the ball-capacitor in our model. On this 
occasion the charge-difference would amount only approximately 39% of the total-charge of 
the MLE, so that the electrons can tunnel into the conducting band, how it is the case with 
semiconductors e.g.. The width of the conducting band results directly from the 
HEISENBERG's uncertainty principle of energy and time as well as from (23) and (24) to: 

 
W t   

2
           as well as  W0 0   

2
  (351) 

 

e334427.2  
2

q  
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  q  
0

0
0           (352) 

TbdSb  d(mc2 ) dL
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Then the lower limit of the conducting band amounts to 2.134e so that the charge of the 
COOPER-pair with 2e is only 4% (q0) below the conducting band. By the way, the equality-
sign in (352) applies only then, when a GAUSSian normal-distribution of the charge is on 
hand, which is not given for N=1, so we can do well without a tunnel-effect at the worst. 
Like that, a conduction could take place directly on the level of the metric wave-field, at 
which point the specific impedance 1/  = 8.07239·10–94 m2/m is so extremely small that it 
is factually equal to zero. At all, an instrumentational determination of 0 in this way would 
be far outside our technical possibilities. 

 
 
 

4.6.4. Energy 
 
Before we do broader contemplations in this direction, we first turn to the PLANCK's 

quantity of action, since it is joined narrowly with the electromagnetic energy. 
 
 
 

4.6.4.1. The PLANCK's quantity of action 
 
 

4.6.4.1.1. Temporal dependence 
 
We have seen that PLANCK's quantity of action is equal to the product of electric charge 

and magnetic flux. First, we want to put the time-function for the value of , which is 
applied to t»0, (approximative solution). Because of (122) we can immediately write down 
for 0: 

 

0      =  
ˆ i

2 0 t
 (cos 2 0t + sin 2 0t)       (353) 

 
Furthermore applies: u0 = φ∙ 0 (self-induction). We assume the exact formula more safely. During 
differentiation we have to pay attention once again that 0 is a time-dependent value. One works 
just useful using equ. (114)  

0  ˆ 
i  J0 (2 0 t)     

0

0
0 i0

t2Jˆ 
 

         (354) 

 
  

  
 

0 0i
0 1

o o

ˆ 2 2 t J
2 t

i
0

ˆ i

20         (355) 

 
u0  

 ˆ 
i  0 

J1 
(2 0t)               (356) 

 
For q0 we obtain because of (123): 

 
q0  =   C0u0  =   0r0u0                  (357) 

 
q0  =  – 0 0r0 ˆ 

i J 1 (2 0t)   =  – 0c ˆ 
i J 1 (2 0t)     (358) 

 
q0  =  – ˆ q i J 1 (2 0t)          (359) 

 

q0  =  
t2

q̂

0

i

 

 (cos 2 0t – sin 2 0t)             (360) 
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Now, we get for PLANCK's quantity of action:
 

(t)   =  
 ̂̂ 
i

2 0t
2 2 0t

2 2 0t)   =   
 ̂̂ 
i

2 0t
4 0t          (361) 

 ̂̂ 
i   ̂q i  ̂

i  is the amplitude (peak value) of  at the point, at which the time-function of  has 
the value 1. Now, PLANCK's quantity of action itself is actually not an (almost) periodic 
time-function but its effective-value, albeit this is on the other hand even a function of time. 
The effective-value is defined as the quadratic median value across one period: 
 

             (362) 

 
For periodic functions, the lower limit is zero in general, the upper limit a multiple of , 

mostly 2 . That e.g. leads to an effective-value of 1/  for the sine- and cosine-function. 
The effective-value of the product of two functions is equal to the quadratic median value of 
this product or equal to the product of the effective-values of both functions. 

 
Unfortunately, we don't have to do with periodic functions here. Because of the root in the 

argument frequency is constantly changing and with it the period. Equation (362) is 
analytically solvable in our case admittedly, even for the Bessel (exact) solution. However 
we cannot do anything with the result so much, particularly if t is near to zero, since 
frequency is changing there more quickly than the coverage of median value. That means, in 
the time immediately after big bang, across the first two or three periods, the PLANCK's 
quantity of action as such is not defined. Only the exact time-functions apply here. Now it is 
opportune however, to have a function, which can be applied back up to the point of time 
t=0, just, in order to determine hi.  

 
Therefore we set the effective-value of charge and magnetic flux to 1/  of the 

amplitude. This is not quite exact admittedly, at least with small arguments, it's about an 
approximative solution then again anyway. We get for t»0 then: 

  

   =     
ˆ ˆ 

i

4 0 t     = 
ˆ ˆ 

i
2

0
2 0t

 =    1
2

ˆ ˆ 
i

Q0

       (363) 

 
The quantity of hi (peak- and effective-value) allows to be determined from it easily: 

 

Js1099697.4  ~Q~2  ˆ 27
0i   i    

ˆ ˆ 
i

2
        t i  

t1

4 2     (364) 

 
This value is very much larger than the present. This has enormous effects onto the 
circumstances in the time just after big bang.  We will defer to it in this chapter even near. 
For flux and charge applies analogously (24) and (36):  
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00

1

00

1
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1

0
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Z

1.41 1 41 1 4     (366) 

 
In future we will use the value h1 instead of hi, since it can be reckoned with it much better. 
On the basis of the anyway inaccurate value of the HUBBLE-parameter and with it of Q0 the 
approximative solution (363) is sufficient for the bulk of all cases. 
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Figure 50

 

Miscellaneous approximative solutions for 
PLANCK's quantity of action, larger scale 
 
 

 
 
 
Figure 51 
Miscellaneous approximative solutions for 
PLANCK's quantity of action, smaller scale 

 
 

For examinations of the period immediately after big bang it's however opportune to work 
with the time-function. This is as follows: 

 
  =  –  ̂̂ 
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Another expression for the effective-
(364), one can see in figure 50 and 51 — the approximation (363) is well almost down to 
t=0. Even the associated functions are declared. One sees, the application of Bessel functions 
lead to no increase in precision opposite to (363), rather to the contrary. The Bessel 
functions of 0th and a mix of 0th and 1st order turn out even more inaccurate solutions. In 
future we'll therefore only use expression (363) that still has the additional advantage, to be 
better integrable. Also the dependence on the present values is interesting. We take up the 
known transformation 2 0t  t/T once again obtaining: 

 

   =       1
˜ Q 0

 1
t
˜ T 

1
2
  ˜ ˜ 

 1
t
˜ T 

1
2

 (368) 

 
The temporal dependence of PLANCK's quantity of action has also effects on the value of the 
electromagnetic energy. That means, beside the cosmologic red-shift, an additional 
debasement arises by decrease of , so that W  ~ t–5/4 applies. 

 
 
4.6.4.1.2. Spatial dependence 

 
If PLANCK's quantity of action is a function of time, so it is also a function of the location. 

This is applied to each local space-temporal coordinate-system. One gets the function, as 
handled in the preceding sections already several times, by expansion of (368) to: 
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    (369) 

 
That is the value of , valid for a process in the distance r of the observer, seen by the 
observer. According to this definition  can take on even negative values, which cor-
responds to the appearance of negative energy. At the place of sign-change, there is a spatial 
singularity with proper certainty. We obtain the course figured in figure 52 which is a 
function of  distance.  
 

Figure 52 
PLANCK's quantity of action 
as a function of distance for t=0 
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Figure 53  
PLANCK's quantity of action 
as a function of time for r=const 

 
Near the half world-radius (cT) there's going to be an extreme ascend towards infinite. It is 
to be considered that the maximum-value by definition as median value is restricted to hi. 

 
With the temporal dependence, the two cases constant distance and constant wave count 
vector are to be distinguished again. The course for different distances in the case r=const 
shows figure 53. In the case of constant wave count vector the quantity of PLANCK's quantity 
of action doesn't remain unchanged however, it's decreasing too. The course is figured in 
figure 54. 
 

 
 

Figure 54 
PLANCK's quantity of action as function 
of time with constant wave count vector 
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It will be obtained by application of (326) and (329) without consideration of the restricted 
definition range by replacement of r (370).  However the value of  over a long time period 
(approximately one age) remains virtually constant (figure 55).  With small distances applies 
(368) as approximation, that means,  depends only on time. For larger distances, the time 
period   const is shorter admittedly, however the end already soon will be situated behind 
the particle-horizon, so that  even can be regarded here to be constant over the whole 
definition range. 
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Figure 55 
PLANCK's quantity of action with constant wave count vector 
for several initially distances (time calculated from nowadays) 
 

 
Obviously, even a dependence between entropy and PLANCK's quantity of action can be 

constructed with it. This can take place with help of equation (344) and (369) by substitution 
of r. Analytically, the problem can be solved only in one direction as function S( ) however. 
This dependence does not figure a contradiction. Seen from information theory, entropy is a 
measure for the disorganizedness of a system. The larger the entropy, all the larger the 
uncertainty of the inner conditions, even that a previously existing order will be replaced by 
an accidental order.  
 

The quantity of PLANCK's quantity of action on the other hand determines the limit 
between micro- and macrocosm on reason of HEISENBERG's uncertainty principle for 
impulse and place: 
 

p x   
2

     (mv) x   
2

   (371) 

 
As test-particle, we use the most lightweight subatomic particle with a rest mass different 

from zero, the electron. Under the assumption, that the maximum velocity is c, we obtain as 
upper limit for the microcosm x:  
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       (372) 

 
If the rest mass of the electron doesn't change according to the BIRKHOFF-theorem, a 

larger value of  means nothing other, than an upward shift of this limit. In the period just 
after big bang, this limit has been in the magnitude of the entire universe (quantum 
universe). But even in the proximity of the inner SCHWARZSCHILD-radius of our local 
universe and near time-like singularities, like black holes, this effect is to be observed or 
should have to be to be observed.  
 

How can we interpret this? According to the SRT a coordinate-transformation between 
frames of reference, their relative velocity to each other oversteps c, is impossible. Even 
with strong gravitational-fields (URT) is this the case. According to the classic theory, is the 
transition transformation possible transformation impossible abrupt. According to the 
present theory, this transition is gliding however. The closer we come to the 
SCHWARZSCHILD-radius with its escape-velocity c, the larger will be spatial curvature, 
entropy and the value of PLANCK's quantity of action. The limit of the microcosm shifts with 
it upward and there's going to be the appearance of quantum-effects even with macroscopic 
bodies (not with time-like vectors!). Then, a simultaneous, exact determination of impulse 
and place is impossible even for macroscopic bodies. These can be localized only by the 
electromagnetic radiation sent out by them. Since time-like vectors spreads on different 
world-lines having another „length“, time-like and space-like coordinates of the source don't 
coincide and the uncertainty remains. 
 

Near the point cT the uncertainty oversteps the magnitude of distance finally. As a result, 
each transformation, even if it should be mathematically possible, becomes pointless.  
Because of the limit of , there is also a maximum-value of uncertainty x. For the electron 
this amounts to : 
 

xi   
1
2

i

mec
     4.57445 1048m  » ˜ R   (1.21881 1026m)     (373) 

 
This value is for our present frame of reference only of theoretical interest however. In a 
distance, that amounts to R/2 exactly, actually (R–r1)/2, the uncertainty is so extreme indeed. 
But only about the classic BOHR's hydrogen-radius (5.28·10–11 m) beside it - the bodies we 
are considering, doesn't have the diameter zero - the local uncertainty for the very same atom 
amounts to 3.64·1020 m only, as we can easily check using (369) and (372). Also the value 
of  is essentially lower there. In the distance R/2–1m we obtain for the hydrogen-atom a 
value of x= 1.936·1010 m, for a body with the mass 1t (e.g. 1m3 water cube with the edge 
length 1m) only 3.2·10–20 m.  
 

For macroscopic bodies, it's just about a rather abrupt transition, not so for microscopic 
bodies. So, the uncertainty in 1000 km distance for the hydrogen-atom still amounts to  
1.936·104 m, for the electron even 3.529·107 m. The uncertainty always refers to our local 
frame of reference only, just on a very large distance. Quite other, lower values would be 
applied to an observer being located at the place.  
 

In the time just after big bang, i.e. seen from the spatial singularity as well as in their 
proximity, the temporal and spatial dependence of PLANCK's quantity of action plays a much 
more essential role.  Moreover it's to be noticed that the spatial singularity, the expansion-
centre, is located outside the world-radius determined by our space-time-coordinates . 
Exactly seen is this point outside each possible space-temporal coordinate-system, since it's 
inaccessible for space-like vectors.

However this doesn't apply for „intellectual vectors“. If we would have a look at the 
expansion out of the spatial singularity, so the temporal course of the expansion of the 



 
 

104 

universe as a whole, figured in figure 57, would turn out. The course of the expansion-
velocity of the wave-front (figure 56) corresponds, up to the maximum at 0.851661c, to the 
one in figure 21 and 22. Up to a radius of 1.978 m with 7.747 ns, it's about a quantum 
universe, after that about a gravitational universe. As border-criterion has been assumed the 
equality of world-radius and uncertainty x for the electron (372;2).  

 
 

         
Figure 56 
Velocity of the wave-front at the total-world-radius K 
 

 
Figure 57 
Quantum universe and gravitational universe 
 
 
4.6.4.2. Energy of the metric wave-field  

 
What happens then now with the energy „consumed“ in R0? In section 4.3.2. we have 

proven that the MLE is showing a non-adiabatic behaviour. It is this an irreversible process, 
that off-goes by absorption or emission of energy. We will already exclude the first case, 
energy-absorption, from obvious reasons. The second case, a process, that proceeds under 
energy-emission, remains. One possibility would be the conversion into mechanical work, 
another, the conversion into electromagnetic radiation (heat). The first case, conversion into 
mechanical work, doesn't come into question, since there is no change, neither in 
temperature,  nor in entropy. 
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Also, there are no material bodies, at which said work could be performed, since we 
considered empty space only until now. We'll now assume, that the energy doesn't vanish 
anywhere but it's emitted into space as cosmologic background radiation (CMBR) instead: 
 
 

 
V. The energy released with the expansion of the metrics is emitted as cosmic 

 background-radiation into space.. 
 

 
 
It propagates according to the legalities derived in section 4.3.4.4. with light speed as 
overlaid interference of the metric wave-field. A part of this radiation-energy is transformed 
in the course of expansion into particles as well as material bodies, that fill our space little 
by little, so that it is no longer empty. Details are reserved to a later section. This matter  
however doesn't have a noticeable effect on the metrics as whole, since its mass is far below 
the mass of the metric wave-field. The interferences of said field, caused by the material 
bodies, also propagate with speed of light and are cause of the gravitative interaction. 
According to [24] statement VI is described by the energy-conservation-rule of the 
MAXWELL equations 
 

  div   =  0w S i E div0w0  divS          (374) 
 
In this case 0w0w is the shift of the energy-density, S the POYNTING-Vector, i the current-
density and E the electric field-strength. This process should still take place even today then. 
However, on reason of the extreme Q-factor, the amount of the emitted energy would be so 
low that it is factually not verifiable then. 
 
 
 
 
4.6.4.2.1. Energy of the MINKOVSKIan line-element (MLE) 

 
Let's have a look at the discrete MLE first. The energy of the electromagnetic radiation is 

defined as W0 = 0. As well  as 0 are functions of time and place. First, we want to figure 
the temporal dependence. Under application of (363) we obtain: 

 

W0  =     
 ̂̂ 
i

4 t
      =        1H       =       Q0H      =               (375) 

 
Everything in all a very simple expression, that doesn't allow further simplification. This 
applies, if we assume the expansion-centre as zero of a purely temporal coordinate-system. 

 appears interestingly enough. The course is 
-energy (Q  =  1/2):   
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ˆ ˆ 

i

4 t i

      =       i i       =     4 1 1     =      4,4508·10131 Js   (376) 

 
No  MLE’s exist at an earlier point of time. If we want to figure the spatial dependence 
(figure 59), we have to rearrange (375) a little bit. We replace 0 = c/r0 :   

            (377) 
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Figure 58 
Energy of the MINKOVSKIan line-element  
temporal dependence 
 
 
The third expression in (377) clearly shows that ħ is also a moment of momentum as well as 
a part of the definition of mechanical and electromagnetic energy. On the basis of the 
quadratic expression in the denominator the energy of the MLE is always defined positively, 
even behind the spatial singularity. The course immediately behind the particle-horizon as 
well as the one up to the event-horizon is figured in figure 60 and 61. 
 

 

 
 

Figure 59 
 Energy of the MINKOVSKIan line-element  

spatial dependence up to the particle-horizon 
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Figure 60 

Energy of the MINKOVSKIan line-element 
 spatial dependence at the particle-horizon 

 

 
Figure 61 
Energy of the MINKOVSKIan line-element 
spatial dependence up to the event-horizon 
 
 
4.6.4.2.2. Power dissipation 

 
According to our model (figure 12) a power dissipation Pv appears at the impedance R0. 

This is a function of time again and should be, according to assumption VI., reason for the 
cosmologic background-radiation. Since we don't know exactly, as Pv behaves, whether it 
suffices, like hitherto, to consider the average value only, we first want to put the exact time-
function. It applies: 
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   (378) 
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Figure 62  
Square of the Bessel function of  
1st order during the first period 

 
 
 

  
Figure 63 
Power dissipation of the MINKOVSKIan 
line-element during the first maximum 
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Minima and maxima are fixed only by the Bessel function. The first two periods are 
interesting particularly. Therefore, in figure 62 is first figured the course of the Bessel 
function alone, since, because of the rapid decrease of amplitude, it's impossible to recognize 
the null in the representation of the entire function (figure 63). The estimation yields 15 t1 
for the first and 50 t1 for the second null. 

 
Exactly seen with both maxima it's only about the first period, since a frequency 

duplication is caused by the square. We have to do with a case here, at which it's necessary 
to calculate with the exact time-function, as already indicated in the previous section. The 
course of power dissipation during the first maximum is mainly determined by the quotient 
in front of the Bessel function. No similarities exist with figure 62. The median- and energy-
value have been determined by numerical integration using the »Mathematica«-function 
NIntegrate. There is a problem in that the power dissipation is directed against infinity in the 
zero point. As attempts with the lower integration-limit emerged, the integral converges to 
the value stated in figure 63 fortunately. 
 

Before we examine-on the first maximum, let's have a quick look at the second one (figure 
64). One can see that as well the power as the energy of this maximum is far below the first 
one (–21.6 dB= 1/143). That means: If the cosmologic background-radiation is really the 
action of the power dissipation, accumulating in R0, so it is (almost) exclusively the first 
maximum, the qualities of this radiation are defined by. Conceivably, an action of the second 
maximum can be proven yet with the present-day technical methods. 

 
 

 
Figure 64 
Power dissipation of the MINKOVSKIan  
line-element during the second maximum 
 
 

We want now to examine the first maximum more. It's about a discrete impulse with a 
defined length T incipient in the point t = 0. The LAPLACE-transformation is at the best 
suitable to it. With it, one first determines the figure-function G(p) as already done in section 
4.3.2. Using the transition p   + j  we are able to determine the spectrum of our impulse 
then. With a single-impulse, we get a continuous spectrum. Since we doesn't know the 
figure-function of (379) and, to the transformation, would have to solve the convolution-
integral with (143) first, what works out quite difficult, we will choose another way: We 
split the function into 64 discreet values calculating the figure-function with help of the Fast-
FOURIER-Transformation (FFT). The current FFT-algorithms are been suitable to it, as e.g. 
the »Mathematica«-function Fourier[{List}]. With it, we must however multiply either the 
result or the initial-values with the root of 2 , since it's about a LAPLACE-transformation.  
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As a result, we get a list of 64 complex values in turn, with which the last 32 ones 
correspond to negative frequencies. The first value corresponds to the DC component and 
after transition to . We want to take up an estimation of bandwidth and Q-factor. We set 

 = 1 therefore (resetting). First, we calculate the amounts of the figure-functions however. 
These are figured in figure 65 and 66 (only positive frequencies k = 2π/T).  

 

 
Figure 65 
Continuous spectrum (first maximum) 
 
 

 
Figure 66  
Continuous spectrum (second maximum) 
 
 
Simultaneously, the transfer-functions of a loss-affected oscillatory circuit of 1st order with 
different Q-factors are figured. We can take up an estimation of the bandwidth of the 
cosmologic background-radiation with it. For the transfer-function applies: 
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       (380) 

 
v is the discord, Q the Q-factor of the oscillatory circuit. For the first maximum, the Q-factor 
is at 1/2, with the second maximum at 1. The curves does not quite come to cover. The cause 
is the low resolution (64 values) on the one hand, on the other hand the fact that the 
cosmologic background radiation is no longer a minimum-phase-system. In this case, the 
phase-information has to be co-considered, which we have not done as well. According to 
[26] p. 341  each non-minimum-phase-system allows to be splitted in a minimum-phase- and 
a non-minimum-phase-share. For latter one, one gets with help of the evaluation-function 
ln coth |(ln / x)/2| a corrected transfer-function, with which lower frequencies are higher, 
higher frequencies are lower evaluated. We don't want to pursue this here further however, 
since the results are enough for an estimation. 

 
The Q-factor of 0.5 corresponds exactly to the circumstances at the point of time t1/4 as 

well as r1/2, just at our coupling-length. We want to notice this at first. With the second 
maximum, we have to do it with a larger Q-factor. That means, should the emission of the 
cosmologic background-radiation occur „continuously“ according to the quantum-
mechanical understanding, we would have to do it with a very narrow spectral-line at the 
present point of time, which overlaps in the area of the maximum of the cosmologic 
background-radiation. Unfortunately, many other spectral-lines are in this area at 178 GHz, 
caused by organic radicals like e.g.  CN–, CH3–, so that a proof is difficult. Now we want to 
specify an approximation for the present point of time by application of (220). The emitted 
power follows the time-function sin2x with the effective-value of Pv approximately then, this 
can be derived on several manner: 
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That corresponds to a present-day value of 9.6437·10–9W. At the above-mentioned 
frequency, it would correspond to an emission-rate of 7.53·1013 photons as well as to the 
„creation“ of 64 hydrogen-atoms per second by one single MLE. But the cosmologic 
background-radiation amounts only to 500 photons per cm3 approximately. This is 
apparently a contradiction. Before we try to solve this contradiction, we want to deal with 
the hitherto known qualities of the cosmologic background-radiation. 

 
 
 

4.6.4.2.3. Qualities of the cosmologic background-radiation 
 
If you ask somebody, what the cosmologic background-radiation actual is, so most have 

already heard about it. Investigating further then, you they say that the radiation-tempera-
ture, whatever that may be, is about 2.7K or at 3K or somewhere between and somehow, 
that this radiation has something to do with the big bang. The following calculations are 
based on a value of the HUBBLE-parameter of 75.9 kms–1Mpc–1. The actual temperature of 
2.725±0,002K (Wikipedia) measured by the COBE-satellite rather suggests a value of 
H0 = 72 kms–1Mpc–1 (see also section 7.5.3. and [46] here in the annex). That are altogether 
very vague data. As technician I’m especially interested in details like e.g the frequency die 
and first of all the field strength. Hardly I cannot syntonize my receiver to a frequency of 
3K. But that doesn't matter. With these few specifications namely, you can already calculate 
everything yourself. Now let’s do this. 

 
The cosmologic background-radiation disposes of three further essential qualities: Firstly 

it's isotropic, secondly it's not polarized and thirdly it's black, as has been determined with 
detailed examinations clearly. The third quality is especially important. The cosmologic 
background-radiation seems to behave such as would it be emitted by an ideal black body. 
On the basis of this quality, the PLANCK's radiation-rules can be applied. However, with 
thermal radiation, it’s not about a discrete spectral-line but with a steady spectral-function. 
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The intensity of the radiation-field is a function of the frequency being clearly described by 
PLANCK's radiation-rule: 

 

dSk    1
4 2  

3

c2  

1

ekT 1
 es  d         PLANCK’s radiation-rule    (382) 

 
T is the temperature here and es the unit-vector. For the case of very low temperatures ( » 
kT) changes (382) into the WIEN radiation-rule (approximation). But it’s no mistake to 
calculate always with (382). We want even to do this. Only to the information: 

 

dSk    1
4 2  

3

c2  e kT
 es  d             WIEN radiation-rule     (383) 

 
The course of intensity for a temperature of 2.866324K (H0 =  75.9), this value will be specified 
later, is depicted in figure 67 (curve 6). We can see, there is a definite maximum. This on the 
other hand, can be determined with the help of WIEN’s displacement law:  
 

max  =   kT  = 2.8214393721 kT       WIEN‘s displacement law   (384) 
 

Furthermore interests the integral of intensity over the whole frequency range [Wm−2], the 
POYNTING-vector. That’s the STEFAN-BOLTZMANN radiation law:  

 

S k    W d     T 4es     
2k4T 4

60  c2 3  es      STEFAN-BOLTZMANN radiation law (385) 

 
with  = 5.669·10–8Wm–2K–4. Furthermore, in figure 67 I superimposed the frequency 
response of an oscillating circuit with the Q-factor of 0.5 (curve 1). Because of the 
logarithmic presentation a multiplication of the frequency response with the maximum value 
resp. an attenuation (damping) corresponds to a displacement in y-direction only, so that we 
can already make a comparison without knowing the value itself. Thus, curve 1 corresponds 
to the emission spectrum at the moment of in-coupling into the metric transport lattice. I 
choosed the maximum value such, that both curves come to cover. 

 
We can see, it’s possible to achieve a full coverage of both curves in the lower domain.  

But there is a descent at the higher frequencies of the CMBR-spectrum, which does not 
correspond to the behaviour of such an oscillating circuit. Maybe, that could be the result of 
the upper cut-off-frequency of the metrics. To the verification we need the exact frequency 
the CMBR has been emitted with, in order to determine the value z of redshift. This 
frequency must be somewhere in the range of 1. The upper cut-off-frequency really would  
come into effect in this case (see also [46]). On the one hand that follows from the length T 
of the first maximum, on the other hand we have to do it with two frequencies, which are 
changing temporarily according to different functions. There is once the metric wave field 
with ω0~t−1/2~Q0

−1, and the CMBR with ωk~t−3/4~Q0
−3/2 on the other hand. These functions 

must have intersected each other at some point in the past having the same value ω. 
 
Let's simply consider the problem as puzzle. The bandwidth of the LAPLACE transform of 

the first maximum suggests a Q-factor of 0.5. This would correspond to the conditions at the 
point of time t1/4 with Q0.5 = ½, ωU = ω0.5 as well as r1/2, just our coupling-length. The 
frequency to this point of time amounts to:  

 
    (386) 

 
This doesn't correspond to the value, that results from the impulse-length of the first 
maximum, but it is in the magnitude then again. Now the conditions at this time are shaped 
by a very large uncertainty and a part of the emitted frequencies are, because of the large 
bandwidth, anyway above, others below (386), so that it is well possible that the in-coupling 
of the cosmologic background-radiation takes place right at this point of time with exactly 
this centre frequency.  
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Figure 67  
Intensity of the cosmic microwave  
background radiation with approximation 

 
The following contemplations for the in-coupling apply to the CMBR particularly. Maybe 

it seems to be a little bit complicated, but it’s just a model, which should reflect reality as 
well as possible, not the other way around. Now — up to the moment t1/4 of input coupling, 
the already emitted energy exists as a free wave. The conditions at this point of time are  
analyzed in detail in section 4.6.5.2. »The aperiodic borderline case«. Now there's going to 
be the construction of the metric lattice and the signal is coupled in. with the input coupling, 
a compression of the wavelength occurs i.e. an increase in frequency about the factor  due 
to a rotation of the coordinate system about 45°, die we have done in section 4.3.4.3.3. (the 
metric wave moves in r-direction, the overlaid signals in x-direction).  

 
Furthermore, the metric wave, as well as the energy to be coupled in, exist side by side up 

to the moment t1/4, both with ω0~ωU~t−1/2~Q0−1. But with the in-coupling ωU ωs the 
temporal dependence changes into ωs~t−3/4~Q0−3/2. This results in a transformation 
corresponding to a multiplication by a factor ⅔, comparable with the transition from one 
medium to another with different refraction indices.  

 
But there is yet another, additional effect: In section 4.6.1. we found, that a cube with the  

edge length r0 contains four MLE´s altogether. Hence, the energy must be divided among 
these four MLE´s. With it, the in-coupling frequency decreases additionally with the effect, 
that ωs is smaller than ω1/2 now. The first two effects are depicted in figure 68a. The split we 
have to take into account elsewhere. 

 
Altogether, to the frequency at the moment of in-coupling the following factor is applied 

ωs = ⅔  ωU ⅔  ω1 = 1 0.4714 1 =  6.59542·10103s–1. With respect to the 
energy hU U = 4 h1 1 only a share of 94.28% incorporated, since  is neither rotated, divided, 
nor transformed, it is a property of the metric wave field itself. The split has no effect onto 
the energy balance. The 94.28% relate to a coefficient of absorption of εν = 0.9428 ⅔ . 
Therefore we are dealing with a gray body [47]. The black body is only a model, which 
doesn’t exist in nature. The reflected share yields a further decrease of ωs and with it even of 
ωk. So we also have to multiply with εν.  

 
Now to the transfer itself. According to (278) is the frequency of time-like vectors 

proportional to  ~ t−3/4. That equals  ~ Q−3/2  for the Q-factor. We do the following ansatz: 
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The factor 2  has nearly the same size as the factor 2.8214 from WIEN‘s displacement law. 
We can see, that it’s better to relate to 1 or U. The components z1b are describing the 
frequency related, the z2b however the energy related redshift. For k we obtain a value of 
1.0614521·1012s–1.  Curve 1 in figure 67 corresponds to the signal s redshifted by (2Q0)3/2 
with the frequency response of a 1st order filter with in-coupling. Except for the decline in 
the upper-frequent range it is identical with k. Curve 6 shows the course of a thermal 
emitter with the temperature of 2.86632K. That’s exactly the temperature of a gray emitter 
with the frequency k. 
 

Now we want to assume that the decrease with higher frequencies is actually caused by 
the existence of a cut-off frequency. Then the intensity of the cosmologic background-
radiation should trace exactly the PLANCK's radiation-rule. The fundamentals of the 
solution already have been compiled in section 4.3.4.4.5. However, the exact proof is 
somewhat more complicated. First it's necessary to determine the time-function of the 
frequency (302), incipiently with t1/4 up to the event-horizon 2T. Then we must employ it in 
the expression of amplitude response (150). I would like to postpone the exact calculation to 
a later date [46], especially since a very good approximation can be achieved by an 
approximative solution.  
 

We have already realized that even a single MLE owns a fixed cut-off frequency (147). 
During propagation, only the active-part A( )·cos  with  = B( ) is been transferred (real 
part). Thus we exactly get the value g = 2 1, it applies  =  /(2 1). With more exact 
contemplation we can see, the cut-off frequency may become effective in the first moments 
of propagation only. Let's have a look at the moment of in-coupling now:  The signal ωs 
(curve 1) is multiplied with the frequency response A( )·cos  after in-coupling. As a result, 
we obtain curve 2, which already comes very close to the PLANCK-curve. Now the signal is 
transferred to another MLE, at which point the frequency has decreased to a value of s /  
within this period. We now re-apply the frequency response to the signal obtaining curve 3 
(We considered the frequency to be constant at the presentation scaling up the upper cut-off-
frequency accordingly instead). Curve 3 comes even closer to the targeted result. 
 

 

 
 
Figure 68  
PLANCK's radiation equation and approximation 

Figure 68a 
In-coupling process 

Planck’s  
Radiation Equation 
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We repeat the entire process twice again obtaining graph 4 ( s /1) and finally graph 5 ( s /2), 
which figures a very good approximation of PLANCK's graph. For reasons of clearness I have 
figured graph 5 and the comparison-graph (black emitter) separately once again (figure 68). 

 
It could be so just thoroughly that PLANCK's radiation-rules are really the result of the 

existence of an upper cut-off frequency of the vacuum. In this connection is to be paid 
attention to the fact, that that, which is applied to time-like vectors emitted directly after the 
big bang, must apply to time-like vectors, emitted at a later point of time (e.g. today) too. 
With time-like vectors, it is impossible to determine exactly, when and where they have 
been emitted. Since no vector can be marked with respect to a second one, each thermal 
emission must run according to the same legalities (PLANCK's radiation-rule) then. It remains 
only to determine, which way the cosmologic background-radiation has covered up to the 
present point of time. By insertion of (389) in (309) we obtain for the distance r: 
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The cosmologic background-radiation has covered the distance of the local world-radius 

precisely, just coming from the edge of our local universe. Temporally seen, it's coming 
from the time immediately after big bang. With it, we have defined the distance to the event-
horizon precisely. This one is equal to R as well as 2T. Just, there are exactly two 
singularities/horizons within our local universe (and even r0 and r1) In the distance R/2 = cT 
there is the particle-horizon. This is identical to the inner SCHWARZSCHILD-radius. In the 
distance R = 2cT there is the event-horizon. This is identical to the outer SCHWARZSCHILD-
radius. 

 
 

 
 
Figure 69  
World-model with the course of space- 
and time-like vectors 
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Time-like vectors proceed on world-lines, that come from the particle-horizon. After  
transit through the point of zero they run into the direction of event-horizon asymptotically.  
By the way this agrees well with the energy W0 of the discrete MLE, that gains a maximum 
in the particle-horizon (maximal emission). Therefore the particle-horizon figures a singular 
point for time-like vectors, whereas the event-horizon forms a singular surface. 

 
Space-like vectors however proceed contrary to the direction of time-like vectors on 

world-lines coming out of the event-horizon (expansion-centre) directed to the particle-
horizon after transit through the point of zero. The event-horizon forms a singular point, the 
particle-horizon a singular surface for space-like vectors (figure 69). The metric wave-field 
itself is a space-like vector, as the name already says. Also the explanation of the opposite 
signs of phases- and group velocity is here. Now the summary once again: 

 
 

 
VI. Each time-like vector behaves as if it would come out of the particle-horizon  
 being directed to event-horizon. That also applies to the cases of incomplete or  
 interrupted vectors. 
 
 Each space-like vector behaves as if it would come out of the event-horizon  
 being directed to particle-horizon. That also applies to the cases of incomplete  
 or interrupted vectors.. 
 

 
 
These conclusions would also explain the most recent obtained results of the examination 

of coherent photons (entanglement, tunnel through with „warp speed“). The photons move 
on the same time-like world-line being coupled via the vacuum, not via the metrics. The cut-
off frequency of the vacuum would be even an explanation for the question: Why does our 
universe mainly contains „normal“ matter instead of antimatter or both? Antimatter as 
autonomous solution of the field-equations has an inherent-frequency, that is above the 
frequency of the metric lattice, while the frequency of „normal“ matter is below. With it, the 
formation of antimatter has an inferior probability then, as a result of the existence of the 
cut-off frequency (symmetry-breaking), which leads to the contemporaneous circumstances 
of today. 

 
According to our model, emission should take place with exact the frequency of the 

cosmologic background-radiation, even later. But the frequency of the MLE´s only traces 
the function n = /Qn  ~ Q–1. In case of an emission with the frequency of n (now 0) then 
again, the cut-off frequency would not become noticeable and the spectrum should rather 
look like graph 1. Furthermore, the bandwidth would become extremely narrow then. Now it 
would be possible that each thermal emission, coming directly out of the vacuum, is taking 
place with the frequency s, just without influence of the metric lattice. On coupling into the 
metric lattice, just an immediate red-shift with frequency-response-adjustment (emission-
red-shift) occurs to the adaptation on already existing vectors. 

 
Examples would be on the one hand direct particle-reactions (strong interaction) but also 

thermal emissions being generated on thrusting processes of particles (heat-radiation) on the 
other hand. To it, it would need the energy (mass) of the particles to be essentially larger 
than the hitherto assumed /c2 Let's assume the above-mentioned model, which assigns an 
inherent-frequency below 0, just 0– , to the normal particles, but an inherent-frequency 
above ( 0+ ) to the antiparticles, we would even have the higher energy then.   

 
On interaction-processes with or via the metrics there only the difference-frequency has an 
effect then (and only , see further below), due to this red-shift, so that the shape of new 
particles needs only the amount of energy . The left-over is added by the metrics. In the 
opposite case (annihilation), even only this amount of energy is being released then. The 
frequency-response-graph at 2 1 would be the one non-linear graph, which is necessary to 
the form of sum- and difference-frequency, then. Since sum- and difference-frequency occur 
always together, according to cos  cos  = [cos( – ) + cos( + )]/2 there's even always 
going to be pair-creation. 
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By what such an immediate red-shift can be caused? Let's assume the metrics to be still 
connected via the length r1/2 with the vacuum even nowadays, so that are about the same 
conditions, as with the determination of the temporal dependence of wavelength in section 
4.3.4.4.1. (277) and (278). There, we have done a transformation from a singular, purely 
temporal, to a space-temporal coordinate-system, with which we obtained the expression  

 ~ Q0
3/2 This however exactly corresponds to the red-shift of the cosmologic background-

radiation of the first moments of expansion. On this occasion, the empty space corresponds 
to our temporal, the metrics to the space-temporal coordinate-system (without metrics no 
space). During the coupling into the metrics, the same transformation, as in section 
4.3.4.4.1., still takes place just even now. The immediate red-shift of time-like vectors also 
can be considered as the introduction of an additional fourth dimension, the time. If we 
observe a process out of the metrics, always all four dimensions need to be transformed. 

 
With it, yields  ~ Q–3/2 also for the frequency arrived in space (CMBR-frequency). 

Because during this transformation all frequency-relations remain, the same conditions 
(bandwidth like with Q = 0.5) for each point of time result. With it, our model is confirmed 
and we casually explained the active principle of the WIEN displacement law and the 
PLANCK's radiation-rule on the basis of this model. To the better overview, the particular 
frequencies are figured in table 3 once again: 

 
 
 

Emission frequency  (H0=75.9) U 2.79820 10¹ s–1 fe 4.45347 10103Hz 
Imission frequency  (H0=75.9) s 6.59541 10103s–1 fs 1.04969 10103Hz 
CMBR-frequency  (H0=75.9) k 1.12584 1012s–1 fk 179.18259 GHz 
CMBR-frequency  (H0=72.0) k 1.09639 1012s–1 fk 174.49511 GHz 
CMBR-frequency  (COBE) k 1.00675 1012s–1 fk 160.23 0.1GHz 

 
Table 3 

Frequencies of the cosmic  
microwave background radiation 

 
 
 

4.6.4.2.4. Emission-rate, energy 
 
 
We have determined the frequency-relations of the cosmologic background-radiation. 

With it, we have noticed that the red-shift z gains a value of (2Q0)3/2 after input coupling. In 
ciphers, it are 5.858·1091. Calculated from the output-frequency 2 1 on, the red-shift even 
amounts to 12 Q0

3/2. With it, the power arrived in space (CMBR-power) Pk no longer equals 
the power dissipation of the MLE and we have to change (381) accordingly: 
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ˆ ˆ 
i

48 Q0

3
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2Q0

3
2        1
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H2

Q0

               PT  = 0.5503 Pk   (392)  

 
The real power PT results from the surface-ratio of the PLANCK graph (6) and the output-
graph (1). I determined it by numerical integration. Then the CMBR-power (new emission) 
corresponds to a present-day value of PT = 2,1307·10–101W. With the above mentioned 
frequencies k and T the emission-rate n calculates as follows then:   
 

  nT  
?
    0.5503  

H2

0

      1.795 10 79s 1   (393) 

 
That corresponds to approximately 1.43·10–91 hydrogen-atoms per second caused by a single 
MLE. This value is more believable than the preceding one in any case. As more exact 
examinations emerge, also this value is still too high however. Inside a sphere with a radius 
of 1m namely, in conformity with (342), approximately 2·10104 line-elements are positioned. 

nk  
?
     H2

0
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So, the emission of approximately 3.6·1025 photons as well as 2.86·1013 hydrogen-atoms per 
second would still occur there even nowadays (without consideration of the fermion-/boson-
ratio). This is apparently wrong. Expression (395) is just not yet complete. Hitherto, we regarded 
the frequency-caused red-shift only. However, there is an additional energetic red-shift as well, 
caused by the decrease of the value of PLANCK's quantity of action. 

 
The emission with a frequency of 2 1 within the vacuum on the niveau r1/2 is not the only 

peculiarity. Simultaneously, the value 2 1 of PLANCK's quantity of action at the point of time 
t1/4, is applied instead of the „normal“ . It gets lost again during transformation however. 
So the additional red-shift resulting from it does not have an effect onto frequency but only 
to the emission-rate. The energetic overall red-shift just amounts to 12·Q0

5/2. Expression 
(391) reads correctly: 
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    nT     0.5503  

H2

1

      2.38 10 140s 1   (395) 

 
With it, we get the final values for the present emission. Now this has a value of PT = 

2.825·10–162W only. The emission-rate is about 2.38·10–140 photons per second caused by one 
single MLE. That is one single photon per year within a ball with a radius of 1.884 million 
km (1.26AU).  For the shape of hydrogen-atoms, the frequency is too low anyway. These 
values agree with the observations the best as well as are the most believable ones. The 
difference between the values of (392) and (394) equals the introduction of the fourth 
dimension, the time, again. 
 

In section 4.6.4.2.5. we will determine, that the metrics beside emission according to 
(394), also takes in energy (dielectric losses), whereby the magnitude is essentially greater 
than the emission. That means, the emission of cosmologic background-radiation to the 
present point of time is equal to zero. 

 
That with the emission-red-shift energy quasi „gets lost“ is no contradiction. Even with 

the normal cosmologic red-shift, energy goes „lost“. Really, the energy doesn't go lost 
indeed, it only does not become effective, because the energy of time-like vectors is 
depending from the valid frame of reference after all. Summarizing, we can write once 
again: 

 
1. The emission doesn't take place with a frequency of 0, but always with 2 1 

2. The emission-value of PLANCK's quantity of action is 2 1 
3. The metrics is connected with space via the length r1/2 even nowadays 
4. With the emission, the full power dissipation becomes effective  
5. The output-signal is superposed with the frequency characteristic (382) and a red-

shift, so that only a fraction of the energy is transferred by the metrics 
6. Cause of the red-shift is a coordinate-transformation 

 
The conditions, that have on hand with the emission of the cosmologic background-

radiation (2 1, 2 1, r1/2, Q=1/2), applies not only in this case but with all processes  taking 
place without participation of the metrics like e.g. mutually impacts of particles and also the 
strong interaction. If there's going to be emission of photons in this connection, so these are 
red-shifted in the same way, as the cosmologic background-radiation (Macroscopically, we 
are observing the red-shifted values only). 
 

nk      H 2

1
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4.6.4.2.5. Field-strength of the cosmic microwave background-radiation 
 
Having clarified the energy- and power-relations at a discrete MLE, also the 

electromagnetic field-strength is of interest. Let's look at the field-strength of the cosmologic 
background-radiation first. We want to assume the present conditions to be the result of the 
1st maximum with the energy We= 2.8967·10131J, which have been coupled in by one 
discrete MLE at the point of time t1/4 into the metric lattice established just now. The 
coupling-length is r1/2.  

 
Although an apportionment onto four MLE´s occurs with input coupling, at which point 

the frequency decreases about the factor 4, with simultaneous multiplication with the factor 
⅔ , that adds up to 6 versus , the energy-density remains constant, since the other three 
MLE´s also generate photons, which are coupled into the other ones. Only a multiplication 
of photons occurs with constant energy-density. This results directly from the energy-
conservation-rule. Let's look at the single MLE first. The approximation of We results in: 

 

5.05.01111e
2      222     8  W       (396) 

 
The fraction results from the qualities of the Bessel function. The energy is smaller than 

the energy of the MLE to that moment. Then, the energy-density amounts to: 
 

w0   
8 2

r1

3

1 1       2 10419 Ws
m3       (397) 

 
In order to take up a comparison with the field-strength of the cosmologic background 
radiation (spherical coordinates), we have to convert this amount accordingly. The ratio in 
volume between a cube with the edge length r0 and a ball with the same diameter amounts to 
π/6. Thus, the cube contains 4, the ball ⅔ π MLE´s on average. This result can be obtained 
even from (342). We just have to multiply (397) with π in order to get the actual energy-
density. We get the electromagnetic field-strength by multiplication with c then:  
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     (399) 

 
this value corresponds to a level of 4401.61 dBpWm–2. Now, we want to calculate the 
current level. First, a geometrical attenuation Ag ~ r–2 occurs. Because of r ~ Q0 applies 
Ag ~ Q0

–2. Furthermore, an attenuation appears due to redshift as well as an energetic 
attenuation by decrease of . Redshift and energetic attenuation amount to A  ~ Q0

–5/2 in total. 
Since this attenuation appears both in x- as well as in y-direction (with propagation in z-
direction), it'll be altogether A  ~ Q0

–5. With it, the total attenuation is A ~ Q0
–7. Now, let's 

assume the red-shift of the field-strength to be equal to the red-shift of the wavelength 
(144Q0

5). This is not applied to the geometrical part however. Here, the redshift has only a 
value of (4Q0

2). The current electromagnetic field-strength, just the POYNTING-vector, would 
have the following value then: 
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c2 2 W             0.1809

27 r Q 27 Q mkS
44

1 0 01 0 001 000001 1c1 11 1c
          (400) 

 
This value corresponds to a level of 112.547 dBpWm–2. Now we still have to subtract the 

attenuation by dielectric losses, as described in section 4.3.4.4. It amounts to 
8.686 dB/R = 1 Np/R for the electric field-strength and is an additional geometric attenuation. 
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On the basis of the definition of the decibel, the same amount is applied to voltage and 
power. Since we have to do it with two directions (x and y), we calculate with the square of 
the value, obtaining a value of 2·8.686 dB/R according to the logarithmic rules. Finally, we 
get a target-value of 95.20 dBpWm–2, that is 1.981 mWm–2 resp. 0.864 Vm–1. Actually, the 
field-strength amounts to 66.8074 dBpWm–2 only. The difference of 30 dB can be attributed 
to the fact, that a part of the cosmologic background-radiation has been converted to matter 
in the course of expansion, a more inferior part even into heat, mechanical or 
electromagnetic energy with a different wavelength during interactions with the very same 
matter. 

 
Now we want to examine, whether we succeed with the derivative of an estimation of the 

present boson-/fermion-ratio from this difference. Even a calculation of the average matter-
density should be possible. 

 
 

  
Value 

 
Poynting vector  

 
dB 

 
Energy density 

 
SSymb. 

 
Definition  

 
Number/m33 

Start 4.835 10419Wm–2  4401.61  1.450 10428 J m–3 we Emission — 
Target now 1.981 10–3Wm–2  95.20  1.1056 10–11J m–3 wk Total — 
Actual now 4.797 10–6Wm–2  66.81  1.5990 10–14J m–3 w  Bosons 1.350·108 
Difference — —  1.6567 10–11J m–3 wM Fermions 0.2220 
Density — —  1.845 10–31g cm–3 n /nM Ratio 6.080·108 

 
Table 4 
Field-strength and energy-density  
of the cosmologic background-radiation 

 
 
With the calculation of the fermion number I assumed hydrogen to be the most prevalent 
element in the cosmos. The table has been calculated as follows: 
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2         (401) 

 
ma is the atomic mass-unit. The value of 6.080·108 obtained for the boson-/fermion-ratio is 
very close to that one, determined with other methods. E.g. in [4] a value of 6.486·108 is 
declared, which is only 1.06 times larger. Now, to the determination of the boson-quantity, 
we have consulted even only the photons of the cosmologic background-radiation. In reality 
of course, there are also photons, which have nothing to do with it, stemming from 
interaction-processes or which have been originated by annihilation of matter and antimatter. 
A considerable part of the cosmic radiation-spectrum e.g. is stemming from super-nova-
outbursts. Therefore, we have to correct the boson-number slightly upward, the fermion-
number downward, approaching the value of [4] more and more. The results obtained are 
another sign for it that we are close to the reality with our model. 

 
Finally, we already want to specify an estimation of the average-matter-density within our 

„closer“ surroundings, i.e. approximately 0.01R. By the assumption that all matter and 
radiation within the universe (with exception of virtual particles) has been generated by the 
cosmologic background radiation exclusively, the calculation results in the following value 
(including mass of radiation): 

 
28 3 31 3

G 2 1.230 10 kg m 1.230 10 kg dm
c

( )kw
       (402) 

 
In [4] a value of G ≈ 10–30kg·dm–3 is specified, which agrees very well with our value by the 
way. In our model, the matter-density doesn't have that influence on the property, whether 
the universe is closed or open, as with other models, since also the density is a function of    
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time and space in it. The temporal and spatial dependencies are depicted in figure 70 to 72. 
The density is defined as follows: 
 

4 4 2
1 0 0 0

G 4 7 3 2
0

Z1  0.0030526065
6e cQ c R

4 4 2
1 0 0 00.00305260651 0 0

4 4
0 00 0Z0 01 0 0       (403) 

 

 
 
Figure 70 
Temporal dependence of average matter-density  
considered from the point of time of the input coupling on 

 
 

 
 
Figure 71 
Temporal dependence of average matter-density  
considered from the beginning of the gravitational-universe on 
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The factor e–4 arises from the dielectric attenuation, e is the EULER constant here. Now we 
just have to substitute for Q0 as before: 
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Figure 72 
Spatial dependence of the average  

matter-density at the point of time T (nowadays) 
 
 
To the moment of in- coupling, there is also a maximum matter-density, which achieves a 

value of approximately 3.0991·10397
 kg dm–3, once again inclusive radiation. Before this point 

of time, there is no metrics, i.e. no space and therefore even no density. With densities above 
1.61429·1058

 kg dm–3 quantum effects become effective with a magnitude of the entire 
cosmos resp. the entire area with this density. This is closed outwardly then. 

 
Furthermore it is of great interest, if there is a constant boson-/fermion-ratio over the entire 
period. We cannot yet make any statement about it to the present point of time however. 
Probably, it remained unchanged at least during last time, leading to the statement that also 
the mass should be subject to a certain red-shift 
 

However two contradictions result from it. At first, the shape of the fermions ought have 
taken place immediately after the input coupling. Because of the high temperature ruling at 
this point of time, these would not be able to exist according to the classic understanding 
however, i.e. they would immediately be reconverted into radiation. We will examine an 
approach to the solution of this problem in the next section. Because PLANCK's quantity of 
action is time-dependent, namely the fine-structure-constant, by which the action-profile of 
interaction of matter and radiation is determined, is changing too. At the point of time of the 
input coupling, it would be so small, that actually no interaction would take place, i.e. the 
photons would behave just like neutrinos nowadays. 

 
The second contradiction exists with our initial hypothesis that particles as spherical-

symmetrical solutions of the field-equations don't change. With constant boson-/fermion-
ratio namely also the mass of the fermions would be subject to the same red-shift as the 
cosmologic background-radiation. Considering the relationship  = mc2 at which  
corresponds to the DE-BROGLIE-frequency, it's plausible. Even according to the special and 
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universal relativity-principle, the mass is not constant at all but depends on the space-time-
coordinates and the gravitational-potential at the place of observer. 

 
Here, one should refer to the model of the previous section once again, in which the 

particles without metrics are being always in the state as in the moment t1/4. In this case, 
antiparticles have a mass and inherent-frequency greater than, „normal“ particles lower than 
the cut-off frequency of the vacuum. From it, also the symmetry-breaking results, leading to 
a universe, consisting of „normal“ matter mainly. In this state, all particles remain, unless an 
interaction occurs. The new particles possibly originated with it, are also formed with such 
qualities, as they prevail at the point of time t1/4 (2 1, 2 1, r0/2, 1/2 etc.). The essential point 
is now, that the observer himself is a captive of the metrics and therefore only the „shadows“ 
of the real conditions, just the red-shifted relative mass like e.g. mp can be observed 
(PLATO's cave parable). This and not the absolute mass is a function of space and time then.  

 
 

 
 
Figure 73 
Mass-red-shift at the example 
of the proton 

 
To it, however it's necessary, that the frequency of the metric wave-field shows the same 

red-shift, as the frequency of the cosmologic background-radiation (for  it's guaranteed 
anyway), so that the frequency-ratii remain constant too. To the frequency 0 ~  Q0

–1 is 
applied. Additionally, another difference exists with the propagation-velocity, that amounts a 
value of Q0

–1/2 in the approximation. That'll be altogether Q0
–3/2, as with overlaid waves. The 

principle of such a red-shift is figured in figure 73.  
 

Here the metrics acts as a lens, we are looking through at the real conditions. The resolution 
amounts to /2 exactly. The magnification- or better reduction-factor is changing with time 
but it's also a function of space and of the gravitational-potential. With a Q-factor of Q0 = 1 at 
the point of time t1 a phase-jump appears, the phase rate of the metric wave-field has a zero-
transit (figure 23). Therefore, the frequency is defined negatively before this moment and 
positively after it. 

 
But how there shall going to be such a lens-effect e.g. with a proton? The particle as such 

is embedded into the metrics, is even permeated by the metrics. If now a red-shift e.g. of the 
mass should occur, the metrics around ought to show certain properties, that lead to a red-
shift. Namely, if we would work with the normal metrics of empty space, there wouldn't be  
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such redshift anyway. By the way, the red-shift ought to achieve this value, for which the 
light requires a distance from the „edge of the world“ up to us,  very quickly, within a very 
small distance to the particle. 

 
In [29] I found a very good model for it. There NANSTIEL describes a similar model, in 

which the universe is composed of elements with the dimensions of PLANCK's fundamental 
length (smallest increment). These elements he describes as bare singularities. Therefore his 
model doesn't essentially differ from my model, though the PLANCK's smallest increments 
are seen as particles only as well as particle-like. Either there aren't bare singularities in my 
model, since they own an event-horizon in the distance r0 . In reality, PLANCK's fundamental 
length, which is identical to the MINKOVSKIan line-element (MLE), owns both wave- and 
particle-properties. In his model NANSTIEL describes an object, be called graviton, which 
reflects very well the active-principle of the above-mentioned on-site-red-shift. It is, 
provided with one or two modifications (It's not my opinion that this graviton is a matter of 
quantum of the gravitational field here), figured in figure 74. Rather the MINKOVSKIan line-
element itself is the quantum of the gravitational-field with the additional feature that it 
forms also the space. This is actually plausible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 74 
Structure of the metrics 
in the vicinity of a particle 
by analogy with NANSTIEL 

 

 
 

 
In accordance with NANSTIEL, free fundamental lengths have the endeavour to roll up 

around itself as well as around particles. Let's assume more final case, so this could really be 
the cause for an on-site-red-shift. The particle is in the basic condition (Q0 = 1/2). With the 
electromagnetic and gravitative interaction, the action must take the detour across the rolled-
up metrics, with which above-mentioned red-shift occurs then. In truth, the action goes the 
direct way along the curvature-gradient of course. At each new plane there's going to be an 
adjustment of the frequency-ratio, so that total-red-shift really achieves the above-mentioned 
high value, just much more quickly. The curvature ascends with decreasing distance to the 
particle, but it does not become infinite anyway. 

 
During the strong interaction, action uses the direct way without aid of the metrics. 

However, the particles must be located so densely together then, that there is going to be a 
total displacement of the metrics. The fundamental physical constants are having the value 
as in basic condition (Q0 = 1/2) in this case. 

 
 
 
 
 
4.6.4.2.6. Temperature of the cosmologic background-radiation 

 
While the temperature of the metric wave field is equal to zero, that’s not the case for the 

CMBR. Since it’s nearly about black radiation (εν = 0,9428 ⅔ ), we are able to calculate 
the black temperature indeed, but we want to keep working with the gray temperature. By 
rearranging of (384) and inserting the energy related redshift z22 = 12 εν Q0

5/2 from (389) we 
obtain for U = 2 1: 
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That’s the temperature of the CMBR in consideration of the frequency response (see figure 
75). Because the value  is extremely near to the magic , that’s only 0.25% above , we 
want to keep working with the approximation (405b) for the CMBR, the more so as we get 
an extremely simple expression thereby. As later calculations will show, we will get even 
closer to the COBE-measurement, than with (405a). Btw. expression (405b) would 
correspond to an exact solution, if we would have turned about 44,8586° only, instead of 45° 
during in-coupling — also possible. That would be just another quantum-caused inaccuracy, 
this time for the universe as a whole. 
 

 
Figure 75 
Temporal dependence of the radiation-  
temperature of the CMBR (linearly) 
 

 
 
Figure 76 
Temporal dependence of the radiation-temperature of the 
CMBR considered from the point of time of input coupling on 

1.80543
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The temporal course is depicted in figure 76 to 77. Similarities exist to the energy-density1. 
We will renounce the presentation of the spatial dependence, since it shows similarly too. 
 
 

 
 
 
Figure 77 
Temporal dependence of the radiation-temperature of the 
CMBR considered from the beginning of the gravitational-universe on 
 
 

 
 
 
 
 
 

4.6.4.2.7. Field-strength of the metric wave-field 
 
Next we want to consider the field-strength of the metric wave-field. In difference to the 

cosmologic background-radiation, the relations are not quite so simply because of the 
complex propagation-impedance and the propagation-velocity different from c. So, the 
expression c = 0r0 applies only for the approximation equations. Here applies c = 0r0 and 
r0 = r1Z0

2/ZF
2 with r1 = 1/ 0Z0. Normally, the POYNTING-vector is defined as S = E . With a 

complex approach however according to [26] applies: 
 

1 Re
2

*S E H          (406) 

 
Re is the real-part, H* the conjugate complex time-function. The direction of the POYNTING-
vector is always that of the propagation direction. E and H we had defined as: 

 
(1)
0 0

ˆ H 2 tiE E       (2)
0 0

ˆ H 2 t*
iH H       (407) 

 
But this definition is only applied to a purely temporal coordinate-system (there is no 

expansion), as e.g. we can find it at the expansion-centre (coupling-length). With it, 
expression (237) as approximation equation becomes physically pointless. Now, we want to 
have a look at the relations from the point of view on which we stay, from the metrics, 
however. 
                                                 
1 It’s based on a value of the HUBBLE-parameter of 75,9 kms–1Mpc-1. The latest temperature measured by the COBE-satellite of 2.725±0.002K 
(Wikipedia) concludes H0 = 72 kms–1Mpc-1. See also  section 7.5.3. 
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First, we replace  with 2πS1, for better calculation. Then we have to correct (407) as 
follows: 

 
1 F 0 0 0 02 S Z J 2 t jY 2 t EE e      (408) 
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Now, there is another difference in the propagation-velocity in reference to the normal 

case however. We have to multiply the expressions with the fraction c/|c|. Following 
substitutions apply (M0(x) is the module of the Hankel-function and identical to the 
amplitude of the associated Bessel function):   
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The definition of  can be found in (209). Now, there is to pay attention to another anomaly 
however. The electric and the magnetic field-strength is defined per meter. With a red-shift 
caused by the anomalous propagation-velocity, even the „meter-rate“ is changed (stretched), 
so that the total-red-shift will be determined by the square of the product of (411) and (412) 
overall (without S1). Under application of (406) we finally get for the amount S0: 
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The approximative solution has been found by trying. Because of r0 ~ Q0 the POYNTING-

vector is also proportional to r0–4. with it. This is the double geometrical attenuation because 
of the transformation of the propagation-velocity (ever twice per dimension), just as 
expected. By the way,  no imaginary-part appears in this case (blind-power), so that we can 
omit the Re[x] in (406). Now we want to determine the absolute value of S1 using the 
following approach: 

 
      (415) 

 
      (416) 

 
e is the unit-vector, q0, 0  u0 and i0 are time-functions. Finally, we get: 
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Expression (417) only contains effective-values. The factor 1/2 has been integrated into the 
definition of S0 with it. But there is an aberration in reference to (413) and (414). The value 
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S0 of (417) is proportional to Q0
–5 (as with overlaid photons) in contrast to Q0

–4 in (414). The 
reason for the difference is the temporal dependence of the PLANCK'S quantity of action. In 
the approximation applies   Q0

–1. In section 4.6.4.1.1. we had already tried to find an exact 
time-function for it. We however do not use any function figured there but rather another. 
The problem was indeed, that PLANCK'S quantity of action is a median value, which was not 
yet defined in the first moments after big bang. Even,  is a special quality of the metric 
wave-field. If the metrics doesn't exist or does not yet have been established completely, 
even there is no PLANCK'S quantity of action as well as it would have a smaller value than 
depicted in section 4.6.4.1.1. Therefore we will use the following exact time-function: 

 
   

–1
1 0 0 0 0 1 0 1.253314 t M 2 t     Q–1
1 0 0 0 0 1 0 1.253314 t M 2 t     Q11 0 0 0 01.253314 t M 2 t  1 253314 t M 2 t 1 0 0 0 00 00 0 0 0            (418) 

 
The value h1 and the factor 1/2, turning out by expansion of 2 0t are however already 
contained in S1, so that the correct versions of (413) and (414) read as follows: 
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With it, the initial value S1, being applied as well for the exact function as for the 
approximation, results to: 
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Figure 78 
Temporal dependence of the electromagnetic field-strength  
of the metric wave-field exactly and approximation 

 
 

The approximation-value of S0 to the point of time of input coupling (S0.5) is exactly 35 
times larger than according to the exact formula. With it, the field-strength of the 
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cosmologic background-radiation to this point of time would be approximately as large as 
that of the metric wave-field. This one and the field-strength of the cosmologic background-
radiation here can be traced back to the same function (figure 63). The function 
corresponding with figure 63 is the impulse-response of the empty space to a DIRAC-impulse 
as origin of the universe then. Cause of the DIRAC-impulse on the other hand is one single 
powerful quantum-fluctuation. 
 

Perhaps even this is the reason why the shape of fermionic matter occurs at all. The metric 
wave-field can take in only a specific amount of energy, so that the left-over condenses 
inevitably in form of fermionic matter. Let's assume, that e.g. only the half of energy can be 
coupled in as radiation, the solid matter forms from the rest. Then, the ratio of both would 
not be identical to the present-day one however. Because of the strong red-shift there's 
quickly going to be, that the metrics is in the situation to take in more radiation-energy 
however. 

 
Because of the low effective cross-section (to the point of time of input coupling it is 

equal to 1), with the initially ruling high temperatures, but only a fraction can be re-
converted to radiation, so that quickly adjusts the prevalent ratio of nowadays. The course of 
the electromagnetic field-strength of the metric wave-field (exact and approximation) in the 
first moments after big bang is shown in figure 78. One realizes that there is still no metrics 
to the point of time of big bang. It first forms just after it. 

 
As next we want to determine the energy-density of the metric wave-field. Since the 

POYNTING-vector and the vector of propagation-velocity have the same direction, we can 
calculate with the absolute values. In this case, an essential difference exists to classic 
contemplations however. We are used that the POYNTING-vector and the energy-density with 
technical problems are joined together solidly (the proportionality-factor is 1/c). But with the 
metric wave-field it is not the case. Here we have to divide by |c|.  

 
Even here, we can use w1 for both, approximation and exact solution simultaneously 

again. Additionally to the division by |c| (to the definition of w1 we set |c1| = c) we must take 
up the transformation for the meter-rate, namely for the third spatial dimension. That does 
altogether 2  0 t 0 M0 (2 0t). It applies 1.253314 2 =   
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w0     w1  2 0t r 6             Approximation         (423) 

 
The course of the energy-density precisely and the approximation is shown in figure 79. The 
approximation equation has been determined by trial once again. We would obtain the same 
expression even from the energy of a discrete MLE (~Q0

–2) under consideration of the 
geometrical dilution (~Q0

–3) and the shift of  (~Q0
–1).  

 
There is a significant difference to the approximation in the time just after big bang. The 

energy-density of the metric wave-field initiates with zero. Then it ascends quickly, gaining 
coincidence with the approximative solution, coming from infinite, descending together with 
it then. The maximum has been achieved to the point of time of input coupling. In 
comparison with the power dissipation (figure 63) one can recognize, that the energy from 
the time immediately after big bang has been used for the construction of the metrics. Once 
completed, the excess has been emitted into the metrics i.e. coupled in. Here, it deals with 
red-shifted values again, just like we observe them from inside the metrics. 

 
Now we can finally state a solution for the problem (374), the energy-conservation-rule of 

the MAXWELL equations. Here there's not much point in it, to calculate with approximation 
equation. For that purpose, let's look at the derivative of the energy-density first. Admittedly, 
even an analytic solution exists for it, however it's so complicated, that the time needed to 
calculate it would be essentially greater than the one of numerical methods. For the sake of 
simplicity we will calculate with the difference-quotient therefore ( t = 0.0001t ). It applies: 
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Figure79 
Temporal dependence of the energy-density of the  
metric wave-field exactly and approximation 
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The value of ẇ1 we get by differentiation of the approximative solution (423) after time 

and subsequent check-up. The factor 3 stems from the exponent of the time of the energy-
density (it’s proportional t–3). Now to the expression iE. For |ZF| ≈ Z0 and i = 0E applies:  
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Here we insert consciously the square of (411) without additional correction for  as well as 
q0

2. Since the MAXWELL equations shall be LORENTZ-invariant indeed, the correction in (426) 
on both sides should cancel itself. With the following contemplations, we would get a sort of 
reference-frame-independent result then (There is only a shift of the point of view of the 
observer on the time-axis). However, I am not quite sure in this point, specifically with this 
application. But now we want to insert the values in (374) obtaining finally:  
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According to definition, a positive value of the energy-flow-density-vector div S0 
corresponds to an emission of electromagnetic energy. The expression w· 0 (figure 80) gives 
information about the energy-balance of the metrics overall. One sees, first energy is taken 
in, which is required to the construction of the metric wave-field. Later the total-energy-
density decreases again and tends against +0. 
 

 

 
 
Figure 80 
First temporal derivative of the  
energy-density of the metric wave-field   

 
 

 
Figure 81 
Temporal course of the energy-flow-density- 
vector and ohmic losses of the metric wave-field   

 
Especially interesting is the energy-flow-density-vector div S0. Even this part is negative 
initially. This corresponds to an influx. Then, energy is emitted again. This is the cosmologic 
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background-radiation. But this step in evolution is very short, as already determined in the 
previous chapter. With a Q-factor of 1.5975, the energy-flow-density-vector has a further 
zero-transit. Energy is taken in again, even if the amount tends asymptotically against zero. 
These are nothing other than the dielectric losses during wave-propagation of overlaid 
photons. Just no energy gets lost. 

 
With large-scale values of t, the expression w· 0 (becomes small with respect to the other 

ones, so that we can neglect it. Then applies: 
 

    for  t » 0    (431) 
 

4
0div (2 t r)

30S (2 tt0
1w    Approximation       (432) 

 
Now we want to examine, whether the share 0E2 for the metrics really corresponds to the 
in-taken energy of the cosmologic background-radiation. An essential criterion for it is, that 
as well the share of the metrics 0E2 as the one of dielectric losses of the cosmologic 
background-radiation 0REK

2 have the same temporal course. It applies: 
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       CMBR     (434) 
 

     Metrics     (435) 
 
 
The electric field-strength-vector of the cosmologic background-radiation EK is subject to 
the geometrical dilution only, caused by the expansion of space. Here is the „meter-rate“ 
stretched once again. An adaptation of velocity is not necessary, since the background-
radiation always propagates with speed of light and our observations take place with speed 
of light too. Since only the red-shifted conductivity of the vacuum 0R (see 4.3.4.4.2.) 
becomes effective for overlaid waves, the same temporal dependence arises for large t 
indeed.    

 
In normal case (positive energy-flow-density-vector), the share E2 corresponds to  

ohmic losses, that lead to an additional diminution of the energy-density. A positive share 
div S0 especially describes the energy-(away-)transportation through the electromagnetic 
field. If the energy-flow-density-vector becomes negative (energy-influx) however, so this 
energy either can be added to the electromagnetic field or be changed into other energy-
forms. Because of w· 0 0, only the second case is possible. Since the appearance of such a 
share means a conversion into other energy-forms in general (in a conductive medium 
always a part is changed into other energy-forms) arises the question from it, into which? 

 
Once let's be able to tell the energy-relations by the look of us more exactly, so these are 

situated approximately in the area of the difference between debit- and true-field-strength of 
the cosmologic background-radiation. That means that the energy E2 would be fully 
transformed into „solid“ matter, while the share div S0 would be joined with the cosmologic 
background-radiation in principle.  

 
The particle-formation already begins with the beginning of the expansion then. The 

metrics is fully developed to the point of time t1/4 approximately and starts to emit radiation-
energy (cosmologic background-radiation) thereupon. However, it would also be possible 
that the metrics builds itself with the overlaid background-radiation in one piece quasi 
together.    

 
Approximately from the point of time 2.552t1 on the metrics commences to re-absorb a 

part of the energy of the cosmologic background-radiation again (dielectric losses). This is 
changed completely into matter then. Here, we just have answered the question, whether still  
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cosmologic background-radiation is emitted to the present point of time. The answer is no. 
However, there are areas in the universe (particle-horizon) in those an emission takes place 
even „nowadays“. 

 
If we completely assign the share E2 to the shape of matter on the one hand, the share 

divS0 to the emission/annihilation of electromagnetic radiation on the other hand, so it 
should be possible to determine the temporal course of the Boson-/Fermion-ratio. With the 
same red-shift for radiation (bosons) and particles (fermions) the following expression 
would arise for it: 
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The integration-constant has been determined with help of the function FindRoot under 

the condition that the integral is equal to zero in the maximum of w0, the integral E2 by 
numerical integration (NIntegrate). The associated temporal course is shown in figure 82. 
 

 

 
 
Figure 82 
Integrals of energy-density and dielectric  
losses of the metric wave-field 
 
 

The calculation of (436) results in a course of the boson-/fermion-ratio, as it is pictured in 
figure 83. One recognizes, it turns out a value 6.080·108 being much greater than determined 
in section 4.6.4.2.5. But with increasing age it decreases again approaching a value of 
2.3864·1012 to the present point of time asymptotically. 

 
The reason is that the fermion-number created by the process 0E2 of the metric wave-field 
is not equal to the total fermion-number. The creation process of fermions taking place 
immediately after big bang does not form particles, as they occur today most frequently 
(electron, proton, neutron) but highly excited states of super-heavy subatomic particles, as 
we still not know them at all. However, these particles are having the characteristic to decay 
into a multiplicity of smaller and lighter subatomic particles with change of the outer 
relations. As a result the fermion-number increases continuously or discontinuously and the 
graph in figure 83 descends much more intensive.     
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Figure 83 
Part of the boson-/fermion-ratio, determined by the metric wave-field  
as a function of time without consideration of the fermion-multiplication 
 

We cannot make any more exact statements about the magnitude of the multiplication. We 
consider it by an additional factor , which we merge into expression (436) as follows: 
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It turns out a value of  = 2.5939. With high probability, the fermionic matter formed by 

the metrics doesn't amount the total fermionic matter however. Namely, there is another 
second process, with which fermions can be formed too. The existence of such a process is 
substantiated by the following contradictions: 

 
1. The aberrant boson-/fermion-ratio. 
 
2. The metric wave-field is established over a time period of t1/4. Energy is taken in 

during this time continuously. To go out from a singular agitation in form of a 
DIRAC-impulse, the energy of this impulse should have to be buffered somewhere 
for this time period at least. 

 
3. The function according to figure 83 has a negative domain, which equals to an 

annihilation of bosons. However, these already must have been existed previously, 
because where is nothing, even nothing can be destroyed. 

 
4. The prior existence implies a prior formation, to assume an empty universe to the 

point of time T = 0 by exclusion of a „creation“ of fermionic matter. 
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This process have to see temporally be before the formation of the metrics and to start 
with the point of time T = 0. It would be also reason for the additionally generated fermionic 
matter then. However, now the question arises about which process it could be. The simplest 
case for such a process would be the solution of the MAXWELL equations for a loss-affected 
medium without expansion according to 4.3.4.2, just the classic solution. On the basis of the 
high value of the specific conductivity 0 of the vacuum this solution would have 
degenerated so strongly that the response to a DIRAC-impulse would be one single impulse, 
which would fit into our temporal screen very well. We want to call this impulse primordial 
impulse. The qualities of such a primordial impulse we will examine in the next section. 

 
 
 
 

4.6.5. The primordial impulse 
 
 

4.6.5.1. The DIRAC-impulse 
 
We assume an unique agitation by a DIRAC-impulse (t). This impulse is actually no func-

tion but a distribution with the following qualities: 
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(t) is the jump-function with the amplitude 1. Another essential quality results from the 

second expression:   
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The integral as well as the surface below the DIRAC-impulse is equal to 1. On the basis of 
(439) even the LAPLACE transform is equal to 1, which corresponds to a continuous 
spectrum, which shows the same amplitude, namely 1, over the entire frequency domain 0 ≤ 

 ≤ ∞. The bandwidth is infinite with it. 
 
We just assume this impulse as base of our reflections. It comes closest to the 

imaginations of a big bang too. Since it is about a degenerated case, we want to try to find a 
solution of the MAXWELL-equations for it. First, we have to quantize the space for this 
purpose. We assume our model 4.2.1. expression (70) however without expansion: 
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Since we not yet know the quantization-factor, the coupling-length, we want first to assume 
it as r1/n. Then, the „components“ are defined as follows: 
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         (445) 

 
This leads to the following characteristic differential equation: 
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     Characteristic equation  (449) 
 

     (450) 

 
The solution of the differential equation is dependent on (450) and with it on n. For n < 2 we 
obtain the standard solution according to 4.3.4.2. and for n = 2 the aperiodic borderline case. 
That means for values n ≥ 2, a wave-propagation is no longer possible because the solution 
of expression (450) has no imaginary-part respectively there is no phase rate  defined. Of 
course, even no phase velocity exists.   
 

 
 

4.6.5.2. The aperiodic borderline case 
 
 
Since we have already examined the case 4.3.4.2. in detail, we now want to consider the 

aperiodic borderline case (n = 2) more exactly. Generally applies then: 
 

                     (451) 

 
Interestingly enough, the same coupling-length r1/2 arises here as with the metric wave-

field. Also the frequency U is the same like the output-frequency of the metrics and of the 
cosmologic background-radiation. Obviously all interactions can be lead back on one and 
the same conditions, as they have been with the coupling-length r1/2. With it, one can 
assume with high probability, that the primordial impulse has the same coupling-length too. 
Because of the special conditions as they rule in cosmology, an exact proof is nearly 
impossible however. Rather we are always dependent on certain assumptions and can only 
check, whether the results agree with the observations or not. 

 
 
The middle expression of (451) is advantageous in so far as it allows an exact temporal 

comparison of primordial impulse with the metric wave-field and with the cosmologic 
background-radiation. Quite broadly seen the condition r1/2 (Q = 0.5) seems to represent a 
sort of basic condition of the „empty space without metrics“. Since the concept „empty 
space without metrics“ has appeared already frequently being somewhat hard to handle, we 
want to call it subspace in the future. It is to be supposed that also the subspace disposes of 
something like a structure. 

 
Now let's go on to the solution of our differential equation. With the initial conditions 

(0) =  we get the following solution for the aperiodic borderline case: 
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         (452) 
 

     (453) 

 
     (454) 

 
        (455) 

 
 
For the transition    we must insert the coupling-length here again (453). The 

problem now is that we don't know the value of  Therefore, we can first make general 
contemplations only. Possibly the values can be derived from the boson-/fermion-ratio. 
However, with the aperiodic borderline case, it is also about a borderline case for the classic 
MAXWELL model. This is less valid for the field-strength itself as especially for the energy-
density. 

 
 
With a periodic function, the spectrum consists only of one single frequency with defined 

propagation-velocity. Therefore the value and the shift of the energy-density, as well as the 
energy-flow-density-vector can be described by this model very well. In the present case 
however the „signal“ consists of one discrete impulse of defined length with a continuous 
spectrum, whereby the different shares propagate with different velocities. Therefore, there 
is no definite energy-density, rather an energy-density-distribution, which is highly 
dependent on frequency, distance and time. This is not applied to solution 4.3.4.3.1. which is 
nearly periodic. The temporal course of solution (455) is shown in figure 84. It corresponds 
to the requests put in the previous section (energy-storage up to the formation of the 
metrics). 

 
 
 
 

 
Figure 84 
Temporal course of the POYNTING-vector 
of the primordial impulse at the point r=0 
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4.6.5.3. Spectral-function 
 
Since it's about a discrete impulse, which is defined from the point of time t = 0 first, a 

continuous spectral-function arises. We obtain it by solving (447) with help of the LAPLACE-
transformation once again. The initial conditions f0

(0) =  and f0
(1) = 0 we gather from the 

preceding section. 
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          (457) 
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The retransformation leads to expression (452) again then. We are interested in the spectral-
function however. As a result of the substitution p  j  we get the frequency response of the 
medium (actually the amplitude-density), which is simultaneously our searched spectral-
function in this case (DIRAC-impulse = multiplication with 1). Neglecting the factor 1/ U 
(amplitude-density) and scaling to the factor 1 at  = 0 we finally get ( U =  / U):  
 

        Complex spectral-function  (459) 

 

  Amplitude response scaled (460) 

 
The real-part of (459), the amplitude response of the magnetic flux and even the electric and 
magnetic field-strength, is painted in figure 85 and 86. 

 
 

 
Figure 85 
Scaled spectral-function of the electric as well as of the 
magnetic field-strength of the primordial impulse (linear scale) 
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For the POYNTING-vector, we must square (459) and (460). The 3dB-cut-off frequency is 
situated at 0.776 U as well as 1.552 1. This agrees with the cut-off frequency for photons, 
overlaid to the metrics, very well (figure 20) which stands as further argument for it, that the 
coupling-length is also r1/2 at the primordial impulse.   

 
 
 

 
 
 

Figure 86 
Scaled spectral-function of the electric as well as of the 
magnetic field-strength of the primordial impulse (logarithmic scale) 

 
 
 

4.6.5.4. Energy-density 
 
 
We obtain the energy-density by division of the POYNTING-vector by the propagation-

velocity. But it must be determined primarily for that purpose. Since it's about a single 
impulse with defined length, there is no uniform propagation-velocity, because the 
individual spectral shares propagate with different velocity. Frequencies below U behave 
according to the standard-model 4.3.4.2. (classic solution for a loss-affected medium). In this 
connection, the propagation-velocity is depending on the frequency (178). The higher 
frequency, all the higher velocity. It doesn't exceed the value of c however. 

 
For frequencies above U there is no propagation at all, albeit their energy stays  within 

the area of the metric wave-field for a certain time. The higher frequency, all the shorter the 
half period, just all the more inferior the average temporal amplitude-density. Also applies 
on the other hand, the larger frequency, all the larger energy. Therefore, we want to see, 
whether there is a median value, that it suffices, to regard in order to determine the total-
energy-density. We don't actually want to know more at the moment. We first look at the 
energetic spectrum to it. That is the weighted amplitude-density. We get it by multiplication 
of (458) with the frequency. The course is shown in figure 87. 

 
It shows, that the low frequencies have practically no share at the energy-content of the 

impulse. Considered about the entire frequency domain a median value can be found, which 
has the quantity 1. 
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Figure 87 
Energetic spectrum of the electric as well as of the  
magnetic field-strength of the primordial impulse 

 
With the POYNTING-vector, the maximum is situated at 4/3 by the way. The average 

temporal amplitude-density on the other hand is identical to the scaled amplitude response 
(figure 85). If we form the quadratic median value of both, so we get the course painted in 
figure 88. 

 

 
Figure 88 
Quadratic median value of energetic and average temporal 
amplitude-density (E- and H-field) of the primordial impulse 

 
The quadratic median value of energetic and average temporal amplitude-density is situated 
at U as well as 2 1 (aperiodic borderline case). So it is suitable the best to the determination 
of the average energy-density of the primordial impulse. Now we want to determine the 
propagation-velocity for this case and want to look at another solution of the MAXWELL 
equations to it. 
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4.6.5.4.1. Solution of the MAXWELL equations for the aperiodic borderline case 
 
 
At first, we proceed like in section 4.3.4.2. but with a different approach for the magnetic 

and electric field-strength: 
 

curl H =   E         curl  E =   – 0      (461) 

 
     (462) 

 
For the first derivative of the magnetic field-strength applies (always analogously for E): 

 

      (463) 

 
We also require the second derivatives once again: 

 

        (464) 

 
Now, we can insert into (461) with 0 U = 2 0: 

 

curl  H    0 0 U  

Ut
1 Ut

 E     0  1 Ut 2 0 Ut
1 Ut

 E       (465) 

 

curl  H    0  
1 Ut
1 Ut

 E          curl  E    0 U  

Ut
1 Ut

 H   (466) 

 

curlcurl H    curl  0  
1 Ut
1 Ut

 E     0  
1 Ut
1 Ut

 curl  E    H   (467) 

 

   (468) 

 
On propagation in x-direction only re-applies: 

 

          (469) 

 

               (470) 

 
 

The factor  is inapplicable on mapping to the metrics, which propagates in an angle of 45° 
to it. There is just even a solution for this special-case. With the interpretation however, we 
must be very carefully. Since the solution is all-real, a propagation-velocity is not defined. It 
is rather about an expansion-velocity, as we had also already found it at the discrete 
MINKOVSKIan line-element (57): 
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Figure 89 
Expansion-velocity of primordial impulse and  
of the MINKOVSKIan line-element No. 1 

 
 

 
 
Figure 90 
Expansion of primordial impulse and the MINKOVSKIan  
line-element No. 1 as a function of time 
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Also, the temporal validity of the solution is strongly restricted. Let's compare the two 
expressions stated in (471), so the course should have to be almost identical at U « 1 We 
can well recognize this in figure 89. It is applied to the expansion of the primordial impulse 
as well as to the radius of the MINKOVSKIan line-element No. 1 (figure 90) too. That is the 
first line-element, in which the entire energy of the universe has been concentrated at the 
beginning. 

 
Up to the point of time t1 the expansion of the primordial impulse is approximately 

identical to that of the line-element No. 1. Then the primordial impulse exceeds the limits of 
the first line-element. Still a noticeable overlap survives however. Meanwhile, new 
adjoining line-elements, which now can also gather energy from the primordial impulse, 
have already been formed by wave-propagation. At the latest from this point of time on, 
expression (471) becomes invalid, since we are concerned with the superimposition of two 
subsystems, which are coupled together. 

 
However, we can assume that the primordial impulse doesn't cross the outer limit of the 

universe. Even a balance of different local energy-density-values occurs over the metrics. 
Then, the same propagation-velocity for the primordial impulse like for the metric wave-
field would apply (210). 

 
 

4.6.5.4.2. Determination of the average energy-density of the primordial impulse 
 
The average energy-density is calculated by division of the expression for the POYNTING-

vector (455) by the value of the propagation-velocity (210): 
 

 

 

2 2
08 t2 2 2

0 0 0   t(1 4 t ) eU w w       with  
S
c

w      (473) 
 
The course is shown in figure 91. It shows, that the lifetime of the impulse amounts to 3 t1 
exactly. After it, the entire energy has been transformed into other forms. The second zero-
transit of the function div S0 is at 2.55 t1. With it, the model fulfils the demands with respect 
to the buffering of the energy of the DIRAC-impulse. However, it must be pointed out once 
again, that it is only about an approximation. The real relations are essentially more 
complicated. 
 

 
Figure 91 
Average energy density of the primordial impulse 
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Now, we can reapply the energy-conservation-rule of the MAXWELL equations in order to 
determine the magnitude of w . But now we are concerned with an „oversupply“ of energy 
at which point the outflow div SU doesn't emerge in the accustomed manner but from the 
absorption capacity of the metric wave-field –div S0. The surplus energy is also converted 
into fermionic matter then, making it even more difficult to make a moderately reliable 
statement about the boson-/fermion-ratio for the time period immediately after big bang. It 
applies: 
 

 
divf Uw w0Sdivf Ud vw wdivf UdivdivdivS   2

0Efw fwf
22

0EPower density fermion generation   (474) 
 
 
With help of (474) at least the lower limit of w  can be determined. It results from the 
assumption that the value of (474) must not become negative. At the metric wave-field, there 
is a negative domain, in which energy has got from the primordial impulse. With the 
primordial impulse itself that won't work any longer, because we otherwise should have to 
„borrow“ energy from the nothingness. The course of (474) for several values of w  is 
shown in figure 92. The first derivative of wU has been determined with the help of the 
difference-quotient once again. 
 
 

 

 
Figure 92 
Power-density of the fermion-generation at the primordial impulse 
 
 
 
As lower limit for w  a value of 0.8533 w1 arises here. The upper limit can be derived from 
the boson-/fermion-ratio (438) assuming the fermion-multiplication-factor to be equal to 
one. Attempting to determine w  exactly, we observe that this is impossible, since the 
integration-constant of dt

e
dtuw  can't be determined. 

 
The reason is that our average energy-density in figure 91 tends to infinity at the point t = 0 
Our model just fails in this point. However, it's anyway only about a rough approximation. 
Hence, the most probable assumption is w  =w1. As substantiation may apply, that, if energy 
is converted into other forms, the total-energy-density does not change anyway. The second 
substantiation is: The metric wave-field does not yet exist at the beginning. However it 
propagates with approximately the same velocity like the primordial impulse. Here, also the 
phenomenon of the infinite velocity to the beginning becomes clear: A not (yet) existing 
field may propagate with infinite velocity perfectly well, at least mathematically. 
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Unfortunately, further statements can't be made. Also, a determination of the total-energy of 
the universe is impossible.     

 
 

5. Light speed 
 
 
In section 4.3.4.4. we achieved good results with the calculation of the cosmologic red-

shift in that we assumed the photons propagating rectangular to the expansion-graph of the 
metrics (figure 34). The frequency results from the product of the local growth of 
wavelength (growth of world-radius), caused by the expansion of the MINKOVSKIan line-
element, and the local propagation-velocity of the metrics cM. In the approximation applies: 

  

    (475) 

 
with = 1 and = 1 for the cosmologic background-radiation. Otherwise, even other 
values can be written here. But this is right in the approximation only and corresponds to the 
case that the angle of intersection  between time-like and metric vector in the triangle 
always amounts to π/2. However, in the time just after big bang and with it also with strong 
gravitational-fields and/or very high velocities it's no longer about a right angle indeed. 
Then, a completely other behaviour arises with the addition of speeds. 

 
First, we want to examine the relations more exactly, as they prevailed to this point of 

time as well as near the singularity. Before however, our model of the photon, just as we 
know it today, needs to be expanded a little bit. Until now, we assumed the photon to own 
the spin ±1 (± ) and the frequency ± , which leads to the result, that the photon is identical 
to its antiparticle (– )(– ). A negative frequency just does not cause any difficulties here. 
Now we have seen further, that the metrics for photons behaves like a conduction and the 
conducting-theory calculates not only with negative but also with complex frequencies.    

 
The question is now, why it should not be so even in the theory of the photon? So, 

recently a lot of models have been worked out, being based on the assumption that the rest 
mass of the photon and even of the neutrinos could be different from zero. But exactly this, 
according to the rules of the theoretical electrotechnics, corresponds to the introduction of 
complex frequencies (comp. section 5.3.2.). According to this model, the rest mass of a 
photon arises to m = H/c2 = 2.886·10-69 kg. This agrees with the statements in literature 
very well. 

 
Purely mathematically seen, there is also a so-called longitudinal as well as a purely time-

like photon (don't confuse with the time-like photon described here, with which the concept 
time-like refers to the propagation direction opposite to that of the space-like photon) in the 
solution of the wave-equation of the photon. These two conditions are also called ghost-
conditions and are eliminated by means of laborious mathematical methods. That may be 
applied to the purely time-like photon. What's about the longitudinal photons however? Is 
there anything similar in nature? 

 
Really, there are the neutrinos, which show the same qualities like photons in general. But 
they are propagating in form of a „corkscrew-graph“. Let's assume simply, that these 
longitudinal photons are the very same neutrinos. Then, they would be photons which occur 
twisted about the angle π/2 in reference to the propagation direction of the photons, i.e. they 
would propagate around the angle π/2 to the propagation direction of the photons (part c ). 
How that could look is demonstrated in figure 93 and 98. The neutrinos would have an 
imaginary frequency and a real spin with it. That would lead to an imaginary energy too 
(blind-power). The neutrinos could perform practically no work then and the intersection 
angle with the metrics would become virtually zero, the effective cross-section extremely  
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Figure 93 
Extended photon model 

 
 
small. Exactly that are the qualities of the neutrinos however. The propagation-velocity c  in 
propagation direction of the photons would become extremely small too (cM), which would 
lead to the above-mentioned corkscrew-graph, because even in this case the geometrical sum 
is equal to c. 

 
It shows, even here the corresponding neutrino has an antiparticle, which is identical to 

itself (antineutrino and anti-antineutrino). Now however, there are actually three different 
types of neutrinos ( e,  and ). But what's the difference between these three kinds of 
neutrinos? The answer is: it's energy, frequency and/or character phasing. Neutrinos are only 
formed by kernel-processes ( -decay, weak interaction). Therefore, because of quantum-
effects, the variance of energy is limited to the very same three quantities.   
 

The hypothesis, that all three kinds of neutrinos are actually only different states of one 
single particle, is substantiated by the recently executed neutrino-detection-experiments. So, 
it has been determined that the detected neutrinos, ordered by its direction of arrival, are not 
uniformly distributed. The number of neutrinos, which have traversed the earth's core before 
detection, is more inferior, than that, coming from other directions. Thereby has turned out 
that these does not have been „vanished“ by e.g. (weak) interactions with any baryons but, 
that they have been converted into other kinds of neutrinos which cannot be detected with 
the experimental arrangement (neutrino-oscillation). 

 
How can this happen? The neutrinos already differ in a second quality from the photons, 

the spin. While the photons have an integer spin, they are bosons, the neutrinos have a half-
integer spin, they are just fermions. As long as the neutrinos move in the vacuum, this 
quality is insignificant. In the earth's core, they move through matter however. Even if the 
effective cross-section for collisions with individual baryons is no much larger, as in the 
vacuum, so an essentially greater probability arises after all that the neutrinos hit an electron 
shell, especially since the earth's core is compressed very strongly and with it also the 
electron shells. 

 
And in the electron shell, the fermion-qualities are suddenly no longer insignificant. If 

now two neutrinos move through an electron shell in common, they cannot occupy the same 
energy-state simultaneously. One of the two neutrinos must subordinate and shift to a 
different energy-condition, i.e. it's converted into a different kind of neutrino. Therefore, the 
three kinds of neutrinos are actually different resonances of one and the same particle. This 
would be possible with e.g. a double or triple rotation-velocity with the same wavelength. 

 
Whenever a particle-physicist reads these lines, he will probably have a good chuckle, 

because we want to lump even neutrinos and photons together. We must first discuss the  
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problem with the spin for this purpose. I personally do not see any problem in assuming the 
spin to be a function of the phase-angle of the propagation-function of the particle anyway. 
Even if the neutrinos should have a rest mass different from zero (this would be equal to the 
one of the photon then and actually be caused by the metrics), also the neutrinos would have 
a complex frequency and with it even a real spin, i.e. the spin could take on fractured values 
too. This would be a particle with properties between photon and neutrino then. 

 
Now such particles have not been observed until now, since they are not usually formed 

with natural processes, but they would be quite possible. According to this model, they could 
have existed just after big bang and should have to be observed near black holes even today. 
That would be nor more implausible than some non-local model. One example would be 
photons with circular polarization with a very high rotation-frequency around the 
propagation-axis. 

 
However, this model implies also the existence of a so-called space-like photon, that is a 

photon with negative propagation-velocity. That means it propagates „opposite to the propa-
gation direction“, just quasi stands still on it's position forming a standing wave. There is 
also something similar in nature, namely the so-called DEBROGLIE-matter-waves, which are 
associated with the particles. With the exception of the standing-wave-properties these are 
subject to the same inherent laws like „normal“ photons. That is applied also to the red-shift. 

 
If you should now be of the opinion, the neutrino is definitely a different particle as the 

photon, i.e. both cannot be unified in a common model by no means, please take notice of 
the following: With this model, we have introduced only one single new particle, the space-
like photon, which is besides similar to or identical to the DEBROGLIE-matter-waves.  

 
But now, to assign a rest mass as well to the photon as to the neutrinos, considering both 

as different particles, we would wear not only one but 7 or even 15 new particles (15, if we 
would insist on three different for each individual kind of neutrino e,  und ). Because 
then, there would be also neutrino-like photons/anti-photons and photon-like 
neutrinos/antineutrinos all at once, and these in time- and space-like implementations. I 
cannot simply believe that. 

 
Therefore it’s just the statement from photons and neutrinos. But if the just named case 

should become true, please replace the terms neutrino/antineutrino by neutrino-like as well 
as antineutrino-like photon independently. However, the said, analogously should have to be 
applied also to the neutrinos then, how much there may even be. At first, just let's have a 
look at  the quite normal photon. 

 
 

5.1. Photons 
 
Near the singularity, the relations are just like shown in figure 94. In this connection I 

must clarify a contradiction, which otherwise could be charged against me as error. Until 
now, I have always called photons as time-like vectors, although they generally are 
identified as zero-vectors (velocity c). If I speak of a time-like vector, I always mean the part 
c . The part cM is a space-like vector and c the zero-vector, which we measure. 

 
Now however let's go on to our problem. Particularly we are interested in , the angle of 
intersection with the derivative cM along the metric expansion-graph and also the amount of 
|c | = c . Since it's not about a rectangular triangle, the sine-rule applies: 
 

 
        (476) 

 
          (477) 

 
          (478) 
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Figure 94 
Vectorial speed-addition with 
photons near the singularity 
 

           (479) 

 
The positive sign is applied to „normal photons“  (arises from the approximative solution). 
The negative sign applies to space-like photons *, which behave differently near the singu-
larity. 
 

 Time-like photons  (480) 

 

 Space-like photons  (481) 

 
For the angle  applies in both cases (see (209)): 
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The course of the individual speed-components for the two kinds of photon as well as for the 
neutrino and antineutrino is shown in figure 95. It shows that individual components also 
can have a larger velocity than c. But just always c becomes effective. The low graph figures 
the course of the expansion-velocity of the metrics. The behaviour of the diverse particles 
and antiparticles differs all the more, the closer we come to the point Q=1 (symmetry-
breaking), to decrease again thereafter. 
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Figure 95 
Course of the individual speed-components (absolute value) 
for photons and neutrinos near the singularity 

 
 
The intersection angle  with the metrics of the (normal) photons we get by application of 

the sine-rule (  = ): 
 

    
cM

c
  

0 0 t
    (483) 

 

   

0 0 t
       (484) 

 

  argc  

1

0 0t 4
c

3
4

 Time-like photons  (485) 

 

4
θ

2
1

4t
1θ

2
1  

00

     (486) 

 
Figure 97 shows the course. But figured is the value sin , which carries an essentially major 
weight as the angle itself. In order to avoid miscalculations, the function arg c always has 
been determined directly from (206). 

 
As for the rest, to the calculation of arctan q we should better work with (211), since one 

would get a partially wrong result because of the ambiguity of the arctan-function else. For 
the absolute phase-angle  of the resultant c applies: 
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We will dispense with the presentation of  
here. Another approach is applied to the 
space-like photons: 
 

In the prolongation of c  namely another 
second triangle can be constructed alongside 
cM with the angles * (complementary-angle 
to ), * (angle of intersection with the 
metrics beside ) and * (opposite to cM). 
This corresponds to the second solution of 
(479) and applies also for antineutrinos. 

 
 
 
 
 
 

Figure 96 
Complementary triangle and angle as 
second solution of the quadratic equations 
with reversed speed-vector c   

 
For the complementary angles applies: 

 
      (488) 

 

   *  
cM

c
  

0 0t
    (489) 

 
*    

sin

0 0t
       (490) 

 

 
Figure 97 

Course of the function sin  of the angle of intersection with the metrics 
for time-like (normal) and space-like photons near the singularity 
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*   argc  
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0 0t 4
c

4
 Space-like photons       (491) 
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The course of sin * is also shown in figure 97. For the absolute phase-angle * of the 

resultant c applies: 
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5.2. Neutrinos 

 
We now look at the model according to figure 98. Once again, it interests the angle of 

intersection  with the derivative cM along the metric expansion-graph and even the amount 
of |c | = c . 

 

    
Figure 98  
Vectorial speed-addition with 
neutrinos near the singularity 

 
Since it is not about a rectangular triangle, the sine-rule applies again with the solution: 
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cc c    Antineutrinos  (495) 

 
For the angle  applies in both cases (see (209)): 
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 (496) 

 
The angle  just figures a sort of complement-angle of  i.e. we can dispense with the 

value  With , we just always mean . Important relationships can be obtained from the 
reduction-formula for arbitrary angles: sin  = –cos , cos  = –sin , cos  = –sin , and 
tan  = cot . The course of the functions (495) and (496) is painted in the figure 95 
(amounts) in turn. The intersection angle  of the neutrinos with the metrics we obtain also 
directly by application of the sine-rule (  = ): 
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We can see the course of sin  in figure 99. It is also well to be seen that the interaction-
cross-section of the neutrinos increases with ascending energy, which corresponds to the 
present knowledge-level. For the absolute phase-angle  of the neutrinos applies: 
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Yet another approach is applied to antineutrinos in turn. The angles in the triangle are 
defined as follows: * (complementary angle to ), * (intersection angle with the metrics 
beside ) and * (opposite to cM). It applies: 

     sin ν
*  =   sin (π − ν)   =     sin ν  

   cos ν
* 

 =   cos (π − ν)   =  ν    (502) 
 

  *  
cM

c
  

0 0 t
     (503) 

 
*    

0 0t
         (504) 

 
*   c  

1
0 0t

 

4
c

4
 Antineutrinos  (505) 

*   

cM

c

* *

*   * *   *



 
 

153 

  

*

0 0

1 1 1  arctanθ arccos cos arctanθ
2 t 4 2 4

    (506) 

 
Figure 99 shows the course of sin *. For the absolute phase-angle  of the resultant c we 

finally get: 
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Figure 99 
Course of the function sin  of the angle of intersection with  
the metrics for neutrinos and antineutrinos near the singularity 

 
 
With it, at least according to this model, we have proven that photons in the time just after 

big bang and even in very strong gravitational-fields and with very high relative velocities 
behave like neutrinos and vice-versa. To the conclusion once again a summary of the 
essential expressions: 
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5.3. Red-shift of photons and neutrinos 
 
 

5.3.1. Fundamentals 
 
Since all photons (and neutrinos) are really or/and virtually connected with the temporal 

singularity, there are two types of photons at the observer. The photons with a frequency 
above the frequency of the cosmologic background-radiation, are the first type. I would like 
to call them contemporary photons, since their origin is within our universe. The so-called 
orphan photons are the second type with a frequency below the frequency of the cosmologic 
background-radiation. Orphan, because their origin is outside our universe, i.e. in order to be 
red-shifted to their present frequency the age 2T is not enough, the origin not yet exists. 
Nevertheless they are likewise already connected with the temporal singularity, because the 
time stands still there. Past, present and future form an unit. 

 
We want to try to find an exact expression for the red-shift of photons and neutrinos 

which is independent from their frequency. As already noticed in the preceded section and in 
section 4.3.4.4.3. the relations are being determined as well by the side-relations as by the 
angles in the metric triangle. Therefore, based on (297) we consider an arbitrary frequency 

= 2πc/  at the temporal singularity, i.e. before the transformation. Since it is about a 
temporal singularity in this case, each frequency there has the value 2 1 and s = 1 2 /3 
after splitting into 6 MLEs. This equals the frequency of the cosmologic background-
radiation at the input coupling by the way. The effective frequency at the observer „arises“ 
only by the application of the frame of reference. Ignoring the frame of reference, we obtain 
the desired universal relationship. Let's employ 2 1 for the initial-value ˜  and 1/2 ( ) as 
well as 2/3 ( ) for the associated Q-factor ˜ Q , we obtain with the help of (623) and (671c): 
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This result apparently corresponds to expression (274) with 2

 = y = Q0–1. We employ again: 
 

  H/2  0t 1  H/ 2  2 0t                  ~ Q0
– 3

2   (275) 
 
This also exactly agrees with expression (275), as not otherwise was to be expected. That 
means, there is only one approximation for time- and space-like photons, but two different 
exact expressions. With the space-like photons, there is a problem by the way. The solution 
of the phase-function  at the reference point 2/3 namely is plain imaginary, so that there is 
no real reference of the space-like photons to this point, which leads, amongst other things, 
to the result that these have particular qualities. So, the rest-velocity is equal to zero and the 
photons can be shifted at will which equals the qualities of the DEBROGLIE-matter-waves.  
However, problems result from it with the application of (299) during the conversion to the 
reference point.   
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Figure 100  
Red-shift of photons exactly and approximation 

 
 
Only to determine the red-shift of a matter-wave with a start-point greater than Q = 2.318249 
(phase-jump), (299) can be applied, as it is. With the reference to the point 2/3 the 
expression must be modified indeed, namely in the following manner: 
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This corresponds to an imaginary frequency at the reference point 2/3, of which we want 
only take notice for the moment. The values emerge from the necessary convergence of both 
functions for Q . For the approximation function applies exactly: 
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The course of the three functions is painted in figure 100. It shows, the approximation is 

sufficiently exact downward till Q =103. Only in very strong gravitational-fields the exact 
expressions are required. In the cosmologic scale suffices the approximation equation. 

 
With it, we have found the solution for both types of photons. What we do not know yet, 

is the solution for neutrinos and antineutrinos. This is also the reason why we have derived 
the approximation so detailed. Other rules are now applied to neutrinos. With help from 
(299) and (622) for a reference point of 1/2 we obtain: 
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Figure 101 
Red-shift of neutrinos exactly and approximation 
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For antineutrinos we obtain the same result. Obviously, the neutrinos with Q7/4 are more red-
shifted than the photons with only Q6/4. Therefore they converge even more slowly with the 
approximation function, as it shows in figure 101. And with the antineutrinos, there is a 
similar problem like with the space-like photons. While with latter ones the numerator of the 
radicand of (299) has been negative at the reference point 2/3, that means an imaginary root-
expression, it's exactly vice-versa with the antineutrinos. Here just a real solution arises for 
the reference point 1/2. Starting with Q = 0.54107 however all solutions become imaginary. 
Even here it becomes noticeable only if we want to determine the red-shift in reference to 
the reference point 1/2. The problem can be solved then again with an imaginary frequency, 
but negative imaginary this time: 
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For references above Q = 0.54107 however there is no effect, since then as well the 
numerator as the denominator becomes negative, the root-expression real again. Expression 
(299) can be used unchanged with it. 
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Now however, we only assumed the reference point of the antineutrinos to be at 1/2. It has 
been substantiated by the particular qualities of the space-like photons, which would refer 
exclusively to 2/3 then. Because of symmetry-reasons one should rather assume the 
reference point of „normal“ particles to be at 1/2, the one of antiparticles at 2/3 however. 

 
Then, the problem of the antineutrinos would be solved, expression (299) applies always 

and unchanged. By the way, the basic frequency of antiparticles for Q <1 is always greater 
than the metrics' frequency w0 (summary frequency) and with it above the cut-off frequency 
of the subspace. The other way round the basic frequency of „normal“ particles is always 
below it (difference-frequency). With it, antiparticles first can exist at a later point of time. 
This is the symmetry-breaking just after big bang, which is the reason why our universe 
almost only consists of „normal“ matter. 

 
On the basis of (513) and (521) it shows that the basic frequency 1−

 , even if it's 
imaginary, is still far above the cut-off frequency 1 of the subspace, which also seems to 
indicate a reference point of 2/3 for the antineutrinos. Then, the particular qualities of the 
space-like photons would emerge from it that they have an imaginary basic-frequency 
exclusively, a pole of 1st order and with it no real connection to its reference point. 
Therefore, I favour the version 2/3 for antineutrinos. This has no practical effects on the 
further contemplations however. 

 
The reference of the photons and neutrinos to its origin (temporal singularity) would agree 

with the so-called pilot-ray in some non-local theories. The reference is timeless, the action 
instantaneous. It even already has been verified by experiments. Separating an entangled 
photon-pair, preserving both photons one by one as a standing wave, the matching photons 
would „feel“ each other even on a large distance. A super photonic communication would be 
possible with it – theoretically. The connection takes place via the temporal singularity. But 
the real problem is to get the one photon intact e.g. to Alpha Centauri. 

 
 

5.3.2. Propagation-function for photons and neutrinos  
 
After we have done a trip into the future of communication, now however let's go on in 

the context. In the course of the antecedent section the term imaginary frequency has 
appeared already twice and the question is, what does this mean specifically for the wave-
propagation of photons and neutrinos? In the electrotechnics, one works with imaginary and 
complex frequencies for a long time having even no problems with it. 

 
However, let's look at our propagation-function (305), so it shows that it describes only 

one special-case, namely the one of a flat, linearly polarized wave, which propagates in r-
direction. The electric and magnetic field-strength varies in x-direction. With it, expression 
(306) would be applicable for linearly polarized photons, however not for neutrinos, because 
they are polarized circularly. 

 
In order to depict all these additional parameters, we must extend (305). Additionally to 

the solution x(r) we require another solution in the third dimension y(r). Then, according to 
[26], the propagation-function consists of altogether 4 equations (the second solution can be 
derived by analogy with (265)). It applies: 

 
Ex0  ˆ E xe

j t        Ey 0  ˆ E ye
j t       j 0  ZF  Z0        Input values 

            (522) 

Ex   Ex0  e
– r         Hy  
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This is the universal propagation-function for an elliptically polarized flat wave in the 
vacuum. Here, the point r = 0 is located at the signal-source. With the reference to the 
observer, we have to insert the value of –  instead of +  and to take up the corrections 
according to section 4.3.4.4.6. With circular polarization applies Ex0 = Ey0, with linear 
polarization Ey0 = 0. Thereat, the magnetic field is always perpendicular to the electric one. 
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In the approximation, the most naturally originated photons are polarized purely linearly, the 
neutrinos on the other hand behave circularly, they are polarized longitudinally however. 
Since the respective field-strength-maximum with circularly polarized waves migrates 
according to a periodic function between x and y, there is even another additional frequency, 
the rotation-frequency HF. This depends on the angle = HFT . The expression T  is the 
period of the time-function. But how do we now get the rotation of the polarization direction 
into our propagation-function? This is achieved by the introduction of complex frequencies. 
We first define four complex frequencies, for each particle one, to it: 
 

   ˜  j        Time-like photons  (523) 
 

   ˜  j        Space-like photons  (524)  
 

  ˜  j        Neutrinos   (525)  
 

  ˜  j        Antineutrinos   (526) 
 
˜  is the amount of . The upper sign applies to the x-coordinate, the lower sign to the y-

coordinate. The relations cannot be derived directly from (479), (494) as well as (495), since 
these are based on a universal triangle, the complex exponential-function however on a 
rectangular triangle. Instead of the real and imaginary part of the frequency  therefore the 
projections on x and y are used as it is shown in figure 104. 
 

For the line-up of an absolutely correct propagation-function, the complex e-function 
namely is not well-suited, one requires the Hankel-function to it. Because in reality, there are 
not any sine-functions in the nature. These would be defined up to the point of time t = –∞ 
and such a point does not exist for known reasons. With it, for small values of Q a minor 
residual error remains. But since the wavelength is correctly calculated by the factor (r), 
this does not express itself in a wrong character phasing but in a drift of the wave off the 
straight line R. But if we define the propagation-function along the arc of r, this deviation 
plays no more role. Then, the curvature of r is determined by outer influences and is not a 
component of the propagation-function. 

 
The wavelength, that we measure, is always the real-part. With the photon, this equals the 

actual wavelength, with the neutrino the rise of the „screw thread“. The imaginary-part at the 
photon on the other hand corresponds to a rotation of the direction of polarization (there are 
just actually circularly or elliptically polarized photons only), at the neutrino, it is joined 
with the „screw thread-diameter“. 
 

Figure 102 
Photon-circle, variance of the properties 
of the kinds of photon on change of Q and v 

So, the multiplication of the time-function 
with ±j means the transformation of a particle 
into a second one, i.e., the properties of the 
photons and neutrinos change with the 
occurrence of imaginary frequencies. This is 
always the case with a very small Q-factor or 
a very large velocity v, i.e. at very strong 
gravitational-fields, just after the big bang or 
when the velocity is close to c (c–10–50ms–1).  
 
 
Figure 102 shows the situation of the 
individual particles in the phase space and the 
variance with changes of Q and V. In 
principle doesn't change the particles 
themselves but the metrics. It's therefore only 
about an observational phenomenon, even if 
the varied properties are physically real.   

 
The transition takes place nor gradually but abruptly and that the steeper, the major the value 
Q in the frame of reference of the observer. That's why this effect cannot be detected e.g. 
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with accelerator-experiments, neither today, nor in far future, since the energies needed are 
outside the availability of mankind. As later examinations will show, the particles, even with 
strongest curvature, doesn't exceed essentially the coordinate-axes x and y. Therefore, a 
photon remains a photon, a neutrino a neutrino etc. That means, the reference point of the 
antineutrino is with 2/3. 
 

With technically generated circularly polarized photons the rotation-frequencyy HF can 
take on arbitrary, even negative values (right-hand screw) which depend on the discretion 
and the possibilities of the technician. This happens e.g., in that we use a circularly polarized 
transmitting-antenna or a polarization-filter in front of a light-source rotating with a certain 
velocity.     

 
According to [26] a circularly polarized wave can be depicted as the superimposition of 

two by x and y linearly polarized waves with the same amplitude which are phase-shifted by 
90° against each other. This however is the special case, when HF and  are of the same 
size. Then, the direction of polarization of the wave rotates around 2π exactly one time when 
it has covered the distance . With a rotation-frequency aberrant there from, naturally the 
phase-shift is smaller (photons) or even greater (neutrinos). Now, with (522) we have 
already found such an equation-system, however without phase-shift. If we add these, it has 
only effects to the time-function. The actual transfer-function e– r remains untouched, i.e. it 
doesn't matter to the metrics, which type of signal is transferred. Although, different 
functions (r) are applied. 

 
Considering only purely linearly polarized photons or purely longitudinally polarized 

neutrinos, the rotation-frequency HF is defined by the angle N. Decisive is the phase-angle, 
the argument of the complex frequency . It applies: 

 

  arctan         Time-like photons (527) 

 

  arctan         Space-like photons (528) 
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   Antineutrinos  (530) 

 
The term ±jπ/2 with the neutrinos corresponds to a rotation of the coordinate-system by 
±90°. The transfer-function (522) namely is in the form, we used it until now, not suitable 
for neutrinos, since the neutrinos are propagating in the right angle to the photons (see figure 
94 and 98). Rather, the universal propagation-function ej t– r describes only the wave-
propagation along the real coordinate of the phase space. Herewith, the part j t represents 
the time-like, the part r the space-like vector, both standing perpendicularly one against the 
other. In order to describe a wave-propagation along the imaginary coordinate, above-
mentioned rotation is necessary. This happens, in that we multiply the whole time-function 
with ±j. And this multiplication exactly turns out the expression ±jπ/2 in the exponent. We 
just take up a transition from the real to the imaginary coordinate. With it, we obtain for the 
universal transfer-function: 
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Thereat a positive value N corresponds to a left-hand screw, a negative to a right-hand 
screw on propagation in r-direction. With technical photons, the unnatural rotation-share 
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K= HFT adds up to the natural N. As already mentioned more above, N does not exceed 
the value π/4, neither with strongest curvature. Thus, the individual kinds of photon cannot 
be converted in one another. They only show similar properties then. The angle , different 
from zero, is also responsible for the occurrence of a rotation of the polarization direction of 
linearly polarized photons in the cosmologic time frame. This effect is however very bad to 
demonstrate, since it's extremely weak. After we have worked out the universal propagation-
function, as next we want to look at the „normal“, i.e. time-like photons more exactly. 
 

 
5.3.2.1. Time-like photons 

 
At first, we want to figure the expression for the propagation rate  once again. It doesn't 

differ from the already known expression (306): 
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(r)  ( )           Phase rate   (532) 

 
The phase rate is independent from the respective coordinate. Interestingly enough, the angle 
 doesn't appear at all. Only the amount ˜  of the complex frequency  is used. However, 

always only the real-part of the wavelength can be observed. The rest is  hidden in the third 
dimension y. 
 
Since the attenuation  with its share 1/R = H/c is a function of the distance r, it is because of 
r = ct a function of time too. And this dependence must express itself also in the relation j t 
at the signal-source. It arises from the introduction of an additional cosmologic component, 
the imaginary frequency jH. With disregard of the cut-off frequency, it plays no role at the 
source, we obtain: 
 

      j t j( jH (t)) t  ( H j (t)) tHH (t)) t  ( H j (t)) t (t)) t  ( H j(t)) t  ( H j(t)) t  ( H j(t)) t  ( H j(t)) t  ( H jj         Time-function   (533) 
 

The part –H corresponds to the time-dependent expansion and attenuation at the observer at 
the point r = 0. Of course, like each point in the universe, this is even subject to a temporal 
red-shift and attenuation. Therefore, there is also a share div S at the point r = 0, which is now 
a function of time however. Going back in time (–t), so there is also a larger amplitude, i.e. 
to an earlier point of time natural emissions took place with higher energy. The origin of the 
time-like photons is at Q = 1/2. 
 

But we have only characterized the wave-properties of the photon with it, however it 
disposes of particle-properties too. In this point I affiliate the current doctrine, with one 
exception—namely, with the help of (528), a photon rest mass different from zero can be 
defined, as it is postulated by several modern, local and non-local theories. The value agrees 
very well with the there made projections1: 
 

69
H 2

Hm 2.73727 10 kg
c

3737H 2.732 73H 2 732 73H 2mH 2c
HHHH       Rest mass photons (534) 

 
 
 
5.3.2.2. Space-like photons 

 
As next we look at the propagation rate  for space-like photons. Next in turn we start 

from (306). Since space-like photons however propagate opposite to the propagation 
direction (velocity –c), we must take this into account accordingly: 
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1 By the way, in the time just after big bang and in strong gravitational fields, the photons dispose of a non-considerable rest mass. 



161 

)()r(
c

~
j)(

c

~

c
H~

  
0        Phase rate  (536) 

 
Since space-like photons are moving opposite to time-like ones, they have a negative phase 
rate exclusively. Especially interesting is this in connection with the expression j t. We 
want to determine this as next. Because finally standing waves come out, the expression 

( ) for the cut-off frequency at the source this time cannot be disregarded: 
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For the difference j t – r with r=(–c+v) t, v=const we obtain by expansion: 
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v is the velocity, with which the wave is moved by external inducement, (translational 
motion). The positive term of H/c describes the energy-increase during acceleration, i.e. the 
relativistic mass-increase as a function of the velocity as well as the mass-increase by 
approach to the temporal singularity. The linear addition of the velocities is correct, since 
both velocities are referred to the same system. Now let's substitute v = 0, so we receive a 
plain real result, the propagation rate has the value zero. With it it's about a standing wave: 
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The approximation is valid for « 0. Since the angle  is untouched, a possible rotation of 
the polarization direction (spin?) survives. The occurrence of a twofold attenuation-factor 
2/R = 1/(R/2) let's still presume, that it's about a space-like vector in this case. 
 

With it the question arises afterwards for the actual character of the space-like photons. 
Until now we had assumed, that the fermions somehow consist of them. But it does not seem 
to be the case. So the space-like photons are bosons with integer spin, while the fermions 
have a half-integer spin. It is however hard to imagine that particles with half-integer spin 
should consist of such with integer spin, rather the other way round. 

 
Let's further do a comparison with the time-like photons, these mediate the mutual 

electromagnetic interaction of the fermions via the metrics, the space-like photons could be 
responsible for the same interaction of the fermions with the metrics. For that purpose 
however they must move into the same direction as the fermions (space-like vector) and 
with the same velocity (arbitrary). Since the metrics is omnipresent, they even don't need to 
cover large distances (limited lifetime). With it, the space-like photons mediate the metrical 
properties of the particles (mass, length etc). 

 
As well, as the time-like photons the space-like photons naturally dispose of particle-

properties too. These however rather resemble those of the DEBROGLIE-matter-waves than 
those of the time-like photons. It is yet about bosons. The origin of the space-like photons is 
at Q = 2/3. The rest mass equals to that of the time-like photons. 

 
 
 

(539) 
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5.3.2.3. Neutrinos 
 
Now, it is absolutely necessary to write down the relationship also for neutrinos and 

antineutrinos. We expect a behaviour similar to the one of the time-like photons, since 
neutrinos also propagate with light speed. Let's begin with the neutrinos for one thing. We 
start with expression (306) once again looking at the relationship for r at first. This time 
however we have to take into account, that the wave doesn't propagate with c but with jc, i.e. 
in the right angle to the photons, and to consider it in the denominator of  accordingly. 
Then, the function is neither defined along the arc r, but along jr, so that the factor j cancels 
out in turn. But if we define r as the actual propagation direction of the neutrinos, we can 
assume an unchanged expression for : 
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   Phase rate         (544) 

 
With exception of  , the phase rate doesn't differ from that one of the photons. This was not 
otherwise to be expected by the way, is it about the same medium after all. The neutrinos are 
also subject to the red-shift and cut-off frequency. 

 
Since the angle  is positive because of (529), neutrinos are rotating in a mathematical 

positive manner (counter clockwise/left-hand screw) with propagation in r-direction. This 
property is also called (negative) helicity and is the substrate of the weak charge. At the 
neutrino, it has the value –1. With inversion in all dimensions the helicity survives. So the 
neutrino is its own antiparticle. By the way, this applies even to both kinds of photon. As 
next, we want to determine the time-function j t:  

 
    j t j( jH (t)) t ( H j (t)) tHH (t)) t ( H j (t)) t (t)) t ( H j(t)) t ( H j(t)) t ( H j(t)) t ( H j(t)) t ( H j                Time-function  (545) 

 
It shows, a real attenuation appears at the signal-source. Neutrinos in the same way are 
subject to the parametric attenuation, like the photons. These are only the wave-properties 
then again. The particle-properties are characterized by the fact that the neutrinos are 
fermions with half-integer spin. This seems to be associated with the location of the 
propagation direction in the complex phase space therefore. For jπ(2n)/2 an integer spin 
emerges, for jπ(2n+1)2 a half-integer spin. The sign is defined by the phase-angle jπ/2. The 
origin of the neutrinos is at Q = 1/2. The rest mass equals to that of the photons too. 
 

 
 
5.3.2.4. Antineutrinos 

 
As we know, even antineutrinos propagate with speed of light, in contrast to the neutrinos 

however along the negative imaginary axis with the velocity –jc. It applies: 
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0H    ( ) j (r) ( )

c c c
HHHHHH ( )( )( )( )( )00 (0 (0 (0 (0 (0 ( )(r)( )     Phase rate     (548) 

 
Since the antineutrinos are antiparticles, they actually should have also a negative phase rate. 
According to (545) it is really the case, only it's negative imaginary, because of 1/j = –j. But 
we can also work with the same phase rate, as with the photons, if we define the 
propagation-function along the arc r, that coincides with the real propagation direction, once 
again. The antineutrinos are subject to the red-shift and cut-off frequency once again. 
 

The only difference from the neutrinos is the negative sign of , see (530). Thus, antineu-
trinos rotate mathematically seen negatively (clockwise/right-hand screw) with propagation 
in r-direction. They have a positive helicity and the weak charge +1. With inversion the 
helicity survives too. So also the antineutrino is its own antiparticle, not the neutrino. This 
condition is called parity violation. As next, we want to determine the time-function j t:  
 

j t j( jH (t))t ( H j (t))tHH (t))t ( H j (t))t(t))t ( H j(t))t ( H j(t))t ( H j(t))t ( H j(t))t ( H j(t))t ( H j               Time-function  (549) 
 

A real attenuation appears at the signal-source in turn, antineutrinos are subject to the 
parametric attenuation like the photons and neutrinos. The particle-properties are following: 
Antineutrinos are fermions with half-integer spin. The phase-angle is –jπ/2. Since it is about 
antiparticles, the origin is at Q = 2/3. The rest mass also equals that of the photons. 
 
With it, we have worked out a maximally efficient, contradiction-free, extended photon-
model, which is able to explain also the behaviour of the neutrinos and antineutrinos, that is 
valid even under cosmologic points of view. 

 
As one can well recognize at (538), neutrinos and antineutrinos dispose of essentially 

more degrees of freedom than the photon. Thereat, the spin is defined by the propagation 
direction, the weak charge by the helicity, just N. We could allocate two particle properties 
with it.  

 
In section 5. I already formulated the hypothesis that with the three hitherto identified 

kinds of neutrino ( e, , ) it's actually only about resonances of one and the same particle, 
at which point the neutrino-oscillation prevents a violation of the PAULI-principle, if several 
neutrinos of identical „construction“ are crossing an electron shell simultaneously. 

 
In what however turns out the difference between these three kinds of neutrino, more it 

shouldn't be indeed, in the propagation-function? We only can make guesses about it, which 
would be there: 

 
1. It's about different particles indeed. 

 
2. It's about the same particle with different frequency/energy.  

Neutrinos are only generated or resorbed with certain reactions  
within a definite energy band. Thereat, the value depends on the  
type of reaction. 

 
This is the simplest answer, but it wouldn't explain the neutrino-oscillation anyway. 
 

3. It's about different resonances of one and the same particle. With violation  
of the PAULI-principle, a particle adapts its energy to an already free  
energy level. But for neutrinos, it's only of interest during the stay within  
an electron shell. 

 
This would be a practicable option. It would explain the neutrino-oscillation. But it remains 
the open question, in what extent this manifests in the propagation-function. A fixed additive 
phase-angle to the angle N would be practicable (additional phase-shift). Here, an angle of 
e.g.  2/3π would be possible in order to guarantee the number of three. Another option would 
be a multiple of 2π. Then, more than 3 kinds of neutrino would be possible however. 
 



 
 

164 

Perhaps, 3 kinds of neutrino are sufficient however? Another option would be the 
occurrence of a positive or negative twofold frequency in the y-component of the wave-
function. The neutrino-wave consists of two components x and y indeed. If one of it has the 
twofold frequency, a periodic solution occurs too. The corkscrew becomes a rotating 8 as 
with the LISSAJOUS-figures. Thereat, there are parallels to the atom, what lets appear this 
explanation quite possible. The s-orbital is also circular in the top view, the p-orbital looks 
like an 8 and there are altogether four of them. But one of them is dropped, since it lies in 
propagation direction, that makes three altogether. And here still the last option: 

 
4. The difference between the three kinds of neutrino cannot be figured in the 

propagation-function. 
 
However, I would like to leave open the final answer to this question turning over to the 
following section as next. 
 
 
 
 

6. The special relativity-principle 
 
 
Originally, this topic should be treated first to a later point of time. In the next section 

however, special new, SRT related information is used, so that I decided to anticipate the 
chapter velocity and relativity. 

 
 
 

6.1. Velocity and relativity 
 
Having hitherto looked at the temporal and spatial dependence of different quantities, it's 

time to examine also the dependence from the velocity. Still interesting are the relationships 
to the newly introduced quantities Q-factor (phase-angle), 0 and 0. As starting point, we 
assume the statements of the SRT, just as they have been formulated by EINSTEIN. 
Therefore, by velocity, we understand the relative velocity of one observer to another (frame 
of reference). 

 
 
 

6.1.1. Fundamentals 
 
We first of all assume an imagined Cartesian coordinate-system. In its zero is the 

observer. This coincides with the centre of the universe (each point, at which an observer is, 
is always the centre of the universe for him). With it, the relative-velocity of the observer is 
equal to zero, not only in reference to the coordinate-system but also in reference to the 
metrics, but not in reference to the empty space (cM). Furthermore, we observe a body from 
this point, moving with the relative-velocity v in reference to the coordinate-origin. We 
measure the length x´ in ratio to the rest-length x, that we determined, before we have 
accelerated the body to the velocity v. According to the just yet classic statement of the SRT 
applies to the observed length (doesn't apply to wavelengths!): 

 
12
2

2

vx x 1
c

         (550) 

 
We don't want to question this relationship in principle, is it proven by a lot of spectacular 
experiments after all. Although, these proof don't apply to the entire range 0 ≤ v ≤ c. The 
largest hitherto reached velocity, with which measurements have been taken up, is about 
approximately 0.997c for the time being (I can be wrong here) and was achieved in a 
particle-accelerator. At this velocity, no dissents with respect to the statements of the SRT, 
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especially expression (550) have been found. Nevertheless, it's well possible that there is a 
velocity v < c from which on the statements of the classic SRT apply only restrictedly or no 
more at all. If we should come to a statement, aberrant from the SRT, in the course of the 
further contemplations, so this must be of line with the statements of the classic mechanics 
for very small velocities, and with the statements of the SRT and the yet gained observation-
results in the range above it up to 0.997c. 
 

LANCZOS assumes in [1], that the relativistic effects first result from the existence of the 
metric lattice, with which the fermionic particles even figure autonomous spherical 
symmetrical solutions of the field-equations which exist independently from the metric 
lattice. But we observe them only via an indirection by means of bosons (photons) which 
propagate across the metric lattice, which behave like a lens with the resolution /2 
(uncertainty). 

 
If our particle now is moving in reference to the metrics and with it in reference to the ob-

server, there's going to be the occurrence of a definite difference-frequency , which 
depends on the velocity, the particle moves through our „crystal“. The particle even owns 
wave properties simultaneously indeed. The frequency depends on the number of 
MINKOVSKIan line-elements the particle „grazes“ during its motion within a certain time 
period and with it also on the local MLE-density (age, gravitational-potential). 

 
After I have read the lecture of Professor LANCZOS, I got on the occasion of another 

physics-lecture (this is already behind a while now and herewith I would like to thank the 
lecturer Mister Dr. Propp warmly once again) an essential suggestion to this model. Subject 
of this lecture was the mechanical oscillator. 

 
With the mechanical oscillator it's about an externally agitated system with the dif-

ferential equation [5]: 
 

2 0
0

Fx 2kx x cos t
m

2
0x 2kx x2
02kx x2kx x2
0         (551) 

 
x is the deflection, 0 the resonance-frequency, the frequency of the exciting oscillation, 

F0  the force and m the mass of the oscillator. By the way, the quotient F0 /m also equals to 
the gravitational-field-strength. The coefficient k is a measure of the attenuation. This is 
microscopic in general. Interestingly enough, a similarity exists with (76). A comparison 
leads to the essential statement k ˆ   H. For the amplitude A applies then:  

 

A   
F0

m
( 0

2 2 )2 4k2 2
1
2  (552) 

 
With k  0 we obtain the following expression: 

 

       (553) 

 
To compare the result with (550), so are both expressions identical with exception of the 
exponents, i.e. there is a similarity between the behaviour of the mechanical oscillator and 
the relativistic mass-increase. Particularly interesting is the fact that the amplitude during an 
agitation with a frequency of zero is equal to 1—in contrast to the electric oscillatory 
circuit—here it is the amplitude equal to zero, since the signal is short-circuited by the 
inductivity. An exception forms the model according to figure 10 with input coupling over 
the capacitor. With approach to the resonance-frequency, an amplitude-increase appears. 
The amplitude tends against infinity with vanishing attenuation—in turn exactly as with the 
relativistic mass-increase. Then however, the behaviour above 0 deviates: A phase-jump 
about –π appears while the solution (550) becomes imaginary. This is not further 
remarkable, in the one case, it's about a deflection (energy), in the second case about a 
length, which cannot be compared without further ado. 
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6.1.2.  Velocity and length 
 
 

6.1.2.1. Relations between length, velocity and Q-factor  
 
Therefore I have wondered, whether a particle with acceleration not also could behave 

like a mechanical oscillator, with which is the mass proportional to the amplitude of the 
externally agitated inherent oscillation (DEBROGLIE-matter-wave). The same should be 
applied analogously even to quantities like length and time then. If 0 is the frequency of the 
MLE at the place of the observer, the velocity-dependent frequency  at the place of the 
particle arises to  = v/r0. Now, we only have to insert into (553) obtaining the classic 
expression of the SRT for wavelengths, however in the square ( 0r0 = c): 

 

       (554) 

 
 

6.1.2.1.1. Approximative solutions 
 
The relativistic dilatation-factor  apparently results from the reciprocal of the root of the 

bracketed expression of (554). Furthermore, we require an expression, in which the velocity 
is joined with the Q-factor. But this is not so simple, as it appears for one thing. Therefore, 
we want to try next to determine one or even more approximative solutions for it. For that 
purpose, we don't simply want to assume expression (552) and (553), taken from [5], but 
examine, how to acquire it in general. At first, we start from (551) comparing with equation 
(76). Then, expression (551) corresponds to the inhomogeneous differential equation of (76), 
if we set x = 0. It applies: 

 
2

0 0 0 0 a2H u cos t2
0 0 0 0 a2H t2
0 0 0 0 a0 02H u cos2

0 0 0 a0        (555) 
 

To the finding of the first approximative solution, first of all we want to ignore the HUBBLE-
parameter completely, since it's extremely small (H = 0). Furthermore ua =  d /dt = – 0  
applies as well as d2 /dt2

 = 0
2 . The angular frequency 0 just works like a differential-

operator. Sought is the amplitude response A( ). According to [5] we obtain it by solving 
the inhomogeneous differential equation (556). For the solution, we use the LAPLACE-
transformation: 

 
2 2

0 0 0 0 a cos t2
0 0

2
0 00         (556) 

 
 

2 (0) (1)
0 0  0  0  p pf f2
0

2
0 pp2                   (557) 

 
2

0 0  p2
0

2
0 p          2 2

pcos t   
p

   (558) 

 
After substitution in (556) we get the following characteristic equation: 

 

           (559) 

 

      0 (t)  −1
0 (p)      (560) 
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The function (561) looks like a 100% amplitude-modulated signal, at which point the 
envelope traces the frequency  both in the positive as in the negative range. Thereat, there's 
going to be constrictions in which the amplitude is equal to zero. With it, the energy is not 
equally distributed along the way. Rather, the transportation takes place in „packages“, the 
photons (particles). Since the value of the sum, but even that of the difference of two cosine-
functions is always in the range –2 ≤ y ≤ 2 and the value a doesn't play any role (for  = 0 we 
get a value of 1), applies generally for the amplitude and the relativistic dilatation-factor :  

 

         (562) 

 
Another exception exists in the resonance-case  = 0. Here, the function actually is not 
defined (0/02). The value tends against infinity however. With it, expression (562) equals to 
the classic EINSTEIN solution. According to our model, this can be true only in a loss-free 
medium however. An expression for the Q-factor in dependence from the velocity cannot 
yet be declared here, since the function doesn't contain the Q-factor. 

 
We have found a result, based on the solution of the inhomogeneous differential equation 

(556). We however want to examine, whether there is a second possibility to acquire the 
same result. The reason is, that considerable mathematical difficulties will appear during the 
search for an exact solution, if we try to solve the inhomogeneous differential equation. 

 
We have already applied the second solution-method in section 4.3.2. It is based on the 

solution of the homogeneous differential equation with help of the LAPLACE-transformation 
with subsequent transition p j , at which point a retransformation  –1 is not necessary. 
We just start from (543). The approach: 

 
2

0 0 0 02
0 0

2
0 00                 (563) 

 
(563) first of all leads only to the trivial result 0 = 0. We just have to modify the initial-
conditions, namely in the following manner: 
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                  (566) 

 

      
   

 (567) 
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Both solutions are just identical and we can declare also an expression for the phase-angle . 
The finally applied procedure has the advantage of a simpler calculation. A function Q = ƒ(v) 
we still cannot yet declare however. We have to co include the HUBBLE-parameter into the 
 

 ̂
0       a  1

2

0
2

1

 a  1
v2

c2

1

  1
v2

c2

1
2

p2
0 0

2
0   0

f 0
(0) 0       f 0

(1)
0
2

a

p2
0 0

2
0   0  

2
a 0   a

0
2

p2
0
2

G(p)  0
2

p2
0
2 G(j )   0

2

0
2 2   1

2

0
2

1

A( )    1
2

0
2

1

(v)    1
v2

c2

1
2



168 

contemplation for that purpose. To the certainty, we apply both solution-procedures once  
again. For the second approximation, we consider H as a constant, since the value practically 
doesn't change to the present point of time (adiabatic principle). Then however, the factor 2 
before 00  is allotted. If we assume H as constant, namely the expansion-share 0r0r0 /r0 becomes 
equal to zero, i.e. the factor is equal to 1 (see (72)). It applies: 
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After substitution in (570) we get the following characteristic equation: 

 
        (575) 

 
       (576) 

 
         (577) 

 
Here, our endeavours already finish, because this expression is not contained in the 
correspondence-table and even the BRONSTEIN doesn't help. One gets a solution after the 
decomposition into partial fractions. However, we don't want follow up this turning to the 
second procedure immediately: 
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We substitute again in (570) obtaining finally: 
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2 2
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       (585)
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A( ) H

H
           (586) 

 
With the exception of the factor 4 this exactly equals to expression (552) stated in [5]. We 
have calculated just right. But expression (586) can be transformed even more (HQ0 = 0): 
 

     (587) 

 

        (588) 

 

       with       (589) 

 
Thereat (capital letter) V is the detuning (380), as we know it from the electrotechnics. After 
substitution of  by v, we receive for the dilatation-factor : 

 

      for Q0 » 1     (590) 

 
The approximation (590) is identical to the EINSTEIN expression and with our first 
approximation. We can specify also a phase-angle. Based on (585) applies: 
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The last expression is very interesting. It could give us a relation between Q-factor, velocity 
and the angle  anyway. Unfortunately this doesn't work, since both functions have a 
different value-range. So,  covers the range –π/4…–3/4π, but the function –π/2 the range 
–π/4…–π.  

A( )     0
2

 H 2
0
2 2 2

    
0
2

H

 1 0
2 2

H

2

A( )     

 ̃Q 0
0
2

0

 1  ̃Q 0
2 0

2 2

0

2
    

 ̃Q 0
0

 

 1  ̃Q 0
2  

0

0

 

2

A( )     
c
v

 ̃Q 0
 1  ̃Q 0

2V2
    

 ̃Q 0

 

v2

c2
 ̃Q 0

2 1
v2

c2

2
V   

v
c

c
v

(v)     
 
˜ Q 0

 

v2

c2
˜ Q 0

2 1
v2

c2

2

4

      1
v2

c2

1
2

B( )   
H

0
2 2     

1
Q 0

0
2

0
2     

1
Q 0V

B( )   Q0V     
2

Q0V

(v)          
B( )

2
              

4
1
2

Q0 V    
?
  

2



 
 

170 

If we want to determine the Q-factor, we must make another approach. The substitution 
 = v/r0 applies to the moved body. Really, we still have gotten an expression for the 

relativistic dilatation-factor . What however we look for now, is a relation for the Q-factor. 
 
 
If we say Q-factor, we mean the Q-factor of the metrics at the position of the moved body 

and for this applies  = 0+ v/r0. Thereby we take advantage of the fact, that the resonance-
super elevation always exactly equals the value of the Q-factor. In expression (589) the 
super elevation in the case v = 0 has the value 1 and the value Q0 for v = c, exactly vice-versa 
as with the metrics. Here, the Q-factor amounts to Q0 for v = 0 and 1 for v = c. So, we have 
good reasons to assume that the Q-factor traces a sort of mirrored function (589). We obtain 
this by  inserting the expression  = 0– v/r0 in (584) to: 
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Unfortunately, this function doesn't fulfil the set standards, since it's not symmetrical 
concerning the y-axis. So, the value Q0(–c) amounts to 1/3, the value Q0(+c) to 1. The 
reverse relation exists at the displaced function (595) with  = 0+v/r0: 
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So, this is not suitable too. Now, we however know that both, the sum- as well as the 
difference-frequency, appear simultaneously with the multiplication of two frequencies. This 
approach leads to the correct solution then: 
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with the approximative solution: 
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For v=0 expression (597) has an infinite solution, which not quite corresponds to the 
observations. Let's however insert the propagation-velocity of the metrics cM  as basic-
velocity, then applies v = cM + vM, so we receive for vM = 0 precisely the local Q-factor: 

 

Q0    
c2

cM
2      Q0

2             because of (224)       (598) 

 
We must just add the space-like vector of the metrics to the velocity here. Thus, it's about an 
approximative solution with definition of the velocity in reference to the empty space 
(absolute velocity). This corresponds to an imagined Cartesian coordinate-system, which 
normally does not carry weight in the relativistic physics, with exception on the definition of 
the metrics itself. In contrast, the velocity in (596) is defined in reference to the metrics 
(frame of reference). In this case, we must not add the metric vector cM, since it already has 
been considered during the definition of the frame of reference (Q0) Following basic rule 
applies: Always if the function contains the Q-factor, r0 or 0, cM must not be added. The 
reason follows later. 
 

As well with the function of the Q-factor by the velocity (596) as with the expression for  
(590) it's about approximative solutions, since the angular relations does not have been taken 
into account here. An important question is also that for the physical content of (596). The 
expression describes the Q-factor, which an observer would measure at a body moved in 
reference to its local frame of reference. This depends on the velocity v. 

 
For an exact solution however (596) does not carry weight. The course of both functions 

is presented in figure 103, at which point cM has been added in (590) on a trial basis. To the 
comparison, also the classic EINSTEIN solution is to be seen including the imaginary branch 
and the course of Q0 With small Q-factors there's going to be an asymmetry of the function 
(596) around the point zero. One clearly realizes, that the maximum has been displaced into 
the negative range. It coincides with the minimum of the dilatation-factor, however not quite 
exactly. This is not a slight blemish but the transition to the universal relativity-theory. In a 
strong gravitational-field, the dilatation-factor with committed Q-factor Q0 and v = 0 is 
automatically smaller than one. This is the effect of the non-vanishing basic curvature in the 
strong gravitational-field, i.e. a length with zero-velocity already appears smaller than in 
reality. Usefully, the minimum of the relativistic dilatation-factor should coincide with the 
maximum of Q. With the addition of cM this is guaranteed for larger Q-factors only. This 
was even to be expected, as it contravenes against the basic rule stated above, since the 
expression contains Q0. 

 
Thus, we want to determine the value of displacement needed to obtain a coincidence of 

minimum and maximum. The function to be displaced is (590). This results from the fact 
that we have committed the value of Q0 for v = 0. Therefore of course, we cannot suddenly 
calculate a Q-factor different from the committed value for v = 0. A displaced function (590) 
also fulfils the differential equation (578). 

 
We primarily calculate the first derivative of (589) and (596) in that we equate them to 

zero. In order to simplify the calculation, we however don't calculate the derivative of the 
function itself but that of its square. For a wonder, one time, we set c = 1 here. This should 
not turn into the habit however: 
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With it, following substitution applies for (590) with c ≠ 1: 
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For the extreme values applies under consideration of (603) with vM = 0 resp. v = vmax: 
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With (590) it's nevertheless still about an approximation. Simultaneously, we have 

revealed even the secret of negative velocities. The SRT knows only positive velocities in 
the actual sense. This is also of line with our model in so far as an observer is always in the 
centre of the universe. 

 
 

 
 

Figure 103 
Relativistic dilatation-factor  and   
Q-factor as a function of the velocity 
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Regardless into which direction, the observer or object always moves toward the particle-
horizon cT (with positive velocity). Therefore, the classic EINSTEIN expressions result the 
same even if negative velocities are used. If however, each velocity always is defined as the 
sum of the metric and the speed-vector, just altogether in reference to the empty space, in 
strong gravitational-fields (small Q-factors) there is a point, at which this symmetry is 
broken, since the metric vector no longer can be disregarded. Obviously, it's neither 
irrespective of whether you move toward or away from a black hole. 

 
Now, with (404) and (596), we have found two relations, which are independent from 

each other, describing the dependence of the Q-factor on space and time on the one hand and 
the dependence from the velocity on the other hand. The task consists in that we bring 
together both relations. Let's start with expression (404). It reads as follows: 
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           (606) 

 
At all, there are three output variables included (Q0, T and R) which are coupled tight 

together. If we want to bring this expression (596) together, it is useful to reduce the quantity 
to one. Therefore, we want to substitute T and R, so that in the end only Q0 and true 
constants appear in the equation. For that purpose let's have a look at the Q-factor once 
again. This is of central importance in this model, since it affects nearly all rulers in the 
universe. In table 5 are shown (not completely) the most important relations between the 
quantities of the empty space (left column, all are proper constants), the microcosm (middle 
column, variables) and the macrocosm (right column, variables). 

 
 

 
 r1 — [  Q0]  r0 — [  Q0]  R Elementary length/World radius 
 
 t1 — [  Q0]  t0 — [  Q0]  T Smallest time unit/Age 
 

1 — [  Q0]  0 — [  Q0]  H Frequency MLE/HUBBLE-parameter 
 
 M1 — [  Q0]  m0 — [:  Q0]  mH MACH-/PLANCK-/HUBBLE-mass 
 

 ??? — [  Q0]  1 — [  Q0]   PLANCK‘s quantity of action 
 

 2 0 — [  Q0]  ——————   [  Q0]  0R Specif. conductivity vacuum/metrics  
 

 
Table 5 

Relations between the fundamental values 
 of space and of the micro- and macrocosm 

 
 

Our model owns the essential quality of the logarithmic periodicity with it. Then, under 
application of the relation stated in the table, we can transform expression (606) as follows: 

 

         with       and        (607) 

 
Now, we can merge this expression with (596). For it there are two options in principle. The 
first one describes the case, where the velocity is defined in reference to the coordinate-
origin. Thereat is to be paid attention to the fact, that the basic Q-factor in (607) depends on 
the result of (596) and vice-versa. There is just a reciprocal dependence: 
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      (608) 

 
A solution is possible, if v is small in reference to c and t is small in reference to T and r is 
small in reference to R. Then, we can assume both values (T and R) as constants obtaining 
an analytic solution. Otherwise, a solution is got using numerical procedures by solving the 
equation: 
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   (609) 

 
This way however the frame of reference gets lost, so that the solution is physically useless. 
The observed body moves out off the range of our frame of reference. Then we are 
concerned with a second, independent frame of reference and have to take up a LORENTZ-
transformation for the velocity. In the second case, here is the velocity referred to a point in 
the distance r from the coordinate-origin, it doesn't look better. Now, we must take up a 
LORENTZ-transformation for the distance r. However, the associated relation should not be 
further presented. 

 
This problem appears by the way even in the classic EINSTEIN theory. So, a frame of 

reference always applies locally only. How large the local area is, depends on the initial 
conditions.  

 
Now, we want to continue our examinations with the reserve that the results exactly apply 

only for the moment dt and in the area dr. 
 
 
 
 

6.1.2.1.2. Exact solution 
 
To obtain an exact relation both, for the dilatation-factor as well as for the Q-factor, we 

first of all try to solve equation (76), at which point we don't regard H as constant this time. 
Also with other output-conditions we obtain the same result as in section 4.3.2.  

 
Neither with the variation of the integration-constants nor with other methods however it's 

possible to get a result, which agrees even only approximately with the observations. On the 
contrary, the results are standing in a glaring contrast to it. The question is, why? Another 
question is, why are the approximative solutions so approximate to the verity? 

 
The answer is in the physical content of the used equations. The solution of (76) results in 

a time-function. But we look for a function in dependence from the velocity dr/dt just the 
first derivative of the way by the time. In (78) except for t is only contained the frequency 

1. This is a genuine constant admitting only the introduction of an absolute velocity with it 
(in reference to the empty space), if such a one should exist. Indeed, there is an absolute 
velocity but only just one, namely the speed of light. 

 
If we just want to determine the function in dependence on another velocity, we first have 

to define a coordinate-system (frame of reference) and that's exactly our problem. At first, 
we define a location. A definite longitudinal ruler (r0) applies at this and also an associated 
temporal ruler (T). Furthermore, also the associated value 0 applies. All these values are 
tight coupled over the parameter Q0 (space-temporal coordinate-system). With the definition 
of the zero, all scales and values are just explicitly defined. 
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Also in the inverse case, with the definition of Q0, the frame of reference is explicitly 
determined. By the way also a fixed value of H belongs to it, i.e. with the definition of a 
frame of reference one accepts H as constant automatically ( /r0 = 0). That is the reason that 
we could achieve so good results with the solution of (578). To the value Q0 still belongs a 
fixed value cM and the angle  is fixed explicitly too. Furthermore follows that also the angle 

 has a fixed value (482). 
 
But we have to consider the limited spatial and temporal range of each frame of reference, 

mathematically seen actually only for an infinitesimal segment dr and for an infinitesimal 
time period dt. For a higher Q-factor, the solutions are passable also for larger sections and 
time periods. For small Q-factors however (high curvature) the relations really apply for dr 
and dt only. If we want to determine the exact function, we have to integrate over dr and dt. 
Then however, the result depends on the way covered and the course. 

 
We have proven with it, that we are unable to get a physically useful relation by the 

solution of (76) and (78). The exact solution rather arises by the application of the 
fundamentals gained in section 5.1. and 5.2. under consideration of the angular relations. 
Thereat, we obtain the value of a by substitution of the basic-Q-factor in (482). While the 
angle  just has a fixed value, the angles  and  are dependent on the velocity v. In this 
connection, the speed-vector v points into the same direction as the metric vector cM. With it, 
for the angle  applies for all kinds of photons: 
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This once again, has effects on frequency and wavelength of photons and neutrinos, which 
are tightly joined with the angle . The angle  is differently defined for photons and 
neutrinos just as for their antiparticles: 
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6.1.2.2. Relativistic length contraction 
 
 
In the preceding paragraph, I already implied, that the hitherto obtained solutions are 

approximative solutions, which are based on the assumption, that the angle  between the 
photon and the metrics always amounts to /2 exactly. If this is not the case, with it also 
changes the hitherto as unchallengeable considered EINSTEIN expression for the relativistic 
length contraction. To my apology, I would like to declare here, that the modification results 
from the basic assumption of this model, namely that the relativistic effects should result  

r 0 /
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from the existence of the metric lattice only macroscopically. In a manner of speaking, we 
have taken up a „digitalization“ (better quantization) of the space and this leads inevitably to 
an offset on higher frequencies (velocities). With it, the „guilt“ is at Prof. LANCZOS, which 
had the idea to this model. To the determination of the exact solution, we first of all assume 
expression (516), which is correct under acceptance of the validity of the Pythagoras 
theorem. We reduce this as follows:   

 
1     1

v2

c2    2c2   c2 v2     (615) 

 
c2   2c2 v2  (616) 

 
Wanted now is a new value  with application of the cosine-rule instead of the PYTHAGO-

RAS. Expression (616) must be expanded then as follows: 
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We find a congruity with (479). With it, the positive sign is applied to time-like photons ( ) 
and neutrinos ( ), the negative to space-like photons ( ) and antineutrinos ( ). Expression 
(620) finally dissolves into the final, corrected version of the EINSTEIN expression for the di-
latation-factor , which now applies also for velocities near c and in very strong 
gravitational-fields ( = , ): 

 
 

 

 

 

 
      
  Exact expression of the (621) 
  relativistic dilatation-factor 

 
 
The discovered expression now no longer alone depends on the relative velocity but also 

from the angle , which has been established with the definition of the frame of reference. 
The velocity v is equal to the sum of metric and speed-vector. It applies v = vM+cM and 
v= vM +cM. With the approach: 

 

           (622) 

 
we get following expressions for the dilatation-factor  (  = ): 
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With it, we have derived the refraction-rule for all types of photons and neutrinos at the 
same time. That shows, that we are on the right way. The angles can be determined with the 
help from (482) resp. (611-614). The test results in an exact match with (621) in the case 
v= vM +cM. The expressions (623) and (624) correspond to the product of the temporal and 
geometrical part of the total red-shift (511), as it easily can be verified. The spatial part with 
the velocity-induced red-shift does not become effective, since it's caused by the motion of 
the photons through the space (wavelength-gradient). So we can present expression (621) 
also in the following form: 
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      (626) 

 
In this connection, we must be quite careful. The part v/c cos   namely does not equals the 
value sin  at all, as one may think with fleeting glimpse. Rather it's about the projection of 
the speed-vector v on the vector c , as one can recognize in figure 104 very well:     
 

 
 

 

 
 
 
 
 
 
 

Figure 104 
Effect of the relativistic 
dilatation-factor  

 
 
 

According to the direction of propagation it adds to or subtracts from c . Under usual 
conditions (very high Q-factor) however, the value is extremely small and can be 
disregarded. Then, only the value cos  d  for the photons resp. sin  for the neutrinos 
remains, which agrees with the phase rate  of the propagation-functions in section 5.3.2.  
 
In order to get an exact solution here, we must expand the corresponding -values with the 
expressions v/c cos   resp. v/c sin  The course of the function  for time- and space-like 
photons for a Q-factor Q0 > 105 is presented in figure 105. 
 

Here, a contradiction arises with the space-like photons (and fermions) which is based on 
the observation, that the reciprocal of   is used for them in contrast to the time-like photons 
and neutrinos, whereas in section 5.3.2. except for a different sign, we got the same 
expression for the phase rate  for both kinds of photon. How this contradiction can be 
solved now? In section 5.3. we just had introduced the complex frequency of a time-like 
photon. Generally, it consists of a real- and imaginary-part: 

 
           (627) 

 
The tangentially red-shifted frequency however doesn't arise to , as suspected first of all. 
The reason is, that the relation c =  is not really correct, if we insert the measured values 
(real-part) for  and . Really, in the theoretical electrotechnics the relation  = 2 /  
(  = phase rate) applies. That means, that with the shape of the wavelength becomes effective 
actually only the imaginary-part of the phase rate, just as it's being observed (real-part). This 
corresponds to the case that the total-wavelength (amount) is distorted by a certain angle in 
reference to the propagation direction, exactly as in our model.   

    j
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Figure 105 
Relativistic dilatation-factor  for time- and space-like photons 
in comparison with the classic EINSTEIN solution (Q0>105) 
 

 
Of course, even a complex wavelength of  can be defined, the measured wavelength 
corresponds to the real-part of  then, and the first relation is right: c = ·  (see figure 104). 
Then applies: 

 
   2

c
 j         (628) 

 
And exactly the space-like photons were the only ones with a negative phase rate, i.e. they 

move opposite to all other kinds of photon on a space-like vector. The cause that the 
reciprocal of  becomes effective is the particular characteristic of the exponential-function 
(e– r = 1/e r) in connection with the Pythagoras of the trigonometric functions 
(cos2x+sin2x=1). Where is now however the point, at which the relativistic dilatation-factor  
applies? This problem had not yet been noticed in the SRT, but it should be known actually. 

 
Expression (628), with regard to the contents, agrees with the relation  = 2 / . Obviously, 

 influences the amount of the wavelength-vector | | = 2  / |  | working simultaneously on  
and  with it. Since we observe only the real-part of , that is the part 2  c/   sin   / sin  resp. 
2  /   (c cos  –v sin   cot  ),  presented in figure 104, applies altogether: ´=    sin   / sin  
(space-like) as well as ´=    sin   / sin  (time-like). Both solutions are identical to the ex-
pressions ´= 2  / (v) (space-like) resp. ´= 2  (v) (time-like). We get the function (v) 
(phase rate) by substitution of the part of the metric vector cM by v = vM+cM in all expressions 
including (v,r) and  That corresponds to the application of the velocity-dependent 
expressions (610-614) for  and . Since the function (v,r) already turns out the real-part of 

, we must make a projection for the amount . We choose the exact space-like vector and 
not the projection. Expression (532) and the corresponding expressions for neutrinos and 
antineutrinos would read then as follows: 

 

  

˜ H 
c

˜ 0
c

( )
˜ 
c

 (v,r) j
˜ 
c

 (v,r)  ( )   (629) 

 

 
-1. -0.5 0.5 1. 

1. 

2. 

3. 

4. 

5. 

β 

v 
c 

β  1 

β 



 
 

179 

Both cM as well as sin  a are stipulated with the definition of the frame of reference. Here, 
the part  /c·sin cos /sin · (v,r) doesn't describe an additional attenuation but a deviating 
of the wave from the original propagation direction r into the direction of the space-like 
vector v.  It shows, our simple model reaches it’s borderline. Therefore we did not defined 
the propagation-function in section 5.3.2. in {x,y,r,t}, but along the arc r having substituted 
the real-part for . The attenuation rate is equal to zero then and the propagation-function 
independent from the direction of propagation. For the exact calculation under consideration 
of the propagation direction, there are essentially more comfortable methods. The most 
important is the notation in tensorial form (comp. Section 7.2.5. ff). 

 
Since the angle  is extremely close to /2 in the normal case, it shows no difference to 

the classic EINSTEIN solution, both graphs cover each other completely. How would this 
classic solution look for neutrinos however? This shows figure 106: 

 

 
Figure 106 

Relativistic dilatation-factor  for neutrinos and antineutrinos 
 in comparison with the hypothetical classic solution (Q0>105) 

 
 
Here,  traces the function v/c+1 resp. v/c–1. With it, also real solutions exist for velocities 
greater than ±c. But there are differences to the EINSTEIN solution with smaller initial-Q-
factors, since the value cos  is different from (near to) zero and sin  ≠ 1. The course of  for 
the four different kinds of photon and for several smaller Q-factors is presented in figure 
107-110. With the time-like photons, we observe the same displacement as already with the 
approximative solution, however caused by the part cM at this point. Thereby there's going to 
be a displacement of the pole in the negative range out of the definition range (real solution), 
so that the maximum for –v is smaller than infinity. Beyond, the solution becomes complex. 

 
At least, it's just theoretically possible, to jump over the „edge“. On the other hand there is 

a negative branch behind the pole in the positive range. With extremely small initial-Q-
factors there's going to be a rotation around the angle /2. The photons behave similarly like 
neutrinos then. 

 
The course of  for space-like photons appears as a (not quite exact) inversion of the 

conditions with the time-like photons. Even here there is the same displacement into the 
negative range caused by cM. The maximum super elevation, different from infinity, is now 
located at positive velocities. The minor the initial-Q-factor, all the minor the maximum 
super elevation. 
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Figure 107 
Relativistic dilatation-factor (v) for time-like photons for small Q-factors 

 
 

 
 

Figure 108 
Relativistic dilatation-factor (v) for space-like photons 

 
 
Analogical are the relations for neutrinos and antineutrinos. However, there is no maximal 

super elevation but only one pole and a sort of minimum. That is the boundary of the real 
definition range (branch point of 1st order). On very small Q-factors neutrinos behave like 
photons. Then there is also a maximal super elevation, which coincides with the branch 
point, (the maximum at the photons is a branching too). We get the location of the pole using 
v = cM+vM by solving the equation: 
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    to            (630) 

 

 
 

Figure 109 
Relativistic dilatation-factor (v) for neutrinos  

 
 

By the way, expression (630) applies even to neutrinos. The maximum super elevation 
(branching) we find always on the side with opposite sign. The values calculate as follows: 

 

                      (631) 

 
   

cM

c   
     Photons 

(
        

cM

c   
     Neutrinos 

(Branching)  (632) 

 
   

4
3

˜ Q 0            
3
4

˜ Q 0
1    (633) 

 
Herewith, the upper sign is applied to the time-like, the lower one to the space-like 

photon. To the comparison, the course of the exact (632) and of the approximative solution 
(633) for photons is presented in figure 111. It shows, the approximation is good for values 
down until Q0 = 1. This would be the relations directly at the SCHWARZSCHILD-radius.     

 
So we have to relativize the good news, that it is possible, to jump over the „edge“ in turn. 

Indeed the pole in the classic EINSTEIN solution are the reason why it's impossible for a 
material body to achieve a velocity greater than c. There is, at least theoretically, a chance in 
this model that this body may overcome the wall with a positive velocity. However, the 
thereto necessary velocity at the current Q-factor of approximately 1060 is so close to c that 
such a question becomes physically pointless. If we really should be successful in building a 
spaceship, able to achieve a velocity greater than c, the temporal dilatation up to the 
achievement of this point would be so large, that, even if it should last only one second for 
the passengers, on the earth would have passed a time period greater than the present age. 
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Figure 110 
Relativistic dilatation-factor (v) for antineutrinos 

 
 

 

 
Figure 111 
Exact course and approximation for the maximum  
super elevation  at the time- and space-like photon 
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At a possible return, one would not find the earth. Even, there would be problems with the 
propulsion, specifically when braking. A photon-drive would turn into a neutrino-drive, 
which shows no action. They just should have to take along an additional antineutrino-drive 
in order to achieve a retardation. 

 
What does a negative or complex solution mean for  then again? If a negative solution 

appears, the wave executes a phase-jump and the frequency becomes negative. In the 
conducting-theory, this is synonymous with a negative phase velocity. The wave propagates 
into the opposite direction then, a time-like photon turns into a space-like one, a neutrino 
turns into an antineutrino and vice-versa. But the frame of reference remains still intact, we 
can receive an action from the moved signal-source. In contrast, a complex solution means 
the breakdown of the frame of reference, i.e. a LORENTZ-transformation is no longer 
possible. That however also means that there is no more causal correlation between source 
and observer. 

 
At the end, it should still be pointed out that the tangential part of the time-like photon 

(rotation of the direction of polarization) is subject to the doppler shift too — a fact, which 
easily should can be demonstrated by experiments. A circularly polarized wave turns into an 
elliptically polarized one. With it, the relations are essentially more complicated than usually 
presented in literature. Popularly, an „ideal“, purely horizontally or vertically polarized wave 
is assumed without attenuation, which doesn't exist. The proof is the existence of the 
cosmologic red-shift, which doesn't have stated this way. 

 
Therefore, I would not like to deepen the contemplations more in this direction, but rather 

encourage a discussion in that I imply only popularly, what the physical content of a 
complex solution could mean. We get a complex solution, if the root-expression becomes 
negative or if the argument of arcsin as well as arccos becomes greater than one. Then, e.g. a 
complex solution for  = cosec  = a+jb with b > a turns out and it applies:    

 

           (634) 

 
While both parts of  are only stretched with a real solution, an additional rotation of the 
wavelength-vector around the angle arctan(b/a) occurs with a complex solution. Since this 
however contains an however small imaginary part, so there is still a certain real part after 
multiplication with j, which also should can be detected, unless the energy vanishes in the 
noise. Then, the energy  splits into a real and into an imaginary part, at which point only 
the real-part is able to perform work.  

 
The imaginary part is the equivalent to the blind power (ask your electrician). Since b > a 
applies the photon now behaves like a neutrino, which is just hardly detectable as you know. 
But there is a chance of detection with the help of the weak interaction. With it, the 
causality-principle is violated.   

 
Now, what's the accordance like between our exact and the approximative solution found 

in the previous section? I have checked that. The course of the approximation agrees with 
the exact solution downward until about Q0 = 105 However, the approximation has two 
instead of one maximum and the value is too small. If we use the sum cM+v instead of v, 
there is another good accordance downward until Q0 = 103.  

 
Furthermore, we are interested in the relation to the classic EINSTEIN solution. For that 

purpose first let's have a look at the square of the classic dilatation-factor : 
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To assume idealized conditions, this expression can be combined in the following manner: 
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  (636) 
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According to the rigid EINSTEIN expression, there is actually no difference between time-like 
and space-like photons, adsum it's only the sign. And which rule applies to the neutrinos, 
just can be suspected only. We are glad, if we are able to detect some of them at all. We 
however can assume, that (622) applies. After all, we have succeeded in finding a new 
inherent law: 
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The classic value  represents the geometric mean of the dilatation-factor of particles and 
antiparticles with it. We check further: 
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Expression (638) which we have gotten with the help of the approximation, applies exactly 
with it. Still remains to examine, whether it is possible to find a simplification of the calcula-
tion of sin , which makes it possible to reduce the number of values to be calculated, e.g. to 
replace one or several values with another, as we have done it successfully with the angle . 
An exact examination of (614) immediately leads to the result: 

 
        and   (641) 

 
The angle  just cancels out. It has been successful with it to reduce the number of values to 
be calculated more and more. Furthermore we have proven, that antiparticles move opposite 
to particles. Finally, we want to specify the relations for the relativistic length-contraction 
referred to the real-part of the (wave-)length once again: 

 
               Space-like photons + fermions (642) 

 
Herewith we have accepted on the quiet, that even a macroscopic body can be observed 
warped in reference to the metrics, of course not in total, but as the sum of the particles of 
which it consists. And these particles are described by, although special, wave-functions. 
What else should the relativistic length contraction occur then? Solution (640) and the 
following are applied to   R, at which point R represents the multitude of the real numbers. 
For „usual“ wavelengths other relations apply. Without consideration of the doppler shift 
applies: 

 
                 Time-like photons (photons)  (643) 

 
                Neutrinos    (644) 

 
              Antineutrinos   (645) 
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The expressions (642) until (645) in all represent the temporal part of the relativistic red-
shift, the so-called radial doppler shift, which appears, when the signal  incidents/is emitted 
in the right angle to the direction of motion, plus geometrical share (perspective). With 
axial/-r incidence/emission the share of the axial doppler shift comes into addition, at which 
we want to have a look in the next section. 

 
 
 
 
 

6.1.2.3. The relativistic doppler shift 
 
In principle there is the doppler shift only in the cases (643) until (645), since space-like 

photons don't propagate, they are only moved. Furthermore we have to distinguish the case 
the source is approaching (–v) and that it's moving away from the observer (+v). Generally, 
the second case is considered, namely that where the source is moving away. Alternatively, 
we just have to employ a negative velocity v. We even only want to examine the purely axial 
doppler shift, since all other cases can be split into a radial and axial vector. According to the 
classic view applies generally: 

 

       (646) 

 
The bracketed expression is called k-factor by the way. The root-expression represents the 

radial share. This is always a red-shift. Therefore, the root-expression is even always in the 
denominator. The signal reaches the observer in a manner of speaking „from the back 
around the corner“. 

 
We want now to derive the exact expressions for photon, neutrino and antineutrino. For 

one thing, we have to replace the root-expression in (646) by the exact expression (621). 
This is however not yet the final solution: 

 

       (647) 

 
The reason is, that our photon should behave like a neutrino with higher velocities. 
Furthermore, the expression (647) cannot be correct, since the angle a doesn't appear in the 
numerator. But since the wavelength-vector is distorted in reference to the metrics about a 
certain angle, which draws attention to itself at the transversal doppler shift, also the radial 
share must be concerned, since it's oriented to it in the angle π/2 precisely. 

 
Just an expression is wanted to avoid this dilemma, turning out expression (646) in the 

case of smaller velocities. To neutrinos, the following approximation is applied in the case 
of smaller velocities (cos  is always negative): 
 

     Neutrinos (648) 

 

      Antineutrinos (649) 
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But the second expression is exactly equal to the expression in the numerator of (649). We 
now suspect that the numerator exactly equals the left part of (649). Then the measured 
wavelength is equal to the wavelength in the rest-condition, multiplied with the quotient of 
the extension-factor of the imaginary-part and the one of the real-part of the wavelength. Our 
problem would have been solved with it. The expression for time-like photons reads then 
exactly: 

 

         Photons  (650) 

 
 

This corresponds to the temporal and perspective share in total. With it, expression (650) is 
already identical to the exact solution, which can be read also as follows: 

 
 

      Photons  (651) 

 
 

 
 

 
Figure 112 

Ratio between k-factor and relativistic  
dilatation-factor  classic and model-solution Q0>105 

 
 
In this case,  is the wavelength of the zero-vector and ´ the real-part of the complex 
wavelength-vector, i.e. the value, which is measured. For the neutrino and antineutrino 
similar relations can be found. Here, we however want to figure only the trigonometrical 
expressions according to (552): 
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       Neutrinos (652) 

 

       Antineutrinos (653) 

 

 
 
Figure 113 
Relativistic doppler shift (wavelength) of the  
time-like photons and neutrinos at a Q-factor of Q<105  
 
 
 

 
 
Figure 114 
Relativistic doppler shift (wavelength)  
of the antineutrinos at a Q-factor of Q<105  
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The idealized course for time-like photons and the two kinds of neutrino is presented in 
figure 112. It shows the graph for Q0 > 105, which covers the classic k-factor, in comparison 
with the classic expression . 

 
Figure 113 and 114 show the relations for smaller initial-Q-factors. The function-course 

for time-like photons and neutrinos is identical, the one for antineutrinos mirrored in x and y. 
With somewhat good will, one also recognizes the asymmetry caused by the share H/c. 

 
There is no expression for space-like photons for the known reasons. In terms of figures, 

this also exists of course. Then, it's identical to that one of the anti-neutrinos. But it has no 
physical meaning anyway. With it, we have explicitly characterized the relativistic doppler 
shift. As next, we want to have a look at the relativistic temporal dilatation. 

 
 
 

6.1.3. Velocity and time 
 
The fundamentals to this subject we have already formulated in principle in the preceding 

section. It applies [30]: If a body (system S′) is moving relatively to another with a definite 
velocity v, so the time t passes for him more slowly (in reference to the rest-system S). If he 
now observes a process, which has the duration of t in the rest-system S, so the time period 
has the duration t´ for him (system S′): 

 
           Relativistic temporal dilatation  (654) 

 
t´ is essentially longer than T. for him. The occurrence of the expression  already shows 
that the observation takes place by means of photons. That means, that even the temporal 
vector is observed skewed about a certain angle in reference to the metrics (space-time), 
exactly as the wavelength. Because it's about a space-temporal coordinate-system, this is no 
further remarkable. 

 
We can recall the temporal dilatation even like that: The observed photons have a certain 

wavelength. If we mark the start and the end on the ray of light (e.g. by a short intermission), 
the moved observer would receive the ray with a larger wavelength because of the red-shift 
(at this point only the transversal, time-like doppler shift is regarded). Since the wave count 
and even c are constant, it lasts of course longer, until the observer receives the second 
pause.  

 
If we would observe the process by means of neutrinos (if possible), we would have to 

insert  here obtaining and measuring a duration different from t´.     
 
 
 
 

6.1.4. Velocity and mass 
 
The dependence of the mass on the relative-velocity is an indisputable fact and is secured 

by a lot of experiments and applications. According to the classic theory (SRT) following 
applies [30]: We look at a body with the rest mass m0 in the coordinate-system S (with the 
determination of the rest mass we have automatically accepted the coordinate-system). If we 
now accelerate this body to the velocity v in reference to S, so it now has the mass: 

 
               Relativistic mass increase  (655) 

 
I have already put in the value  in this place, since the body consists of a specific layout 
of fermions, which interact with the metrics with the help of space-like photons. Therefore, 
the inert mass would be the resistance, with which the metrics counters a body during 
acceleration.   
 

t   t

m   m0
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The greater the energy of the space-like photons, all the greater the resistance. With it, the 
inert mass and even the gravitating mass obey the inherent laws of the space-like photons. 

 
If we accept this, we accept the existence of negative, just even imaginary masses at the 

same time. Negative masses would attract each other just as positive ones. As far as their 
character goes, they would have to be assigned to the antimatter. In contrast, two bodies, the 
first made from „normal“ matter, the second from antimatter would repel each other. 
Negative masses would have also a negative energy. If we would define the energy m0c2 as 
the difference-energy to the energy of the metric wave-field (like in section 4.6.4.2.5.), this 
would be quite possible. With the definition of the frame of reference, we commit a fixed 
value for 0 and with it also for the difference to the energy of the particle, that means the 
rest mass.   

 
What does it look like with imaginary masses then again? If we accept an imaginary 

frequency , we must accept also the existence of imaginary masses and the acceptance of 
imaginary masses implies the existence of negative masses automatically. An imaginary 
mass for example, would be the imaginary part of the energy  of an electromagnetic 
wave, at which we look from the side, twisted about a certain angle. Since it's about an 
energy-form at this point, which is impossible to perform any work, an imaginary mass 
wouldn't wield any force-action respectively be subject to a force-action. Neutrinos and 
antineutrinos own a high ratio of imaginary mass Im( )/c2 (the rest mass is zero or better 
H/c2). Since there is still an, although microscopic, real-part, neutrinos can even only 

propagate with light speed. They are just no tachyons. 
 
Now, one should think, expression (655) would already be the correct, exact solution. But 

this statement is not yet unique. So (655) only corresponds to the product of temporal and 
geometrical part. With wavelengths and time periods, it is easily to be understood that these 
only are subject to the temporal and geometrical share of the red-shift, whereas the spatial 
share is specified by the definition of the coordinate-system. Whether it's the same with the 
mass, we want to examine as next. 

 
We have already noticed that the fermionic matter owns wave properties, the so-called 

DEBROGLIE-matter-waves. Of course, these are also subject to the red-shift then, be it the 
cosmologic red-shift or the one, caused by a relative-velocity. Starting from (348), with a 
temperature T = 0 of the metric radiation-field, we acquire the fundamental expression: 

 
W     mc2        resp.      m   

c2    (656) 

 
In section 4.6.4.2.3. we had determined that the frequency  is proportional Q0

–3/2 

(approximatively). A comparison with (521) immediately leads to the solution: 
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If we insert the exact expression and for v the sum v = vM+cM in exchange, the result is 
not yet identical to the one, found in section 4.6.4.1. The PLANCK's quantity of action namely 
is also a function of Q0 according to this model. It applies  ~ Q0

–1. With it, we get in total the 
expression for the energetic red-shift W ~ Q0

–5/2, as already found during the examination of 
the cosmologic background-radiation: 
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If we just regard the PLANCK's quantity of action as variable, the mass would be 
proportional Q0

–5/2, then, which is easily to accept. The „difference“ of Q0
–1 however exactly 

equals the spatial share of the red-shift. The navigation-gradient and the magnitude of  is 
dependent on the frame of reference. We have proven with it, that only the product of 
temporal and geometrical share comes into effect for the mass within a frame of reference.  

 
The spatial share is considered with the definition of the frame of reference. Cosmological 
seen, all natural bodies are located along r in the free fall, so that they don't move in 
reference to the metrics (v=0), as we will already see, whereby v is the velocity in reference 
to the metrics. The right-hand bracketed expression in the navigation-gradient is dropped 
completely then and we get for the mass: 

 

       (659) 

 
Here, a thought Cartesian coordinate-system applies outside the metrics and the angle  is 
not constant. We have used such a coordinate-system in order to define the qualities of the 
metrics. 

 
What means however a non constant PLANCK's quantity of action for the physical rules? If 

we assume  to be no constant, on the basis of the definition of  (37) the charge and the 
magnetic flux would be no constants too. The same is applied even to the electron charge 
then. 

 

    (660) 
 

Similarly, the relations are with the gravitating mass (gravitative attraction), since the 
gravitational-constant is dependent from the frame of reference too. See section 6.2.4. for 
details. The universal action to the physical inherent laws shall be examined on the basis of a 
simple example, the HEISENBERG's uncertainty principle. As well m, as  are subject to a 
red-shift thereat: 

 
             (661) 

 
               (662) 

 

           Classical     (663) 

 

         Really     (664) 

 
With it, the electrons e.g. in a particle-accelerator (see section 6.2.2) are, in terms of 
quantity, subject to completely different physical rules, as hitherto assumed. The measurable 
result however agrees with the classic model, i.e. the changes cancel each other, since as 
well mass, length and PLANCK's quantity of action are depending on the frame of reference. 
That means an observer sees, even quantitatively, always the same physical rules, 
independently from the frame of reference. As a consequence, we also have to revise the 
statements concerning the uncertainty of place and impulse of electrons in the time just after 
big bang, made in section 4.6.4.1.2. There, we had assumed a constant mass for the electron. 
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This however ascends about the factor Q0
–5/2 the more we draw near the point of time t = 0, 

so that the uncertainty of that time would have had the same value as nowadays. Finally, we 
can make the following statement: 

 
 

 
VII. Regarding the PLANCK's quantity of action as variable, one observes the  
 same as by analogy with the classic model, since also values like charge and  
 magnetic flux are no longer constants then and the changes cancel out. 
 

 
 
Well, if we don't exactly want to formulate a gravitational-theory or to explain the 

cosmologic red-shift, we can lean back comfortably leaving the PLANCK's quantity of action 
a constant, and we will obtain the regular results nevertheless. 

 
 
 
 

6.1.5. Velocity and other values 
 
In the preceding sections, we have seen that values like length, time and mass depend as 

well on the velocity as on the frame of reference. Furthermore, we have noticed that other 
values, like e.g. charge and flux depend on the frame of reference only. This dependence is 
caused by the spatial share of the red-shift and corresponds to the navigation-gradient at the 
fermions. But these values also depend on time and the distance to the coordinate-origin and 
thus indirectly on the velocity (integral) with it. For the charge applies e.g.: 
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This corresponds to the dependence on Q0 (660) and applies precisely. If we for example 
want to transform the charge from one to another frame of reference (LORENTZ-
transformation), in contrast to the prevailing opinion q0 ~ Q  ~ . applies. In this 
connection,  is the classic relativistic dilatation-factor. However, the charge and flux-
increase is balanced by an additional mass-increase of the same magnitude in turn, so that 
we observe the same, as if q0 and 0 would be invariant in reference to LORENTZ-
transformations and it applies m ~ .  

 
Thus however, even other values, as e.g. voltage and current depend on the frame of 

reference. By application of relations like q = C·U = 0 r·U and   = L·I = 0 r·I one gets the 
following subjections: U ~ Q0

–3/2
 ~  and  ~ Q0

–3/2
 ~ . In the normal case however, all these 

values can be considered as constants. 
 
The electron charge forms a special case. For one thing, this depends also on the frame of 

reference and traces the value of q0. On very high velocities (near c) and/or small Q-factors 
there is however another additional dependence on the velocity. Let's have a look at this in 
the next section. 

 
 
 

6.2. Physical quantities of special importance 
 
Hence, we want to continue this work with the examination of physical constants, that has 

large influence on the construction of our world. One of these is SOMMERFELD's fine-
structure-constant. 
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6.2.1. The fine-structure-constant 
 
 
The fine-structure-constant α is a characteristic fundamental quantity of DIRAC's theory of 

the electron. It is a measure for the strength of electromagnetic interaction, i.e. for the 
coupling of loaded subatomic particles with photons. According to [5] it is defined as 
follows: 
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0.0917      0.007297  (666) 

 
e is the electron charge in this case. The fine-structure-constant has been well proven with 
the description of the decomposition of the atom-spectra (Lamb-Shift) yet. Also, it is used to 
explain the dissent between spin and magnetic moment, as it appears with the electron. Now 
we want to see, whether there is not hidden another essential, more fundamental legality 
behind expression (666). 
 

It is obviously opportune to calculate on the interaction of electrons or protons with 
photons with the electron charge. In section 4.6.3 however we have noticed that there is 
another second charge, namely the charge of the ball-capacitor in the MLE q0, which is with 
3.301378 e near that value (350). 

 
With a constant, it has no influence on the physical content in general, to multiply it with 

another constant. It's about time to try, what happens, if we would substitute the electron 
charge in (666) with q0: 

 

     (667) 

 
We have uncovered the nature of SOMMERFELD's fine-structure-constant with it. Following 
clear statement applies: 

 
 
VIII. The SOMMERFELD fine-structure-constant is the square ratio of electron  
 charge and charge of the MINKOVSKIan line-element multiplied with a  
 geometrical factor. 
 

 
The geometrical factor corresponds to the full space-angle of 1sr and is equal to the factor 

applied on the calculation of the surface of a ball. This is not further remarkable, have we to 
do it here with the mutual interaction of two different solutions of the field-equations after 
all. The first one is the electron (ball), that second one the photon (wave/cube). 

 
We have uncovered the nature of the fine-structure-constant with it indeed, but it turns out 

a new question, that we have already asked in the course of this work: 
 
1. Why does the electron charge just amount to 0.302822 q0 ? 
 

This is however not yet everything. From this question and the assumption, that PLANCK's 
quantity of action is not a constant, arise a row of more questions: 

 
2. Is the ratio constant between both? If yes, why?   
3. If no or don't know:   
 Is it a coincidence that the electron charge is close to q0 today of all days? 
4. According to which legality does the value of the fine-structure-constant change 

or does it remain constant? 
5. Which effects does it have on other areas of the physics (atomic-model)? 
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As fundamental, question 3 crystallizes here, that we cannot answer with absolute certainty 
however. With great probability, we can say that it is no coincidence. That would mean 
how-ever, that the electron charge is not constant. We don't want to exclude the second case 
however. See next chapter. 

 
 
 

6.2.2. The electron charge 
 
 

6.2.2.1. Static contemplation 
 
Already DIRAC has formulated a hypothesis, as per which the electron charge is a function 

of time, (DIRAC's hypothesis). In his model the gravitational »constant« is no constant too. 
That means, one cannot exclude this possibility and it is worthwhile in any case, to engage 
further examinations at this point.    

 
If we assume, that it is not a coincidence, that the electron charge is near q0, so it's also 

obvious to say that a ratio exists between both, which acts according to a certain inherent 
law. 

 
The definition of q0 contains the PLANCK's quantity of action, which is of essential 

meaning nevertheless for the theory of the bosons (e.g. photons) as for fermions (e.g. elec-
trons)—combined with the wave-propagation-impedance Z0 of the vacuum. This suggests 
the conjecture that both charges are actually one and the same, at which point the electron 
charge, on the basis of particular conditions, only seems to be smaller. Therefore we want to 
examine, whether it is possible to calculate the electron charge from the charge q0 of the 
MINKOVSKIan line-element. Let's consider the model according to figure 115 for that 
purpose.  

  
We have yet noticed that the basic condition of the metrics is located near the expansion 

centre (0) at a Q-factor of Q = 1/2 (1). The expansion-graph in this area is sketched in figure 
93. Furthermore we have noticed that there must be something like a basic condition even 
for the fermionic matter, whereby we can observe both types of matter only red-shifted 
through the lens of the metrics. It turns out the question: What's the Q-factor the basic 
condition of the fermionic matter is located at? 

 
The most obvious assumption would be that this is at the point Q = 1/2 too. Now, we have 

noticed that this point (1) forms the aperiodic borderline case, in which no periodic wave-
function can exist anyway. This is however a necessary condition for the existence of e.g. 
the electron as matter-wave (DEBROGLIE). Matter-waves are moving, according to our 
definition, opposite to the propagation direction of the metrics, which has the consequence, 
that they don't move anyway. They persist quasi on the position forming standing waves. 
Furthermore arises, that these waves, in contrast to time-like vectors, cannot surmount the 
(3) point Q = 1, in which a phase-jump appears, since they are been reflected there. With it, a 
matter-wave would be „locked up“ between the points 1 and 3. 

 
We now assume further, that the electron in reality has the charge q0 too, of which we 

only „see“ the share e, since the electron is warped about an angle  into the phase space in 
reference to the observer, who is positioned far on the r-axis. 

 
The (shifted) r-axis is the asymptote of the track-graph of expansion (figure 25) and 

behaves near the zero like a parable, farther, like a hyperbole. First of all, we are interested 
in the angle , which emerges, from the argument of the integral of the complex 
propagation-velocity c of the metrics (206). It applies: 
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At this point the integral of c and not the value itself comes into effect, since not the velocity 
c of the electron but his location is of interest for the further calculations. With the help of 
(209) we are able to transform (668a) in the following manner: 
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The integral by the time is not particularly well-suited however, since the frequency 0 itself 
is a function of time. Therefore we substitute t by the phase-angle Q = 2 0t obtaining for the 
angle  and for the amount of the zero-vector rN: 
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With r1=1/( 0Z0). Although, the left expression of (669c) is not yet complete. It only 
describes the propagation of the wave. It still lacks the expansion-share Z of the constant 
wave count vector rK across the entire world-radius R, otherwise applies Z =  2mQ1/2 see 
(329). It has the characteristic of a zoom-factor and is to be placed before the integral, since 
it influences all elements dr simultaneously (see section 4.5.2.). Altogether applies: 
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Now certainly an analytic solution of this integral can be found, if there is enough time. This 
however would go beyond the scope of this work. Therefore, we determine the integral with 
the help of the »Mathematica«-function NIntegrate numerically. With it however the 
function 1/ 0 makes particular difficulties, namely because of the many nulls of the Bessel 
function. In order to make possible an exact solution nevertheless, we substitute the 
expression 1/ 0 by an interpolation-function with list (function Interpolate). Then, 
expression (669b) Ep[Q] and (669d) Rn[Q] can be calculated as follows (without r1): 
 

A=Function[(BesselJ[0,#]*BesselJ[2,#]+BesselY[0,#]*BesselY[2,#])/(BesselJ[0,#]^2+BesselY[0,#]^2)]; 
B=Function[(BesselY[0,#]*BesselJ[2,#]-BesselJ[0,#]*BesselY[2,#])/(BesselJ[0,#]^2+BesselY[0,#]^2)]; 
RhoQQ=Function[If[#<30,Sqrt[Sqrt[(1-A[#]^2+B[#]^2)^2+(2*A[#]*B[#])^2]],2/Sqrt[#]]]; 
ArgThetaQ=Function[Arg[1-A[#]^2+B[#]^2+I*2*A[#]*B[#]]]; 
rq={{0,0}}; 
For[x=-8; i=0, x<4, ++i, x+=.01; AppendTo[rq, {10^x, N[1/RhoQQ[10^x]]}]];   (669e) 
RhoQ1=Interpolation[rq]; 
RhoQQ1=Function[If[#<10^4,RhoQ1[#],.5*Sqrt[#]]]; 
Ep=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[-I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]]; 
Rn=Function[Abs[3*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[-I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]]; 

 
The absolute error is smaller than 10–7. Then the electron charge is the rectangular mapping 
of the charge q0 upon the r-axis as presented in figure 115: 
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  e

q0

    e   q0 sin     (670) 
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The exact calculation with the help of the function FindRoot results in values of  = –2.04854 
as well as Q = 0.656724. for the basic condition of the electron. Since the observer to the 
point of time T » t1 (approximately) is positioned directly on the r-axis, thus the electron 
charge results from the actual charge of the electron q0 multiplied with the sine of the 
difference angle between the phase-angle of the electron in the basic condition and the 
phase-angle of the observer (–π/4). 
 

 

 
 

Figure 115 
Ratio of electron charge and charge of the  

MLE in the phase space of the electron 
 
This is constant over a large area (sin   ≈  0.302822). With it, the electron charge traces the 
charge q0 of the MLE directly. Only on extremely relativistic conditions, the ratio between q0 
and e varies according to figure 96. 

 
With the fine-structure-constant itself it are just actually about two different „constants“ 

which only coincides to the present point of time. Firstly it's about the ratio of the observed 
to the actual electron charge, secondly about the angle of intersection between electron and 
photon. It can be interpreted even like that the charge of the electron itself is a wave-function 
and it's periodic. Because of the spin (rotation) the measured charge is a function of the 
angle of incidence  then (figure 115). 

 
On this occasion, the photon always incidents with the angle –3/4π This corresponds to 

the real-part, because only this is able to perform work during an interaction. During the 
calculation of action, we must multiply with the value sin  therefore. The same is applied 
also to the interaction with neutrinos (inverse b-decay +p  n + e+

 ). Latter one also today 
yet figures one of the some many options to the proof of neutrinos. First of all, only the 
extremely small real-part (in this case),  becomes effective during the reaction of the proton 
with the antineutrino, which leads to the so small effective cross-section. Then, in the 
subsequent reaction of course the entire neutrino is absorbed, including the „blind energy“. 

On higher velocities (near c), near the particle-horizon or even in strong gravitational-
fields thus the uniform „constant“ splits into two different variables. The weak interaction 
becomes strong quantitatively seen, since the neutrinos behave like photons then. At the 
same time there's going to be a symmetry-breaking. 
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However back to the electron: While the basic condition of the metrics is settled at Q = 1/2, 
we have found a value of Q = 0.656724 for the electron, but we expected a value of Q = 2/3. 
Using Q = 2/3, we obtain a value for e, which is about 2.54% beyond the really observed one. 
How this deviation can be interpreted? 

 
As is generally known, the fine-structure-constant is used in the interpretation of 

interaction-processes between electron and photon, at which point the observer usually is 
located far away on the constant wave count vector rK at a point Q»1. In a large distance, 
this coincides with the r-axis. Even the electron as a fermion only moves along the constant 
wave count vector. Since the Q-factor is identical to the phase-angle of the Hankel function, 
it is defined along rK, i.e. along the arc. The wave-function of the electron shows a certain 
curvature with it. The photon itself, the zero vector rN in contrast, is rectilinear i.e. not 
curved. Since it's about a photon, which is observed at a point with Q»1 the angle  is 
extremely close to π/2. 

 
The real interaction indeed takes place in the basic condition of the electron at Q = 2/3 i.e. 

the zero vector is being up scaled with all its angles to the phase space of the electron. The 
result of the interaction on the other hand is being observed downscaled at Q»1 then. And 
an adaptation occurs obligatorily during the real interaction (stretching) of the curvilinear 
wave-function of the electron onto the non curvilinear zero vector. For this reason, it is of 
interest to determine the arc length of rK. Even if we weren't able to find any analytical 
solution for (669d), we can say yet, that the determination of the arc length is not impossible. 
With the help of (668b) we obtain: 
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This is however only the share of the wave-propagation in turn. Together with the 
expansion-share, this is applied to the arc length too, we get: 
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Also for the expression (671c) there is certainly an analytic solution, this is however still too 
complicated, so that we will determine this integral numerically too, at least for small values 
Q, because to large values, the approximation 2/ 0 ≈ Q1/2 is applied and the integral turns 
analytically solvable with it: 
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This is a known relation, which we have derived with it. It is applied however only to values 
Q»1. For the numerical determination of the integral we apply usefully the following 
expression in »Mathematica«: 
 

Rk=Function[If[#<10^4,3*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],#^2]];   (671e) 
 
Now, we are particularly interested in the ratio between rK and rN. The course is presented in 
figure 116 with and without expansion-share.     
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Figure 116 
Ratio between the length of the constant wave-count vector 
rK and the length of the zero vector rN as a function of Q0 

 
The expansion-share cancels out in this case. And it shows following at this point: If we 
assume the basic condition (rN) of the electron to be at Q0=0.656724, so the associated 
constant wave count vector rK is exactly about 1.0151826 longer. If we however multiply the 
phase-angle Q0 = 2 0t = 0.656724 with 1.0151826, so a value of 0.6666946. turns out. This is 
a deviation of only 2.794·10–5 to 2/3. The reason could be the computational error during the 
numerical integration. Having duplicated the precision of the calculation however, we got 
exactly the same result up to the last position. It could only be about a systematic error then 
or about others, not considered influences (e.g. hyper-fine-structure) during the 
determination of the electron charge in the experiment. Or however the value is really not 
exactly at 2/3 but at 0.6666946. This should not necessarily figure a problem and a deviation 
of only 2.794·10–5 in the QED is already a full success. 

 

 
 

Figure 117 
Ratio of electron charge and charge of the MLE  
in the phase space of the electron (larger scale) 
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In figure 117 the exact relations are presented in a larger scale once again. One recognizes 
the two basic conditions of the electron e (blue) and e´ (red), at which point more final 
should be equal to the stretched constant wave count vector of e. This is not the case by the 
way, since the angle  and with it also  varies negligibly with the stretching. We determine 
the lengths of rK as well as rN for the three values to: 
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It shows, there is no match in length. Even if we deduct the expansion-factor from the result 
we always get a deviating result (the best fit would be at a phase-angle of 0.660147). That 
means, the basic condition e is not with Q = 2/3 but with an arc-length rK = 2/3 r1. 
Furthermore, with good probability we can assume the condition e´ to be located at a phase-
angle of Q = 2/3. This value also often occurs as a factor in the QED by the way. Now, we 
already want to calculate the corresponding charges: 
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Thereat, I would call the condition e´ the activated condition of the electron. Just with the 
fine-structure-constant (coupling-constant for interactions between photons and electrons) 
always corrections must be taken up, in order to bring the arithmetical result in accord with 
the measurements. At this point generally the all-over published value (666) is assumed to 
be the basic condition of  with an energy W= 0, which increases all the more, the greater 
the energy of the interaction. On average,  is being corrected about 10% upward. Now of 
course, we can assume also an upward corrected electron charge e´ instead of a corrected  
and because e occurs in  to the square, the value (672e) would offer itself here, now and 
then, because 1.02542

 = 1.05144. That's already less than 10% admittedly, but if the charge is 
corrected, the mass must be corrected too in the same course and it applies 
1.051442

 = 1.10552. 
 

It would be possible of course, that there is a variety of different activated conditions of 
the electron besides e´, which all are situated on the constant wave count vector. We have 
proven with it that it is possible, to find a relation between the charge e of the electron and 
the charge q0 of the MLE. Maybe, these two charge-bearing particles are actually identical, 
one time as free particle (electron) one time bound in the metrics? 

 
 
 

6.2.2.2. Dynamic contemplation 
 
We have determined yet that the electron charge is (could be) equal to the rectangular 

mapping of the charge q0 of the MLE onto the metrics-axis of r. What now happens, if the 
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observer moves with a certain velocity or is located in an area of strong curvature or quite 
simply, what's the spatial and temporal dependence of the electron charge? 

 
If the observer is moving with a relative-velocity different from zero in reference to the 
coordinate-origin, he is, in terms of physics, moving backwards on the expansion-graph in 
the direction to the zero. The same is applied in the proximity of a strong gravitational-field 
or that of the particle-horizon. The temporal dependence is inverse. In the natural time-
direction, he moves away from the zero of the expansion-graph. 

 
All this depends on the value of Q0 (frame of reference), on time, distance, velocity and/or 

the gravitational-potential. In order to determine this dependence, let's have a look at the 
model according to figure 115 once again, namely without expansion (plays no role at this 
point). 

 
Is the observer far away on the r-axis, so the phase-angle –  of the metrics, that is the 

vector from the origin to the point of the observer on the expansion-graph, amounts to 
(almost)  –π/4 (r-axis). The r-axis forms the asymptote of the expansion-graph. If one now 
approaches the origin, so the value of the angle becomes greater (the r-axis turns to the left). 
The charge now arises to e´= q0 sin ´ (not identical to e´ and ´ of figure 117). On this 
occasion the right angle ( ) survives, because with the turnover also the propagation 
direction of the photons changes. In the triangle e´rT´q0 then the following relation applies: 

 

                        (673) 

 

.            (674) 

 
.                      (675) 

 
The course of the associated function in dependence on Q0 is presented in figure 118. It 
shows, that the ratio of the electron charge and the charge of the MLE is almost constant 
across a large area. The fine-structure-constant is just really a constant, at least in the 
nowadays technically accessible domain. If approaching the origin, e.g. with velocities near 
c, the ratio changes. The maximum is at Q = 2/3.  

 
Since for the angle sin g not the function c itself but their integral comes into effect, it's even 
more difficult, to formulate the function in dependence on the velocity v in this case. Then, a 
possible approach would be, that instead of the relativistic dilatation-factor also its integral 
arcsin(v/c) would come into effect. This already an angle turns out and the relation (675) 
would be then as follows: 
 

T

0
0

? ve q cos 2.04846 arg c dt arcsin
c

               (676) 

 

0

? ve q cos 1.26306 arcsin
c

        (677) 

 
But the last both expressions cannot survive anyway, since there are contradictions with the 
measuring results of accelerator-experiments. A noticeable discrepancy of the electron 
charge, which does not have been found yet, should appear already with the now reached 
velocities. Also, expression (676) corresponds to the application of the angle  from the 
theory of the photon, i.e. it can be figured with the help of the angle  with (v = cM + vM). 
However the integral to the time, just the way, becomes effective. 
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With the help of expression (675) at least it's possible to figure the function cos in 
dependence on the Q-factor. If we now would be able to figure the Q-factor as a function of 
the velocity, we would have found the function cos  (v) in turn. In section 6.1.2.1 we found 
an approximative solution for cos  (v) ). At the same time, with the expression for the 
relativistic dilatation-factor  we however found a phase-angle (v) with which we couldn't 
do anything yet (593). 

 
If we now want to express our angle  with the help of , we must take up an adjustment of 
the value-ranges before (phase-adjustment), because both are different. Wanted is the 
difference – , which runs over a range of 3/4π i.e. (–π/4…–π): 
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In this connection, V is the detuning according to (589). Inserted in (675) we finally get: 
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Figure 118 
Ratio of electron charge and charge of the MINKOVSKIan 
line-element as a function of time/Q-factor according to (675) 

 
The small zero-angle of 0.0849646 once again seems to be a curvature-phenomenon of the 
QED, at which point the value could be quite equal to zero when assuming the exact initial 
conditions. Wherefrom however the factor of 3/4 exactly has been acquired? The multiplica-
tion of a phase-angle with a factor of 3/4 corresponds to the exponent 3/4 in the value. If we 
look at the expression arg ∫ c  dt more exactly, so c depends on the time dt. In the 
approximation applies c ~ Q0

–1/2
 ~ t–1/4. Put into the integral we get in turn: 
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R is the world-radius and  the classic relativistic dilatation-factor. Adsum, we just really 
obtain an exponent of 3/4 for t and this equals the reciprocal of the relativistic dilatation-
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factor directly. Thus, expression (679) would not become implausible. But it figures only an 
approximative solution in the strict sense, since it is based on the (right) solution of the 
wrong differential equation. We get the exact expression by expansion of (679) with the help 
of (149) as solution of the exact differential equation and comparison of coefficients 
(  = Q0V) to:  
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0
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The course of both solutions is presented in the following figures. The characteristics of 
(682) are following: For large-scale values of Q0 the fraction can be disregarded and the 
value sin  is constant until close to c. After it  jumps up to –  directly. With an initial value 
of Q0 = 1060 e.g. not until a velocity of c(1–10–30) a noticeable variation arises, i.e. just outside 
the technical possibilities. Differently, it looks like with smaller initial Q-factors. In this case 
there is a smooth transition. 
 
 

 
 
Figure 119 
Phase-angle ϕ of the observer  
as a function of the velocity v=vM 

 
Here, a value of v = vM for the velocity has been assumed, just in reference to the metrics. 

But with smaller initial Q-factors, this case does not correspond to the realities, since the 
angle ϕ already with v = 0 should be different from – /4. So we have to add the metric vector 
cM even here, in order to take the influence of the non-irrelevant basic-curvature into 
account, as it e.g. appears near a particle-horizon. This stands in contrast to the original 
statement, made in section 6.1.2.1, which I withdraw herewith. The metric vector just have 
to be added to all velocities, even if the corresponding expression is containing Q0, 0 or r0. 
The real(?) course of the phase-angle ϕ as well as of the ratio between the electron charge 
and the charge of the MLE resulting from it, is presented in figure 120 and 121. 

 
For the decisive Q-factors between 103 and 1060 the fine-structure-constant is just really a 

constant (the value 103 already has been achieved 3.2·10−99s after big bang). Within or 
behind a particle-horizon, it has a different value however. If we would move the origin of 
the frame of reference into the proximity of a singularity, we would measure a total different 
charge-ratio dependent on the velocity, apart from the spatial share, which has an effect on e 
and q0 at the same time, and is available in each frame of reference. Additionally of course, e 
is varying with q0, which should not be forgotten. 
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But expression (679) and (682) are applied for positive velocities only. If we are e.g. near 
(outside) a SCHWARZSCHILD-radius, the velocity is directed toward the centre of the 
singularity. If we now are moving off this place with a velocity, with which the sum cM+vM 
becomes negative, we would have left the region of influence of the singularity. The new 
velocity is positive in turn, directed toward the particle-horizon of the universe R/2. 

 
 
 

 
Figure 120  
Phase-angle ϕ of the observer 
as a function of the velocity v=vM + cM 

 
 
 

 
 

Figure 121 
Ratio of electron charge and the charge of the MINKOVSKIan  

line-element as a function of the Q-factor and the velocity v=vM + cM 
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To the conclusion still to the topic particle-accelerators. I had promised to examine this 
point once again concerning the additional share of the mass- and charge-increase more 
exactly. The question is, do the additional shares cancel out even in the particle-accelerator? 
First let's recall the different dependences: 
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The approximation equation suffice for the technically accessible area. At present, as well 

the electron charge as the PLANCK's quantity of action are assumed to be genuine constants. 
The same is applied also to the magnetic induction B = d dA, by which the electron is kept 
on its track in the accelerator. 

 
Now we are concerned with two different kinds of forces. On the one hand, the electron is 

subject to the centrifugal force FZ = mev/r, on the other hand it generates a LORENTZ-force 
FL = e (v B ). Both are opposite to each other. It applies v  r, just FL = e v . For the cyclotron 
(B = const) and even for the synchrotron (B ≠ const) we get the classic expression with it: 

 

              (685) 

 
According to this model as well me, e as the induction B are now subject to an additional 
red-shift. Altogether applies to the electron mass me ~ Q0

–5/2
 ~ 

5/3, to the electron charge 
e ~ Q0

–1/2
 ~  and, based on the fact, that the track-radius r and with it also the surface-

elements dA of the magnetic field B are not subject to a length contraction (for the 
observer), to the induction B ~  ~ Q0

–1/2
 ~ 

1/3. Inserted in (685) we finally get with 
 

            (686) 

 
the same result as with the classic model, where we have regarded e and B as constants. The 
additional mass-increase just really cancels out. 

 
 
 

6.2.3. The classic electron radius 
 
Meanwhile, we know that there is actually none, the electron is described by a wave-

function indeed. But the electron disposes of particle properties too. Now, we have described 
the MINKOVSKIan line-element as a ball-capacitor which moves in its inherent magnetic 
field. Additionally, we have assigned a radius of r0 /(4π) to it, which shows similarities with 
the procedure on the definition of the classic electron radius. 

 
In this connection one assumed at that time that also the electron resembles a ball-

capacitor with a certain capacity, which should depend on the radius of the electron. Since 
the charge was well-known, there was only a certain radius, at which energy, charge and 
capacity could be brought in accord. This is defined as follows: 
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Here we have applied the relativistic dilatation-factor for the mass on the spot. With it, the 
classic electron radius, according to the classic understanding (interesting doubling), traces 
the function of the relativistic length contraction, which is not a contradiction. Now we 
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insert the real values for the mass and the charge of the electron obtaining the expression for 
the „modern“ classic electron radius: 

 

            (688) 

 
The additional mass-share and the charge-increase cancel out even here. Even according to 
the „modern“ opinion the radius is subject to the plain relativistic length contraction with it. 
So there is an essential difference to the capacitor of the MLE, whose radius is only 
proportional to Q0. 

 
 

6.2.4. The BOHR's hydrogen-radius 
 
Even at the atom, a similar effect can be observed. For that purpose, as a simple example, 

let's consider the classic BOHR's hydrogen-radius, which of course does not correctly reflect 
the real conditions, but it can serve as a ruler for the proportions within the atom. According 
to [5] it is defined as follows (we make use of the approximation once again inserting  for 
the mass immediately): 

 

              (689) 

 
Even the BOHR's hydrogen-radius is subject to the plain relativistic length contraction with 
it, i.e. the atomic scales are observed shortened about the factor –1 exactly like a 
macroscopic body. What does it look like with the additional shares however? 

 

         (690) 

 
The additional shares cancel out even in this place. That means, as well the dimensions of 
the particles as the „track-radii“, i.e. the dimensions of the orbitals, are subject to the plain 
relativistic length contraction only. Else, the atoms would have had different chemical 
qualities to a former point of time of the expansion of the universe. 

 
 
 

6.2.5. The COMPTON wave-length of the electron/proton/neutron... 
 
By analogy with [5] it is defined as follows (representatively, we consider the electron 

only): 
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Even this expression well agrees with the statements of the SRT in turn. Now, with the 
additional relativistic shares, we obtain the following expression: 
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The shares cancel out even here in turn. But the exact expression reads different and is 
presented on the right-hand side, since it's about a (space-like) wave-function. 
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6.2.6. The BOHR's magneton/nuclear magneton 
 
The BOHR's magneton is the magnetic dipole-moment of the electron, the nuclear 

magneton the magnetic dipole-moment of the proton. Both differ only in the mass (me 
respectively mp) in the denominator. According to the classic opinion applies: 

 
                (693) 

 
Inserting the additional shares we get here: 

 

             (694) 

 
In this case, we obtain an aberrant result. Since the magnetic moment however always is to 
be considered in connection with a charge or a magnetic flux, these are proportional –1/3, the 
balance of the additional shares occurs even here. In sum, one can say that the spatial share 
at the total-red-shift has no quantitative or qualitative influence on the physical rules at the 
observer. It has only a cosmologic meaning and plays an essential role on the specification 
of a gravitational-theory. 

 
 

 
6.2.7. The gravitational-constant 

 
We have seen, that PLANCK's quantity of action is not a constant but a function of space 

and time. From the definition of 0 (55) arises, that this must be applied even to NEWTON's 
gravitational-constant. We get after rearrangement: 
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By substitution of (138) we finally get: 

 

         (696) 

 
At this point, the product Q0R appears for the first time, which leads, because of the 
logarithmic periodicity of the universe, to the interesting question, what is in the distance 
Q0R at all? Possibly there is a superordinated universe of which our own  forms a 
microscopic part (r0) only? The cosmologic background-radiation, be continued accordingly, 
would form the metric radiation-field of that superordinated universe then. 

 
 
 

6.2.7.1. Temporal dependence 
 
We replace Q0 and R with the corresponding time-functions (697) and transform onto our 

local coordinates (698) afterwards: 
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     (698)  

 
The temporal course at the point r = 0 is presented in figure 122 and 123. The value of the 
gravitational-constant at the beginning of the expansion has been zero, as we can well 
recognize in figure 120. In figure 123 is also filled in the value of the gravitational-constant 
1s after big bang. 

 
 

 
 
Figure 122 
Temporal course the gravitational-constant 
at the point r=0 (linear scale) 

 
 
Therefrom results, that gravity could not have played an essential role to a point of time 

t < 7.747 ns (quantum-universe). Therefore gravity and quantum-effects are excluding each 
other. Only, this exclusion is not absolute. Rather there is a transition-zone, in which as well 
gravity as quantum-effects in the scale of the entire universe have been existed. To the point 
of time t = 0 and, qualitatively seen, shortly thereafter there was no gravity anyway. 

 
By the way, that could be the explanation for the fact, that no gravitational-quanta could 

have been detected until now—there is no quantum-gravity. This circumstances actually 
should be clear. It does no sense however, to calculate the gravitational-force of a particle, 
about which one doesn't know at all, at which point it's located at present or where it will be 
soon. With somewhat good will, one could call the space-like photons gravitational-quanta 
or even the MINKOVSKIan line-elements themselves. More final particularly for that reason, 
because their qualities (they are bosons with the spin-quantum-number 2) give the best 
match with the quanta of the gravitational-field predicted by the SRT. In this connection 
however is to be paid attention to the fact, that they aren't freely manoeuvrable but rather are 
forming the space respectively the space-time itself. 

 
The expansion of the universe, increases also the distance of two masses, which are 

coupled by gravitational-forces. That increase is compensated by the increase of the value of 
the gravitational-constant. Whether this compensation is complete, we will examine more 
exactly at the end of this section. 
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Figure 123 
Temporal course of the gravitational- constant  

with respect to the local age (logarithmic scale) 
 

 
 
 
 
 
 

6.2.7.2. Spatial dependence 
 
If a temporal dependence exists, so there is also a spatial dependence. We directly get the 

relation by expansion of (697), the local world-radius depends on the time only. 
 

          (699) 
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          (700) 

 
Expression (700) can be split also into a spatial and a temporal share. Here the spatial 

share goes down with the double exponent. Actually also a rotation belongs to it, particularly 
on small values of Q0, which did not has been considered here (sin ?). This however doesn't 
act on G but on the involved masses, as we will see yet. The functional course is presented 
in figure 124. The coordinate-origin is the point r = 0. 

 
It shows an interesting phenomenon. The value of the gravitational-constant decreases 

down to zero when approaching the local world-radius R/2. Beyond this point however, it 
becomes negative, the attraction turns into a repulsion. The attractive effect of the gravity is 
just restricted to a maximal distance. Objects as well as structures, whose dimensions are 
greater, cannot exist in consequence. This is probably the reason, why no larger structures 
could be found above the super clusters in the cosmos. Directly at the particle-horizon, the 
gravitational-constant is equal to zero. Maybe a space traveller, who overcomes a 
SCHWARZSCHILD-horizon, doesn't come out respectively come in as a stamp as expected. 
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Figure 124 
Spatial dependence of the gravitational-constant 
to the point of time T (linear scale) 

 
The course behind the event-horizon is hypothetical. One can understand from figure 61 

that the energy of the metric wave-field decreases very quickly behind R. Probably there is 
even nothing, unless other universes, whose external fields are overlaid our inherent one. An 
action out of this area into the our cannot take place anyway. The not insignificant negative 
value of the gravitational-constant at this place may be the cause for the expansion of this 
superordinated universe however. 

 
In figure 125 the course of the gravitational-constant for the case of a constant wave count 

vector is presented. This corresponds to a body moved with the metrics. For the distance-
function (329) has been inserted. Expectedly, the course depends on the initial-distance (R is 
the present-day value). With it, a body, which is initially behind the particle-horizon (–G), 
already can be overtaken by this. 

 
With any initial-distance the gravitational-constant increases proportional to t3/2 With 

distances greater than 0.01 R however there's going to be a temporal shift, i.e. the local value 
is achieved later on. This can be seen very well, if a logarithmic scale is applied to both axes 
of the function of figure 125 (not presented in this place). 

 
Finally we want to examine, whether the spatial share cancels out even on the 

gravitational-constant. First of all we want to have a look at the entire case for that purpose, 
including the spatial share and expression (698) which we will transform into units of Q0 
(approximation): 
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With it the gravitational-constant depends on the velocity too, a fact, which actually already 
emerges from the classic theory (SRT), because the distance between two celestial bodies, 
with an observer moving with the speed v, is observed shortened about the factor –1. This 
would correspond to a temporal increase of the distance r ~ t3/4 as with the wavelengths. Only, 
it is not accepted in general. Rather the gravitational-constant is assumed as constant. Then, 
according to the classic opinion, the distance r would not increase then again but decrease 
proportionally to t–3/4, which actually cannot be the fact, isn't it? 
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Figure 125 
Temporal course of the local gravitational-constant  
in the distance r with constant wave count vector 
 
 

 
Back to the space-like share: For that purpose, simplifying, we look at two bodies with the 

masses M and m which are in the distance r « 0,01R to each other. Another restraint is that 
M» m should apply, furthermore m should describe an orbit around M, just all together 
conditions, with which the classic NEWTON's relation can be applied. 

 
We place the coordinate-origin into the centre of M which only works, if M » m applies. 

Otherwise, both masses would rotate around a common centre of gravity outside both 
bodies. The kinetic energy of m amounts to 0.5·mv2 and is subject to the same energetic red-
shift as all other energy-forms with it. The velocity v is constant, since as well dx as dt show 
the same red-shift which cancels out with it. Thus the velocity within a frame of reference is 
absolute. It only must be transformed with an observation from another frame of reference 
off, a fact, which is misinterpreted frequently. The mass M wields a gravitational-force Fg on 
m with a magnitude of: 

 

              (702) 

 
The right expression is the centrifugal force FZ of the mass M located in the orbit. We get 
after cancelling and rearrangement to r:   

 
          (703) 

 
The track-radius just only depends on the velocity and on M, not on m. Similarly, it appears 
with the acceleration of gravity g, obtained by rearrangement of expression (702): 

 
          (704) 
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Therefore equation (704) also is called the classic gravitational-field-strength. Since it's 
however based on the relativistic wrong relation F = m·g, it is not the wanted exact 
expression. With distances of r » 0,01R another problem comes into addition. This is given 
by the fact, that expression (700) no longer applies to two bodies in the distance r to each 
other (grad G ≠ 0). That means G is only the value observed off from the coordinate-origin 
(we), which is valid for two bodies standing locally close together in the distance r from that 
origin (close may indicate even the magnitude of an entire planetary system in this case). 
With it, G becomes a local quantity or with other words: Since the far distant area is, in 
terms of cosmology, younger, we even observe a smaller value of G. there. 

 
If we want to determine the gravitational-constant, which comes into effect across the 

entire distance r, we have, purely formally, to replace r by dr in (700) and to integrate with 
respect to r afterwards. Since we are actually interested in the distance r only, we start from 
(703) immediately differentiating both sides first of all: 

 
            (705) 

 
On this occasion, we have already factored out constant factors. This case corresponds to an 
„apportionment“ of the gravitational-constant to the intermediate line-elements dr, which 
already indicates a non-insignificant deviation from the classic model. According to this, a 
gravitational-action namely should propagate instantaneously. As a result of astronomic 
observations we however know, that even gravity propagates with speed of light only. The 
won result would not correspond to the physical facts with it. Because of the apportionment, 
we avoid some of the disadvantages connected with it. But we must not forget, that we look 
at one special case (M » m) only, which just agrees with the classic model, in this 
connection. 

 
 
As next, we substitute the exact expressions for M (659) with v = 0 and G (700). That 

means, if we find a solution for the distance r, so this is valid only then, when we get as 
result the distance-function with constant wave count vector (v = 0). The expression dr is 
actually our line-element r0. This increases according to r0 ~ Q0 ~ t1/2 ~ –2/3 Therefore, we 
must multiply it with (1+t/T)1/2 in order to take the temporal dependence into account. We 
get the following expressions with it: 

 

  (706) 

 

          (707) 

 
Since r0 is not infinitesimal (infinite structure) but has a certain minimum-size (finite 

structure), the laws of the differential calculus actually are applicable only then and even 
only approximatively, when r0 is small in reference to the world-radius R. Since the ratio is 
given by the relation R  = Q0 r0 =  Q0

2 r1, thus we can apply differential calculus even only 
from a Q-factor of Q0  ≥ 103 on, according to the demanded precision.  Then the value of both 
trigonometric functions is 1 however, so that they can be disregarded: 

 

        for Q0  > 103   (708) 

 
The accomplishment of the calculation for Q-factors Q0 <103 we totally could have spared 
ourselves, since the other physical conditions are so extreme then, that macroscopic bodies 
cannot exist at all. Additionally quantum-effects get the upper hand, so that it becomes 
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useless at all, to talk about a „distance“ between two „bodies“. Therefore from now on, we 
use the equality-sign continuing with the following transformation of (708): 

 
       (709) 

 

             (710) 

 
We have already solved this integral in section 4.5.1. We make use of the same substitution: 

 

  with   and    (711) 

 

 with         (712) 

 
With the substitution  we acquire the final solution: 

 

     q.e.d. (713) 

 
This however is nothing other than our distance-function with constant wave count vector 
(322), our approach just has been correct. Particularly, we can draw the following important 
conclusions from it: 

 
1. A body, which doesn't move in reference to the metrics initially, will not do  
 this (by itself) even in future. 
 

This statement is identical to the impulse-conservation-rule. 
 
2. The distance between two bodies, which don't move in reference to the metrics 

(free fall), rises according to the distance-function with constant wave count 
vector. 

 
3. The equation-system to the calculation of the distance between two bodies is 

under-determined. Thus, there is an infinite number of possible solutions with the 
initial conditions v =v0 . 

 
The last statement is of particular importance, since it results directly from equation (659), in 
which we had set v = 0. But any time-functions are possible in this place, which lead to the 
infinite number of possible solutions. This even cannot be different at all, otherwise each 
navigation would become impossible, each body, what is not the case as you know, would 
be bound to its hereditary place forever. Thus, it is also pointless to look for an universal 
solution for this problem. Of particular interest however is the examination of the conditions 
on bodies in the free fall, which we have taken up here. 

 
Now at this point, we are started from the classic model for the special-case M » m having 

considered the masses and the gravitational »constant« as a variable. At the same time 
however, we have succeeded to eliminate as well the masses M and m as G from the 
solution (713). And if these values can be eliminated with an orbit, this is working even with 
other track-forms. In consequence, we can say generalizing: 
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IX. For the cosmologic expansion of masses coupled by means of gravity, the  
 properties of the involved masses are not responsible, but the qualities of  
 the space exclusively. Thereat the shape of the tracks of the involved bodies  
 is irrelevant. All average distances and proportions are changing according  
 to the same function, the distance-function with constant wave count vector.  
 This depends on the initial-distance. 
 

 
 
Then again even the question for the propagation-velocity of gravity becomes pointless 

with it. The case is interesting as well, when a macroscopic body is approaching a 
singularity with a velocity v 0. 

 
With strong curvature then, we have to consider the angles  and  after all. As a result 

the field-lines of the gravitational-field near a black hole are „rolled up“, so that material 
bodies, in terms of cosmology, are „moving away“ from the source not axially but warped 
around a certain angle. Since they are attracted at the same time, they finally fall into the 
singularity, when the approaching-velocity becomes greater than the expansion-velocity of 
space, which is essentially higher than usual there. 

 
This case however we cannot treat exactly with the classic approach. This has been 

recognized by EINSTEIN already soon and he developed the universal relativity theory (URT) 
to which we will devote ourselves in the next chapter. In this connection the fact, that we 
have acquired a contradiction-free result in this work even with a strongly changed classic 
approach, does not indicate, by no means, that the statements of the URT are wrong. Rather, 
latter ones figure a „simpler“ and more exact description of the same facts. For that purpose 
we must examine then again, whether the statements of this model are compatible with the 
URT (or vice-versa). 
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7. The universal relativity-principle 
 

7.1. The fundamental values of the gravitational-field 
 

7.1.1. Potential and field-strength per length unit 
 
Before we employ deeper examinations in this section, we first want to deal with the 

fundamental values of the gravitational-field, since generally ignorance or confusion exists 
at this point concerning the individual quantities and names. Once again, we want to apply 
the approved method of the comparison with other physical field-quantities e.g. with the 
electric and with the magnetic field, even if a takeover 1:1 to the gravitational-field won't be 
possible because of it's particular properties. 

 
Let's begin with the gravitational-potential: With the electric and the magnetic field in 

general, there is a potential  [V] as well as  [A], at which point after division by a length 
unit 2πr (circumference of the field-line around an imagined punctual source) the expression 
for the field-strength per length unit is acquired (btw. even a second field-strength per 
surface unit exists). The unit [m] always is written in the denominator then, the field-strength 
results in units like [V/m] as well as [A/m] with it: 

 
H   
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2 r
er           Magnetic field-strength     H-field (714) 
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 er   

2 r
er           Electric field-strength        E-field (715) 

 
In this case, er is the unit-vector. With the magnetic field in general,  is to equate with the 
current i through a conductor. Thus the field-strength in the vicinity of a discrete conductor 
arises from the difference of the potential in the infinite, this is equal to zero (it however can 
be even another potential, e.g. that of a second conductor (  0)), and the potential in the 
distance r.  For this reason, the field-strength of a single punctual or linear source is defined 
negatively in general. 

 
What does it look like with the gravitational field-strength however? The unit in the 

denominator would be [m] probably in turn. But what the numerator consists of? The answer 
is: also a length. The unit of measurement would be [m/m] then, that means [1]. But which 
length could it be here? Best suitable would be PLANCK's fundamental length (r0 ), which, as 
seen, figures a gauge for all local proportions. We however use the value r0 /2, which figures 
the smallest possible space-like vector. With it, the gravitational-potential, which we want to 
mark with U for the moment, would be defined as follows: 
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The factor 2π doesn't appear in this place, since gravity should not be joined with a rotation 
but with an elastic deformation of the individual line-elements. From the preceding 
contemplations we know that the maximum space-like distance in the universe is R/2. But 
that’s not applied to the electric and the magnetic field since both fields are oriented in an 
inverse manner, i.e. time-like. The utmost time-like vector is R, the difference microscopic. 
The corresponding term is not exactly but only almost equal to zero then. Else with the 
gravitational-field. Expression (716) correctly reads here: 
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From the URT we now know the relation for the g00 -component of the metric tensor, which 
has the form of expression (718) approximately. It applies: 

 

g00  1 2
c2 O v

c
  1 2MG

rc2      with   MG
r

  (719) 

 
Here is  NEWTON's classic gravitational-potential and O(x) a series converging against 
zero. In the approximation, with small curvature-values (x) ≈ 0 applies. It however has not 
been successful until now to determine this function exactly. Rather, it belongs to the most 
wanted expressions in the URT. In general the calculation is aborted behind the linear term. 
Therefore only estimations for the case of weak gravitational-fields can be stated. 

 
Expression (719) on the left (g00) is even wrongly called the relativistic gravitational-

potential. The right name had to be gravitational-strength however. Then the gravitational-
potential is, in terms of correctness, identical to the half PLANCK's fundamental length r0 /2 at 
the place of observation (frame of reference). 

 
Using our model, we can specify the exact expression for g00 without problems however. 

By substitution of (695) we obtain at first: 
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a simple ratio mass/radius to the corresponding values of the MINKOVSKIan line-element. 
The right-hand expression of (720) equals, with the exception of a factor 8π, the coupling-
constant in the field-equations of the URT: 
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Here is Gik the geometry of space, Tik the energy-momentum tensor (inside the frame of 
reference). With it, gravity rather seems to be an electro-dynamic effect. However back to 
g00. Since g00 is quadratic, we better use the value (–g00 )1/2. From the SRT we know that this 
value is identical to the reciprocal of the relativistic shrink factor . This appears even in the 
expressions of the LORENTZ-transformation. It is responsible for the relativistic red-shift of 
time- and space-like photons. In section 6.1.2.2. we had determined that this deviates from 
the classic value : 

 
1          Classic        (722) 

 
Really, the value : 
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becomes effective, by which the reciprocal of the relativistic shrink factor  becomes 
proportional to the phase rate  of the propagation-function of an EM-wave. That's correct,  
 
since the relation  = 2π/  directly turns out the wavelength. Thus we can say that (723) 
exactly applies. We only have to find a possibility to substitute the velocity v by MGr–1c–2 
We get the solution by rearrangement of (703) with respect to v: 
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 α
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  γ           Gravitational field-strength  g-field (725) 

 
But expression (724) only applies with disregard of cM and for vM = 0. On the calculation of 
the trigonometric function sin  in (725) we must use the following substitution for the 
velocity v: 

 

           (726) 

 
With it, we would have clearly determined the function (x) for the velocity, with the result, 
that it's no longer required, since we know the exact expression. However, expression still 
contains (726) the space-, time- and velocity-dependent values M and G, so that we cannot 
do much with (724) and (726). By substitution of (658) and (700) we acquire the following 
expression (vM+vG = 0): 

 

γγ
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        (727) 

 
But the variables r in the numerator and in the denominator of the right side are identical 
only then, when the mass-centre coincides with the zero of the coordinate-system. The 
navigation-gradient appears here once again. By comparison of coefficients with (718) we 
get for the Q-factor: 
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RS is the SCHWARZSCHILD-radius of M. Expression (729) applies because of (404) but only 
outside the mass-distribution. Thus the point Q0 = 1 is not in the distance RS but negligibly 
inside. With disregard of the trigonometric functions we now are able to rearrange (728) in 
the following manner: 

 

                          (730) 

 
With larger values of r, we have to replace r by dr in turn, further see (710). With it, we 
acquire the same result as with the half-classic approach even here, the distance-function 
with constant wave count vector. Since the radius r ascends continuously during expansion, 
the Q-factor in the immediate vicinity of a body moved with the metrics ascends con-
tinuously too. 

 
If we want to determine the exact solution (727) inclusive the trigonometric functions, we 

first require a solution for c = ƒ(M, G, r). On this occasion, we use the relation Q0 = 2 0 t 
applying (728) in (206) or (209). Since expression (729) is containing the function we 
actually want to determine, a variable-separation is impossible, there is only an implicit 
solution in turn, which can be calculated with the known numerical procedures. We expect a 
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B   
d
dA

 er   0 H            Induction      B-field  (735) 
 

D   
dq
dA

 er   0E             Influence        D-field  (736) 
 
These are exactly the factors of the COULOMB's and the FARADAY's rule (see table 6). Both 

have large similarity with the NEWTON's gravitational-rule. In this the gravitational-constant 
steps in place of 0 as well as of 0. Even in the gravitational-field there is a similar quantity, 
which we can compare with induction and influence, the NEWTON's gravitational field 
strength (acceleration of gravity). This is defined as follows: 

 
a    

MG
r2  er              Gravitation    a-field      (737) 

 
We use better the letter a for the universal acceleration, since we cannot use the expression 
g-field twice. The unit of measurement is [m/s2]. Here, a difference exists to the electric 
field-quantities however. But since space and time are equal dimensions, this is no 
contradiction. Looking at expression (732) more exactly, so there is a surface in the 
denominator even here. The numerator figures something like the gravitative „charge“ as 
well as the „flux“ then. By expanding with m2, we can write the unit of measurement even as 
[(m3/s2)/m2], at which point the bracketed expression corresponds to the product MG, and 
that without change of the physical content. Because we don’t know exactly yet, what it’s 
about, we will call this product the gravitational »flux«  for the moment. 
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 er              Gravitation    a-field  (738) 
 

A calculation from the field-strength (726) with the help of a coefficient, as usual in the 
electrotechnics, is impossible unfortunately. Now, we are able to declare both, the relations 
for the charge as well as for the flux: 

 
  dB AdAd              Magnetic flux     (739) 

 
 D AD A             Electric charge       (740) 

 
  dd              Gravitational »flux«  (741) 

 
Now we want to examine, what's the physical meaning of expression . So, the unit of 

measurement [m3/s2] contains the length and the time, just only parameters of the space-
time. Even with our semi-classic approach, we could observe the same. That well agrees 
with the statement of the URT that macroscopic bodies are moving on world-lines, for 
whose course the qualities of space carry responsibility. As a result the guess arises, that the 
actual gravitational-charge is not inside, but rather outside the involved bodies. 

 
According to the classic theory, the mass is equal to the gravitational-charge. We want to 

maintain this name, since there is also a retroaction of the mass onto the metrics. The expres- 
sion  would be something like a description of the condition of the metrics outside the 
mass-distribution then, an „induction“ of the mass. 

 
A comparison of the unit of measurement with (721) finally leads to the solution:  is 
identical to the geometry Gik of space. Because Gik is a tensor however, we cannot directly 
equate it with  (scalar). From the same reason, the application of  is unusual. Instead, the 
classic NEWTON's gravitational-potential  (719) is being used. Nevertheless we can excel-
lently calculate with . Here just some examples (M  m): 

 

      (742a) 
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        (742b) 

 
RS is the SCHWARZSCHILD-radius, vG the escape velocity. And NEWTON‘s law of gravitation 
F = M a in the second expression even can be written in a form like COULOMB’s law (Then G 
is in the denominator) see table 6.  
 
NEWTON‘s gravitational constant can be described both, as function of the local PLANCK-
units, and of the locally observed quantities of the universe as a whole. But we even do well 
totally without G. But we must not forget, that all values are being influenced by the mass M 
and by m too. These on the other hand, depend on the conditions of the surrounding space 
and also on speed. The value r1 is a constant, mH, m0, M1 is the HUBBLE-, the PLANCK- and 
the MACH-mass. The former is equal to the rest mass of the photon, the latter to the mass of 
the metric wave field. It applies: 
 

H 0 0 0 1       (742c) 

 
Interesting is the right-hand expression of (742b). The bracketed expression is invariant 
against external changes of Q0 but only, if M is in the free fall. 

 

Field quantity Nomenclature

Description MMF -- EMF -- MLE -- --

Potential ψ [A] ϕ [V]  [m] Planck's fund. 
length

Description Magnet. fieldstr. -- Electr. fieldstr. -- Grav. fieldstr. -- --

Fieldstr. 1       Gravity-
potential

Description Mag.motive frce -- El. charge -- Grav. charge -- --

Charge V [V]  [As] M [kg] Mass

Description Magn. flux -- El. current -- Geometry -- --

Flux  [Vs] I [A] Ψ = GM  Unusual

Description Induction -- Influence -- Gravitation -- --

Fieldstr. 2
  

B = μ0 H
  

D = ε0 E
 

 --
 Acceleration

Description Faraday force -- Coulomb force -- Inertial force -- --

Force 1  [N]  [N]  [N] Inertial force

Description Faraday's rule -- Coulomb's rule -- Newtons grv.rule -- --

Force 2  [N]  [N]  [N] Attractive 
force

Description M. charge dens. -- El. Current dens. -- Grav. Tension -- --

Miscellaneous
 

 --
 

 

S = κ E
 

 --
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Table 6 
Field-quantities of the electric, magnetic                                                  1) Physically pointless 
and gravitational-field in the comparison                                                  2) Permanent magnet            3) Q0≥105              
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With the action of the mass on the geometry, it's just really about a sort of induction. 
Although, this is only of 1st order, while the action at the EM-Field is of 2nd order. That has 
effects on the symmetry of the considered field-quantities. Because of the order 2 there is an 
electric counter-quantity to each magnetic quantity and vice-versa (cross-symmetry). With 
the gravitational-field, this is not the case. If there are any symmetries, then these exist to 
other quantities of the gravitational-field itself (self-symmetry). 

 
More about it we can find in table 5, which specifically has been worked out, to uncover 

such symmetries. Indeed, some appear fetched far however. So, some relations apply only 
theoretically, as e.g. the expressions marked with a star (there are no magnetic point-
charges). The magnetic charge-density (dipoles!) appears only with the permanent magnet 
and is dependent also from their orientation. The electric current-density actually belongs to 
the electric current-field and the gravitational-pressure is an unusual quantity. More final, 
one could describe as the pressure a mass-distribution exerts on the metrics, (applies only 
inside a mass-distribution). 

 
However even the examination of the product MG is interesting. If we replace M by the 

expression D /c2  ( D is the DEBROGLIE- angular frequency of a particle) and G by (695), 
we acquire the following relations: 

 
  MG   

c

0 0

D

H
  r1c

2 D

H
  r0c

2 D

0

  r0
2c D          (743) 

 

RS  
 
2
c2   

2

0Z0

D

H
   2r1

D

H
   2r0

D

0

  2
r0

2

c D          (744) 

 
Except for the frequency D only fundamental values of the metrics and the subspace appear 
even here. With it, we can say, the gravitational »constant« is actually only an artificial 
mathematical structure, in contrast to 0 and 0 as genuine fundamental physical constants. 

 
How could the gravity work however? The masses interact with the metrics, not however 

together. The gravitative action itself is wielded by the metrics or more simply, without 
metrics no mass and no gravity. In absence of the metrics, any bodies or particles would be 
subject to the strong interaction only, since this is mediated by the subspace. On the other 
hand, the presence of the metric wave-field prevents the particles to be subject to the strong 
interaction across larger distances. 

 
We already had determined, that the inert mass is nothing other, than the resistance, with 

which the metrics counters the body during acceleration. On the other hand, one also can 
imagine the active and passive gravitating mass to be caused by the action of the mass on the 
metrics as well as vice-versa. 

 
If a mass-distribution exist at a place in the metrics, so this consists, for one thing, of a 

certain number of particles (fermions) with the DEBROGLIE-frequency D. We had worked 
out a model in section 4.6.4.2.5. explaining the redshift of masses and the symmetry-
breaking between normal and antiparticles. According to this model, the particles actually 
have a very much larger mass, than we can observe through the metrics, at which point 
normal particles are associated with a frequency smaller than, antiparticles on the other 
hand, with a frequency greater than 0. 

 
During the interaction of a particle with another across the metrics, only the energy D 

becomes effective then and even to the shape of a discrete particle only this amount is 
required. The left-over should be added by the metrics. With the pair production however 
(even virtually) we require no additional energy at all. The energy-transfer between particles 
and metrics happens by means of space-like photons. 

 
So simply as expected, the relations the relations doesn't seem to be however. For one 

thing, the dimensions of the particles are essentially greater than r0, so that there is a large  
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number of line-elements within a particle. Both, as well the particle as the metrics, however 
are wave-functions too, which overlay each other, so that, because of the non-linearity, the 
difference-frequency – D occurs with „normal“, the summary frequency with antiparticles 
indeed. Then, this summary- respectively difference-frequency determines our „actually 
very much larger mass“ and with it even the dimensions of r0 within the particle, at which 
point a lower frequency corresponds to a higher value of r0, (larger Q-factor, larger 
dimensions). 

 
These larger line-elements however occupy more space than usual, so that in the effect 

there are even less line-elements within a macroscopic body, than usual. Line-elements are 
quasi pressed out off the body. In order to find place, there's going to be a compression of 
the PLANCK’s fundamental length outside the body, which corresponds to a smaller Q-factor 
as well as a higher curvature. Only with increasing distance the value r0 re-adapts to the 
average of the universe. As a result of the contraction there's going to be an attraction 
between the involved bodies. The pressing out itself is not the induction but the gravitation 
of the mass then. 

 
This model is contradiction-free for „normal“ particles, but it demands the existence of 

negative masses (with antiparticles the relations are inverse,  is negative), which is not a 
problem because of the line-theoretical contemplation of wave-propagation. Whether these 
negative masses exist in a sufficient quantity, we must answer with no however, since there 
was a symmetry-breaking caused by the upper cut-off frequency of subspace to the point of 
time t1/4 (input coupling), the point of time, at which most fermions have been formed. In 
this case, the shape of particles with the (higher) summary frequency (antiparticles) has been 
less probably than that of normal particles with the (lower) difference-frequency. Then, after 
the unavoidable annihilation the supernumerary „normal“ particles survive. 

 
 
 
 

7.2. The nature of gravity 
 
We have succeeded successfully until now in avoiding the usage of tensors. This will be 

different from this point on. The reasons are the properties of gravity, which in contrast to 
the EM-field, does not shall be connected with a rotation but with an elastic deformation of 
the metric space-lattice (crystal) [1].  

 
And this just not can be  processed with a purely vectorial contemplation. For that 

purpose, the mathematical tool of the tensor-algebra has been created, originally used to the 
calculation of tensions in crystals. Thus, it appears quite reasonable to use this tool even for 
the processing of gravity problems. Interestingly enough, even authors, who don't consider 
the space as a crystalline structure, are using the tensor-algebra for the same purpose. 

 
Primarily, I intended to interrupt this work at this point in order to reserve a course in 

cryptology. Fortunately, d´INVERNO has published a textbook [30], in which the ways of 
solving such tasks are described in detail. Although these descriptions are evenly distributed 
across the whole book, so that we are bound to read everything. 

 
Simultaneously, I recommend, to review the lecture of LANCZOS [1] as well as section 

3.1.2. once again. This just in order to determine, in what extent we already have animated 
his model. 

 
 

 
7.2.1. Once again the MINKOVSKIan line-element 

 
Now, in the course of the work, we often used the expression MINKOVSKIan line-element 

(MLE) without going into it's actual meaning. Rather, we hitherto interpreted it as a physical 
object with certain characteristics, having an effect on the local condition of the universe. 
The reason is, that even LANCZOS used this expression in his model and there is yet no other 
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name for this object, describing its physical content a quarter as good. So the expression 
PLANCK's fundamental length isn't out of question because it's not only about a length but 
about much more. Some authors are using the expression graviton for it. I neither would like 
to use this then again, since the suffix -on in general is associated with a freely manoeu-
vrable particle (the MLEs on the other hand are fixed, they rather form the space itself) and 
even the prefix gravit- would be only a partial description, because the electromagnetic 
properties fall flat.   

 
In the URT in contrast the concept MINKOVSKIan line-element (MLE) has to be 

understood in a some broader sense. So, there it is about a mathematical construct describing 
the local properties of the (empty) space. In [1] LANCZOS (and even EINSTEIN) is using 
expression (0.23) in the form:   

 
s2   x2 y2 z2 c2t2        (745) 

 
with the signature + + + –. which are the signs of the individual components of a fourfold-
vector. This signature is generally used in the SRT, and the standard in the URT is + – – –. 
On this occasion, even the sorting-sequence is reordered (ct is at the first position). In 
general, the differential form of (740) is used, which leads to the expression stated in [30]:   

 
ds2

 dt2 dx2 dy2 dz2         (746) 
 
Here we are unfortunately concerned once again with the standard notation of the SRT 

and URT, veiling the correlations by setting c = 1 which makes the whole nice mathematical 
construct a priori unusable for further contemplations (predetermined structure). Now 
however, we had sworn ourselves from the beginning to don't participate in this fashion but 
rather to fully write out all variables and constants. Expression (746) had to be correctly 
then:   

 
ds2

 d(ct)2 dx2 dy2 dz2           resp.   (747) 
 
ds2

 d(x0 )2 d(x1 )2 d(x2 )2 d(x3)2   ab dxadxb     (745) 
 

with (dx)2 = dx2. And just this ds2 figures the actual MINKOWSKIan line-element then, 
whereby the indices of the discrete (xi ) = (ct, x, y, z) are written inside the brackets 
(superscript), in contrast to the normal approach (subscript). Thus, the component x0 is 
correctly ct (length) and not t. For once, I applied the complex phase velocity c instead of c 
at this point (for zero vectors applies c = c). If an expression should contain more than one 
superscripted characters, so the outer one always is used for numeration, at which point it is 
to be added-up across duplicate appearing indices additionally. 

 
In terms of mathematics all three expressions in (748) are identical, i.e. they describe the 

same, namely the MINKOWSKIan line-element. Although, only the right expression admits 
direct calculations with tensors (matrices). The expression ab is called as well metrics as 
metric tensor, at which point the letter  is reserved to the MINKOWSKIan metrics only. 
Thus, a tensor is always a matrix, whereas a matrix is not automatically a tensor. Here it's 
about a tensor of 2nd grade. Tensors of 1st grade are being vectors, whereas scalars even can 
be interpreted as zero grade tensors. 

 
Using another metrics (e.g. spherical coordinates) in general the letter g is applied, written 

as gab or gik. The index-letters can be chosen freely, but taking its pattern from LANCZOS we 
will use gik in future. 

 
The difference between the URT and our model now consists in the fact that as well the 

MLE itself, as the metrics have got a physical content. Furthermore, the increments dxi are 
infinitesimal in the URT (indefinite structure), whereas they have the quantity r0 in this 
model (definite structure). 
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Because of the extreme smallness of r0 however the difference does not carry weight. If 
we have spoken of the metrics until now, we always meant the metric wave-field with it. In 
the URT in contrast, the expression ηab is meant, which is defined as follows: 

 

ab  

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

   1, 1, 1, 1      (749) 

 
The individual elements of the matrix are called η00, η01, η02, η03, η10, η11,… η33 at which point 
the line is specified by the first, the column by the second number. In this case, only the 
elements η00, η11, η22 and η33 are different from zero. 

 
The rules of calculating with matrices are applied, whereby addition, subtraction, multipli-

cation, the partial derivative (with matrices even called common derivative) and the so-
called covariant derivative are defined [30]. There is no division. Instead, one executes a 
multiplication with the inverse matrix ηab then. It applies: ηab ηab  (1). The expression (1) 
marks the unit-(diagonal-)matrix diag(1, 1....., 1) at this point. 

 
Another notation is ηab ηbc = δa

c. The expression on the right-hand side is the KRONECKER- 
symbol, which yields 1 always then, when a and c are equal. As for the rest, it has the value 
zero. 

 
In section 4.3.4.3.3. we were already engaged with the MLE. There, we had used spherical 

coordinates (xi) = (t, r, ϑ, ϕ) however. The reason was that the distance r with smaller Q-
factors traces a simple linear function (figure 27) by which the calculation essentially 
simplifies in reference to Cartesian coordinates. Then, the MINKOWSKIan metrics gik in 
spherical coordinates looks as follows: 

 

gik  

 1 0 0 0
 0 1 0 0
 0 0 r2 0
 0 0 0 r2 2

   1, 1, r2, r2 2    (750) 

 
The transition to Cartesian coordinates is defined in the following manner: 

 
ct   ct       x   r       y  r sin       z   r   (751) 

 
Then, the line-element written out becomes to: 

 
ds2  d ct 2 dr2 r2d 2 r2 2

 d 2      (752) 
 

ds2
 d(x0)2 d(x1)2 d(x2)2 d(x3)2   gikdxidxk          (753) 

 
In this connection the g00 -component of the metrics (this is equal to η00 ) plays a quite special 
role. In terms of physics it corresponds to the temporal share and it is identical to our frame 
of reference, as we have already noticed in the previous section. Therefore, it is also decisive 
on coordinate-transformations and the LORENTZ-transformation as factor (–g00 ) 

1/2. 
 
In the matrix (749) and (750) there is on position (0,0) the factor 1 in each case. That 

indicates a genuine MINKOWSKIan line-element in turn and corresponds strictly speaking to 
the zero vector ct. In the URT, the zero vector plays an important role, it declares the surface 
of the beam separating the different types of vectors from each other after all. In this model 
we however did a quite extraordinary assumption at the beginning, namely that the speed of 
light (c) should be constant only in reference to the subspace. Thus within the metrics, and 
we are finally within, there are no zero vectors at all, only time-like and space-like vectors, 
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which are rectangular to each other in the approximation. Therefore, in section 4.3.4.3.3. we 
did not apply c but the complex propagation-velocity c of the metric wave-field (252). Then, 
with expression (257) we got the following expression (now in new notation): 

 
 

 

 

2 2
2 2 2 2 2 2 20

2

4r dtds  dr r d r sin d
1 (A( ) jB( ))

2 2r dt2
0     (754) 

 
On this occasion, we could observe the sign-switch at the x0-component, already predicted 
by LANCZOS, which arose from the addition-theorems of the trigonometric functions. 
Apparently, we did a bad turn with the change to the signature-convention of the URT, 
because now the entire right-hand side is negative. In terms of mathematics however it's 
irrelevant, so that we want to stick to it. 

 
In this connection g00 is the (0,0)-component of the metric tensor Tik which is marked in 

the same way. With rigid contemplation, we see that the expression is not only negative but 
complex at the same time, by which the negative sign is relativized in turn. What however 
means an imaginary share of x0? According to the prevalent doctrine, this is identical to a 
rotation of the vector into the tangentially-space, which puts up at each point of the universe. 
Now we yet earlier had ascertained that always only the real-part can be seen by an observer, 
whereas the imaginary-part can be detected only indirectly e.g. as rotation of the 
polarization-plane. Therefore, it's necessary, to transform expression (754), so that really 
only the real-part appears. First, we must determine the value and the phase-angle to it. We 
consider the x0-component only; the calculation submits: 

 

  (dx0 )2        
c2dt2

0
2 t2

 (1 A2 B2 )2 4A2B2
  

c2dt2

0
2

0
2 t2     (755) 

 

 

0 2
2 2

2ABarg((x ) ) arctan    arctanθ
1 A B

        (756) 

 
Because of the quadratic function, even the duplicate phase-angle  appears here. 

Considering the value-function (755) more exactly, so there our non-rectangular triangle 
(figure 94) is actually already implicitly included. This is an universal characteristic of the 
Hankel function. Furthermore congruences with (552) and (587) can be found. 

 
With the comparison of –g00 from (755) with expression (732), immediately attracts 

attention, that both components are strongly differing in the magnitude. While –g00 in (732) 
is about equal to 1, the value in (750) at least for the present-day values of Q0 is extremely 
close to zero. Obviously we did a mistake in the approach in section 4.3.4.3.3., which doesn't 
mean that the whole calculation has been for nothing. So (732) describes the dependence of 
the time-coordinate in the surroundings of a mass (when applying (728)), whereas in (754) 
the time-coordinate of the metric wave-field is meant.  

 
Nevertheless, the deviation cannot turn out so extremely, because if M would be chosen 

sufficiently small, both solutions should show the same result approximately. Also we just 
know, that gravity is propagating with light speed, so that we can assume (754) to be 
incorrect respectively partially correct only. If we apply  expression (733) instead of (728) 
with (732), we likewise get a value close to 1, as long as the velocity v is small in reference 
to c. 

 
If we now assume that the angle between the zero vector and the metric vector amounts to 

/2 approximately, then we can make the guess that (754) actually has the following form: 
 

ds2  1
1

0
2

0
2t2  c2dt 2 dr2 r2d 2 r2 2

 d 2         (757) 
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(dx0 )2  1
1

0
2

0
2t2  c2dt2   1

cM
2

c2  c2dt 2   1
v2

c2  c2dt 2         (758) 

 
The right-hand expression corresponds to (731). That means, it’s valid for time-like photons 
(g00). To it applies the reciprocal of the bracketed expression. Now, the angle  is not a right 
one as you know then again, so that (757) and (758) not can be accurate at all. On the other 
hand, in the mentioned expressions the same angles occur, as in figure 94, so that it seems to 
be quite practicable, to slide the contemplations made thereto in the specification of our line-
element.   

 
Also we have noticed that there are no real zero vectors for an observer trapped in the 

metrics, at most almost-zero vectors. And just such a vector we had already found in section 
5.1. (478). It's about the time-like vector c , which, measured by its qualities, approximates c 
close enough, if only the Q-factor is sufficiently large (>105).  

 
Hitherto, with the measurement of the velocity of light always was the saying from the 

speed of light c generally. For the electrical engineer however also the question arises, which 
velocity specifically is meant? The answer is: The phase velocity. This is equal to c only 
with respect to the classic MAXWELL theory for a loss-free medium.  

 
That this classic model can be correct only approximatively, shows the fact of the 

occurrence of the cosmologic red-shift alone, which doesn't have stated with it. If we now 
assume an anomalous phase velocity being smaller than c, the red-shift states by itself. So, 
the amplitude with a certain phase-angle just needs somewhat more time than according to 
the classic theory, in order to arrive at the observer.  

 
The phase straggles, by which the entire wave-train spreads out. Just an enlargement of the 
wavelength occurs. In principle, even the wave-front hangs behind, only we cannot ascertain 
this because of the special relativity-principle, which we just have used in order to 
synchronize our clocks, and/or to determine the distance to the source. The special relativity-
principle triumphs, exactly as anticipated by LANCZOS.  

 
The result of our contemplations is: we really measure the phase velocity c . Because of 

the for the time being high Q-factor Q0 ≈ 1060 we cannot at all detect the microscopic 
difference to c, since it's far outside the measuring-precision. Also we will measure exactly 
the value c nevertheless, because our measuring-equipment consists of fermionic matter, 
which is as such actually within the subspace and it is permeated by the metric wave-field at 
the same time. Thus, the physical fundamental values will always change in such a manner 
that the variance cancels out then again. Even our brain works with fermionic sensors (eye) 
and depicts the environment with the help of zero vectors (light). 

 
If we want to place c  into our line-element, we have to figure it as a function of c. The 

corresponding expression is (479). As we have determined with the antecedent 
contemplations, it's identical to the function sin  /sin  For time-like photons, we use the 
expression for time-like photons (625) usefully. In this case (wavelength!) applies the 
reciprocal however.  

 
With neutrinos in contrast (626) is applied. Then however, we are concerned with four 

different line-elements at the same time, or better, with three line-elements, because  
is definitely assigned to the component g11. At this point we want to leave the answer to the 
reader, in what extent a neutrino-based line-element should be considered as reasonable. 
Most likely, we require just only one, which describes as well the temporal component g00 
(time-like photons) as the spatial component g11 (space-like photons). 

 
Thus, both components are subject to the relations of the red-shift already worked out in 

this work, namely to the spatial, temporal and geometrical share as well. Therefore we can 
write: 

sin
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 (759) 

 
Considering bodies in the free fall only, so (759) simplifies once again: 

 

  (760) 

 
Overall, we are no longer concerned with a genuine MINKOWSKIan— this only applies to 

the subspace—but with an almost-MINKOWSKIan line-element. Usually this transition is 
associated in the URT with the occurrence of matter (the genuine MLE describes a mass-
free empty space), whereas the line-element of this model differs from the genuine one 
already without matter. That means, in this model, the space is curved even without matter, 
whereby the curvature is caused by the metric wave-field almost exclusively. Thus for once, 
we can put ad acta the Principle of the Minimum Gravitative Coupling, because it’s useless. 
According to d´INVERNO [30] we however should take it with a pinch of salt anyway. 

 
 

 
X. Principle of the Minimum Gravitative Coupling (doesn't apply!): 
 No terms, which contain the curvature tensor explicitly, should be added on the 
  transition from the special to the universal theory. 

 
 
 
This principle is generally used, in order to set a boundary between the SRT, which has 

been stated for an empty space, and the URT, which applies in a space with mass-
distribution. According to the 1st MACH’s principle the curvature the space arises only from 
the distribution of the masses within the universe or shorter: The matter-distribution 
determines the geometry.  

 
If the masses are shifted somehow, the qualities of space change too. But if there is no 

empty space at all for any arbitrary observer (all are within the metrics), there is no more 
reason, to perpetuate this distinction. With it, even this last boundary has been fallen and we 
must reflect, how to transform the inherent laws of the SRT in order to give consideration to 
the existence of the metric wave-field. 

 
We have done this in the preceded sections. Then, as result, we obtain a so-called „special 

URT“ which unifies the inherent laws of SRT and URT. In this the macroscopic metrics of 
space is determined by the metric wave-field only, exactly, as anticipated by LANCZOS 
because the energy-density of the metrics is about magnitudes greater than the one of local 
matter-distributions. An arbitrary mass-distribution affects only the local metrics with it in 
form of an infinitesimal interference of the metric wave-field. However these interferences 
can become quite as large to force a body onto an elliptical track or an orbit.  

 
During cosmologic contemplations, the existence of matter can be completely ignored. 

With it it's about a pure radiation-cosmos. Thus, all three MACH’s principles apply on 
condition that we also consider the metric wave-field as matter (energy = matter). 

 
There is another more difference between this model and the standard-model. Most 

authors already in their approach assume the gravitational »potential« to vanish in the 
infinite. In this model there is no infinite distance at all and the proper potential according to 
(718) does not vanish anyway. And just this non-vanishing share turns out to be extremely 
important for the curvature of space at the place of the observer. 
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7.2.2. The line-element as a function of mass, space, time and velocity 
 
 
 
Although the curvature in the cosmologic scale is determined by the metric wave-field 

exclusively, there is still the local influence of a mass-distribution. Therefore we require a 
function, which describes the local characteristics of the space not only in dependence on 
time, distance and velocity (734), but even on an existing mass-distribution. Now, we must 
find a way to bring these expressions somehow together. The reason is, that we have 
resigned the Principle of the Minimum Gravitative Coupling. Therefore we must define a 
new principle describing this dependence. 

 
In section 7.1.1. with expression (724) we had already found such a relation. Considering 

this expression more exactly then again, so it fulfils the requests of the URT with a mass of 
M = 0 indeed. That means, the curvature vanishes and the line-element becomes exactly 
MINKOWSKIan. But according to our model that should be unlike. The basic-curvature of 
space, caused by the metric wave-field itself, still remains here. We just have to think up a 
relation fulfilling this additional condition, which turns out expression (719) in case of minor 
masses coincidently (approximation). 

 
During the study of the special relativity-principle, we already had found a similar 

problem. The problem was, to unify the basic-curvature of space with an arbitrary relative-
velocity in one expression. We solved it by adding the metric vector of the relative-velocity 
vM to the likewise metric vector of the propagation-velocity cM of the metric wave-field, 
whereby both point exactly into the same direction.  

 
Now the question arises, whether we cannot proceed similarly in the case of the existence 

of a mass-distribution. We must find just only a metric velocity vG, whose magnitude 
depends on the mass and the distance to the centre of that mass. Thus, we only must add 
these to the two already existing speed-vectors obtaining a relation, which takes into account 
even the existence of the mass-distribution. As additional-condition arises that this velocity 
must become zero, if the mass M is zero. 

 
There is really such a velocity. If we split the approximate expression (719) by analogy 

with 1–vG
2/c2 we obtain with (v, M and G depend on the frame of reference): 

 

r
G~M~2v2

G     
r

G~M~2 vG     (761) 

 
the expression for the escape-velocity or the 1st cosmic velocity. That's the minimum-
velocity, which a body must have, in order to move on an orbit with the radius r around a 
body with the mass M, without falling back on the surface. Generally one applies the radius 
of the body for r, since the starting point is usually on the surface of the body. But in the 
orbit, the velocity must be only as large, as the solution of (761) with the radius of the orbit 
turns out. 

 
And exactly this velocity we must add to the other two velocities and we have got the 

wished expression with it. It applies v = cM+vG+vM. In the approximation for velocities v « c, 
with small curvatures as well as with disregard of the spatial share we can write then: 
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   (762) 
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To a body with a fixed position at the surface, applies vM = 0 and the following expression: 
 

00

~~

ωρ
            (764) 

 
~~

         for  M» 0  and/or  Q0 » 1  (765) 

 
with it, also the condition for M  0 is filled, the basic-curvature of the metric wave-field 
really remains: 
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       for M  0    (766) 

 
It would be favourable for the component g11 , if we could replace sin γγ‾ by sin γγ. Usefully, 
we use the relations (621) and (623) for it. It applies without the navigation-gradient again: 

 
 

 
 (767) 

 
Here, also the conversion-factor  between space-like and time-like distance appears, as 
already anticipated with (280). For the approximation by analogy with (765) we get the 
following expression: 

 

        (768) 

 

                    (769) 

 
After substitution in (760) we approximately obtain the SCHWARZSCHILD line-element as -
solution. Re-applying the velocities, we can see even here, why the relativistic dilatation-
factor  comes into effect with time-like vectors, but the reciprocal –1 with space-like 
vectors. 

 
 
 
Thus we can expand the relations for the angle  and the several angles  about the 

expressions for the mass-influence. To the angle  applies generally: 
 

 2
0 0

1 2MG v  arcsin sin
t rc c

inMGMGMGMGMG sMGG vG vG vG vG v sG v       (770) 

 
and to the angle  according to the kind of photon: 
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2
0 0

 
1 2MG v  argc arccos sin

t rc c 4
iinMGMGMGMGMGMG sG vG vG vG vG vG v s   Time-like photons (771) 

 

 2
0 0

1 2MG vargc arcsin sin
t rc c 4

 iinMGMGMGMGMGMG sG vG vG vG vG vG v s   Space-like photons (772) 

 

 2
0 0

1 2MG v argc arcsin cos
t rc c 4

cosMGMGMGMGMGMG cG vG vG vG vG vG v c   Neutrinos          (773) 

 

2
0 0

 
1 2MG v  argc arccos cos

t rc c 4
cosMGMGMGMGMG cG vG vG vG vG v c  Antineutrinos    (774) 

 
 
 
Then, the classic NEWTON’s gravitational potential is defined in the following manner: 
 

2

2
0 0

1 1 2MG v        with   a grad 
2 t rc c

MGMGMGMGMG
22

G vG vG vG vG v   (775) 

 
As next, we want to examine the relation for the escape-velocity (761) more exactly once 
again. According to the kind, it's about a propagation-velocity too. After substitution of G by 
(695) and of M = D/c2 we obtain the following relation: 
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In this case, D is the DEBROGLIE- angular frequency of an arbitrary particle. We had 
already determined that „normal“ particles (fermions) are reducing the frequency of the 
metric wave-field within the body. That means, the length r0 inside the body is stretched 
(larger Q-factor — smaller propagation-velocity). Outside the body, and this area we now 
look at, the relations are the other way round. Here, the length r0 is compressed (smaller Q-
factor — larger propagation-velocity). Therefore, the positive sign applies here. But how 
does the situation look like, when the body consists of antimatter? According to this model, 
it would have a negative mass and the regions of the stretching and compression would be 
reordered in turn. Expression (776) for antimatter would read then as follows: 
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The negative sign of the root-function is applied to antimatter. Expression (777) well agrees 
with the doctrine, that antimatter even possesses a negative energy. Only, in this model it's 
about a negative difference energy, which is to be accepted much more easily. Therefore, we 
must insert the negative sign into the expressions (770-775) whenever the mass is negative. 
Thus, we are concerned even here with a symmetry-breaking between „normal“ and 
antimatter, which never carries weight because of the nowadays extremely small value of 
cM. For the time just after big bang however the magnitude of cM cannot be disregarded, so 
that the symmetry-breaking became essential for the further expansion of the universe. 
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To the conclusion, we already want to examine the influence of the speed-component vM. 
This cannot be chosen freely in general, unless, it's about a spacecraft. We want to attempt a 
gedankenexperiment to it. As already determined any observer in the free fall is always in 
the 3D-centre of the universe. In fact he resides on a 4D-hypersurface, the event horizon. 
This is correct in so far, as it is about an empty space (I want to exclude the observer itself). 
But what does it look like, when this space is not empty, just when the observer is positioned 
inside the gravitational-field of a body? 

 
Then, we must distinguish two cases. The first case is that where the body in the free fall 

is unable to move in reference to the attracting body, like e.g. an observer on the earth's 
surface (inhibited free fall). This is subject to the full influence of the gravitational-field 
then. There is an attraction, which is identical to a lower Q-factor (= compressed metrics) 
outside the body. In this case, we must add the value of the escape-velocity to the 
propagation-velocity cM of the metric wave-field. The space is just more strongly curved, as 
normal. 

 
The second case is that of a body in the non-inhibited free fall. This is the legendary 

elevator-experiment [30]. In this case of course, except for a minor angular aberration to the 
mass-centre, there is no difference to an observer in an empty space, (only cM applies). The 
same case applies to an observer moving in the orbit with the 1st cosmic velocity. Also this 
is a free case, even associated with the phenomenon „weightlessness“.  

 
In this case, only the share cM may come into effect to the observer. But it can be achieved 

only, when the speed-component vM becomes negative. Now however, for an observer in the 
centre of the universe, always only positive velocities are possible. These are defined toward 
the world-radius (margin), which is equally far away irrespective of the direction. Thus, all 
forces exerted on the observer by the marginal singularity cancel themselves, so that the 
observer remains in the centre. 

 
Now, we had already posed the question, what a negative velocity, if there should be such 

a one, actually could mean. This is per definitionem a velocity directed from the margin to 
the centre of the universe, which is only possible, when the observer is outside the centre. 
We can draw the conclusion from it that an observer being in a gravitational-field but not in 
the free fall, neither is in the centre of the universe (then, the centre of gravity of the system 
mass-observer steps in place of this position) or vice-versa: 

 
 

 
XI. An observer in the free fall stands always in the 3D-centre of the universe. 
 His relative-velocity in reference to the metrics is equal to zero. In reality  

 he resides on a 4D-hypersurface, the event horizon. 
 

 
 
But for an observer in the orbit this is applied only to the radial, not to the tangential 

component of velocity. For generic speed-vectors, we must already multiply the amount 
with the cosine of the angle to the radius r. Since almost all matter in the universe is in the 
free case, it's moving with the metrics (constant wave count vector).  

 
To the better overview, the three cases empty space, gravitational-field and free fall are 

presented in figure 126 once again. It's about the relations for a mass-system, consisting of 
„normal“ matter. 

 
In the case, that the gravitating mass consists of antimatter, the relations are (with respect 

to this model) completely different. Now the escape-velocity is negative, as we can 
recognize in figure 127. That means, an observer (of antimatter) in the free case must have a 
positive velocity, whereas a freely navigating body of antimatter is moving with a negative 
velocity. 
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Figure 126 

Definition of the velocity and the centre of the universe for the cases 
empty space, body in the gravitational-field and free fall for „normal“ matter 

 
 
 

Let's think exactly once again. The velocity c is defined as c = 0r0 whereas for an any 
velocity v the expression v = Vr0 applies. 

 
 
 

 
 

Figure 127 
Definition of the velocity and the centre of the universe for the cases 

empty space, body in the gravitational-field and free fall for antimatter 
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Thus, we obtain a frequency V which is equal to the number of line-elements, a body 
with the velocity v within a certain time period „streaks“. As we know, bodies of antimatter 
are having a negative (difference-)energy. Thus, the difference-frequency becomes negative 
too, which leads to the result, that material bodies of antimatter are moving with a negative 
velocity — opposite to „normal“ bodies. This is a generally accepted statement. 

 
The summary-speed of a body in the free fall in reference to the metrics (as well of matter 

as of antimatter) in both cases turns out zero. Only the temporal share ct remains then, i.e. 
almost all bodies are moving on plain time-like world-lines in the average, whose 
propagation is caused by the continuous increase of the phase-angle 2 0t Another 
conclusion is that two bodies, the first of matter, the second of antimatter, would repel each 
other. 

 
 
 
 
 

7.2.3. LORENTZ-transformation and addition of velocities 
 
With (759) we have formulated the line-element of this model. Before further examination 

we must still deal with another problem, which actually belongs to the preceding section, the 
transformation and addition of velocities. From the SRT, we know a relation for the addition 
of velocities, which is liked to consult as example for the opinion, that velocities greater than 
c are impossible. In terms of physics, this is wrong however. In reality, such velocities are 
possible perfectly well and they are prohibited by no means. According to the classic 
EINSTEIN theory, these can never be achieved, because the energy W = Mc2 contained in the 
matter is not enough for that purpose. With 100-percent efficiency c is exactly achieved in 
that moment, when all fuel, inclusive drive etc. and even the crew, just the entire mass M has 
been converted to radiation. 

 
Now, we did not used the addition-theorem for velocities in the previous section but added 

airily all three vectorial part-velocities in fact. This has a specific reason, which applies even 
in accordance with the classic theory: All three velocities are defined in reference to the 
same frame of reference. But the addition-theorem applies only, when the velocity v is 
defined in reference to another frame of reference, which in turn is moving with a velocity v, 
in reference to the observer: 

 

                Classic speed-addition        (778) 

 
Does this relation now apply in our model too? This is an important question, which we have 
to answer here and now. It is closely connected with the coefficient of the LORENTZ-transfor-
mation  = (–g00)–1/2 (SRT-sign-convention). Therefore, we want to deal with this at first. 
According to [30]  is equal to the cosine of the angle  describing the rotation of the 
coordinate-system in the (x,t)-plane, which is caused by the velocity v: 

 
     (779) 

 
This expression is identical to the classic dilatation-factor of the SRT and can be figured as 
special-case of this model, when the angle  (209) is equal to – /4, just with very large Q-
factors. In order to answer the question asked above, we will derive the relation exactly once 
again, whereby we closely want to follow [30]. 

 
Two inertial-systems S and S (free fall) are starting point, whose coordinate-origins are of 

line at the beginning. In both frames of reference, the clocks are synchronized (t = t = 0). 
Mathematically, the problem is described by the coordinate-transformation: 
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       (780) 
 
at which point the system S should move with the velocity v in reference to S. This 
transformation is even called LORENTZ-transformation (L). If we now send out a light-flash 
from the origin, so this will propagate with the velocity c, whereby we will observe it 
differently in both systems. Since it is about the same event, the problem can be traced back 
on the equating of the two (real)  MINKOWSKIan line-elements, whereby we will always use 
the sign-convention of the SRT in this section: 

 
            (781) 

 
In an isotropic space and if the motion of S takes place only in x-direction, applies y= y and 
z= z, which reduces the problem to the relation: 

 
      resp.    (782) 

 
In contrast to [30] we want to work on with the second relation (polar-coordinates)  which, 
in terms of mathematics does not make any difference. Thus, the model can be brought 
much better in accord with our new photon-model, when the r-axis coincides with the r-axis 
of the expansion-graph. In contrast to [30] in turn we will exchange the axes however. Never 
fear, we will get the same result nonetheless. Furthermore, we introduce imaginary time-
coordinates, 

 
T jct T jct              (783) 

 
which are perpendicular to the other, already existing coordinates of the expansion-graph 
and put up an additional tangentially-space at each point. Thus, we have answered the 
question, whereabouts the sum of the plenty speed-vectors we have introduced until now, 
actually aims in. They don't run along the expansion-graph but into the tangentially-space. 
Therefore it also makes no odds, if they move away from the expansion-graph all-too much. 
The exact relations (  = π/2) are presented in figure 128. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 128 
Rotation in the (T,r)-plane during 
the LORENTZ-transformation 

S  t ,x ,y , z   L S t,x,y,z

x2 y2 z2 c2t2  x 2 y 2 z 2 c2t 2

x2 c2t2  x 2 c2t 2 r2 c2 t2  r 2 c2t 2

 T 

T´ 

r r´ 

 ́ 

 ́ 

 

 
 

T´ 

T 

r 

r´ 

 

P 
 

 

 ́ 

x 2  T 2 



 
 

233 

After insertion of (783) in (782) we obtain the following expression: 
 

          (784) 
 

For v = 0 both frames of reference coincide and the angles are equal to the angles ,  and  
of the preceding sections. With it, we have been able to bring in accord the classic case with 
our new photon-model. In this case, r corresponds to the metric vector cM, T to the time-like 
vector c  and to the zero vector c. This is inevitably alike in both systems. Let's have a look 
at (784) more exactly, so it's about the relation for the radius  of a circle and this points on 
the point P. Now, let's rotate the coordinate-system S, instead of the point P, at which point 
the size of  doesn't change. In this connection, the rotatory-angle is represented by . 

 
Now, the observer B should move together with his frame of reference with the velocity v 

in reference to S, whereby r specifies the distance between S and S. Therefore, the velocity v 
of S in reference to the inherent frame of reference S and with it even the distance r of the 
observer B in reference to the coordinate-origin of S is equal to zero. It applies: 

 
r 0  r vt r j

v
c

T       (785) 

 
We obtain the right expression by insertion of (783) into the middle expression. Now, with a 
rotation of the coordinate-system according to [21] the following relations apply: 

 
r  r T T  r T     (786) 

 
0   r T because of (785)     (787) 

 
The angle  is actually negative however. If we define it positive from now on, after substi-
tution of the right expression of (785) applies for r: 
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If we take up a comparison of coefficients, we get the following important expressions: 
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  (791) 

 
The relations for the LORENTZ-transforms finally can be determined by rearrangement of 
(786) and substitution of (785): 
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and in summary: 
 
 

)c/rvt( t 2
 ,   )tvr( r ,      = ,      =   Classical    (795) 

 
 
Now, according to [30] he sum of two velocities arises from the addition of the angles . 

By analogy with the addition-theorem of the area-functions applies: 
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      as always   (797) 

 
It becomes interesting, when the angle  is unlike /2, as in our model. For that purpose, 

let's have a look at the expressions for the LORENTZ-transformation next in turn. If we 
assume, that a rotation of the coordinate-system into the tangentially-space, which is 
described by the relations (786) occurs even here, we must look once again for an expression 
for the angle  describing this rotation. Inevitably this will differ from (789). In the special-
case  = π/2 however it must turn out the same solution. The substitution (783) applies even 
in this case, since we want to work with a rectangular coordinate-system. 

 
From the examinations done in the antecedent sections, we know that 

 

    1 cos          (798) 

 
must apply. If we just assume, that this is the case, using the component g00 from our line-
element (759) we get the following expressions for the trigonometric functions and the value 
of the angle : 

 

                       
                (799) 
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            (801) 

 

   
 

         (802) 

 
To the determination of the LORENTZ-transform we proceed by analogy with the classic 
case: 

 

          (803) 
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:         (804) 

 

           (805) 

 
and in summary: 

 
 

   ,      ,     = ,     =  (806) 

 
 
Btw. these relations apply independently from our model and using „our“ g00 even 

simultaneously for influences of velocity, matter-distribution, distance and time, just in 
general (SRT+ART). In the special-case  = π/2 (806) yields the classic solution of the 
LORENTZ-transform. With velocities v«c the solution graduates into the one of the GALILEI-
transformation. We have found a contradiction-free solution, which fills the made requests, 
with it. 

 
Now, we want to deal with the addition-theorem of the velocities. One can assume that the 

individual angles  will add up again even here. Thus, the following relation applies 
=  + , respectively: 
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For = π/2 the solution (813) turns out the classic expression (778). In contrast to (806) 
applies (813) but not independently from our model, but (808) applies. The reason is, that 
we have reduced the left side with respect to v  and this depends on the used line-element of 
course. Combining (808) with the line-element of this model even problems of the URT can 
be solved with it. A good example is the special-case on the three-body-problem, if all three 
bodies are in a line (opposition or conjunction). Then the shares add up linearly only then, 
when the curvature is not all too large. 

 
Even if one does not see it so clearly, a problem turns out here, which there is none in the 

classic case raising a whole lot of more questions. So, we require from the frame of 
reference, which is moving with v, additionally to the detail of the velocity v also the angle 

, which results from the conditions in the system S. These however depend on the velocity 
v, with which this system is moving in reference to the frame of reference S. In contrast, the 
angle  is well-known. To the calculation of (813) we already require the angle  in 
addition. This is unknown too. 

 
Before we want to examine the different solving-options, we will do a 

gedankenexperiment first of all: If we assume, that the observer in S is in the free fall, so he 
is in the middle of the universe, he doesn't move in reference to the metrics and he is 
positioned on the expansion-graph, at which the angle  is defined at the same time. The 
second observer should now be located in the system S′. If he moves in reference to S with a 
velocity greater than determined by the distance-function, so he is now in the tangentially-
space outside the expansion-graph seen from S. Thus, each observer, who is not in the free 
fall, is always in the tangentially-space. Now, we come to an important question: 

 
 Where is the observer in S′ situated seen by himself? 
 

 
We cannot answer this question without further ado. There are several options, which are 
closely connected with the definition of the angle : 

 
1. The angle  is the same for all observers and only a function of time. 
 
 In this case, all observers would be located on the same point of the expansion-graph. This 

would be the classic case of the genuine MINKOWSKIan line-element. Then, different 
velocities have only a different rotation of the various coordinate-systems to the 
consequence. This case obviously disagrees with relation (734) as per which the Q-factor 
and with it  depend on the distance.  

 
Status: rejected. 

 
2. The angle  depends only on distance (and time). 
 
 Then the observer in S′ and with it each observer, seen by itself, always would be situated 

on the expansion-graph. But this disagrees with the above mentioned statement, that an 
observer being not in the free fall is always in the tangentially-space. When both conditions 
shall be coincidently fulfilled, an observer, seen by itself, would have to be always in the 
free fall, which is not correct (conditions at the earth's surface). Also one could say that we 
would introduce an absolute frame of reference with it. But since there is an inherent 
„absolute“ frame of reference for each observer, which is different from the others, the 
special relativity-principle is not violated.  

 
Status: not impossible but not very probable. 

 
3. The angle a depends on the time, distance and the velocity. 
 
 Then an observer, seen by itself, would be on the expansion-graph only then, when he is in 

the free fall. In all other cases, he would be in the tangentially-space. This case appears to 
be most probable. Then however, there should be an expression for the Q-factor as a 
function of the velocity. But since the Q-factor (phase-angle) also  
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determines the size of the angle , even this would depend on the velocity with it. Another 
question results from it then again: Does the value of  arise from the conditions before or 
after the addition of the other velocity-components? At least it is to be understood that an 
observer sees even the size of r0 shortened, since with motion with the velocity v all 
distances are observed shortened about the factor ≈

–1
. Since the value of r0 is linked via 

the relation r0 = r1Q0, also Q0 changes with it (r1 is fixed). Against a fixation of  before the 
addition of the other components speaks, that these would no longer be equal then. But 
this is really the case, because we can cancel the shares vG and vM, in that we move with 
negative velocity indeed, but the share cM not at all. Latter one actually sticks out on it's 
own into the tangentially-space, even if the velocity with respect to the metrics is zero. 
 
Status: very probable. 

 
 
We just want to favour the third option. But we want for a function, which figures the 

dependence of Q0 on the velocity, to it. This should redeem certain requirements. So, in the 
approximation with large initial-Q0, relation (597) should apply. If the velocity is equal to c, 
a Q-factor of 1 should turn out and there should be a certain asymmetry with small initial-Q-
factors (Q0(c) only 1). With (596) in section 6.1.2.1. we already found such a function, 
although on a system without expansion. But if we limit the validity of the sought relation to 
a time period dt—with small Q-factors each frame of reference lapses after a short time 
anyway—then (596) can be used even in the case of a metrics with expansion, because for 
the time period dt the expansion plays no role. 

 
 
 

 
 
 
 
Figure 129 
Course of the Q-factor being relevant for the system S′ with respect 
to the velocity in reference to the system S (metrics) for Q0 103.  

 
 
 
But since Q0 additionally should depend on distance and time, yet the navigation-gradient 

must be integrated in (596). It applies: 
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     Velocity vs. metrics (814) 

 
That means, at the „edge of the universe“ the Q-factor turns to zero. If we once have 
determined the initial-Q-factor Q0 for the system S, we are able to determine all other 
corresponding values without any difficulties too, including the angle . The logarithmic 
course of (814) for several initial-Q-factors is presented in figure 129. 

 
What does it look like however with the angle ? In terms of figures, we not necessarily 

require this to the solution of (813), since  even somehow depends on v . However there 
is no explicit solution then. In order to describe the exact relations during the addition of 
velocities according to (813), the effect of different angles (n) is pictured in figure 130 by 
means of vectors. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 130 
Effect of different angles α on 
the addition of speed-vectors 
(schematic presentation) 

 
 
Input variables are the vectors BE and EC as well as the angles  and  at this place. 

Wanted is the vector BC and the associated angle . But figure 130 merely describes the 
effect of the different angles  on the velocity-addition in the subspace. The rotation of the 
coordinate-systems S and S  caused by the share tan , is unaccounted for in this place. 
Therefore, the distance BC doesn't equal the real velocity v  which is observed from inside 
the system S. Therefore, figure 130 neither can be used for the determination of this velocity 
with the help of trigonometrical relations. The same is applied even to the angle . To 
determine this, there is more than one option. One proceeding to determine the value of  is 
the repeated application of (814), using Q0 and v as input variable on the second run. This 
way, we first get the value Q0  with whose help all other associated values can be 
determined in turn, including . The whole issue works even if the observers are 
exchanged, although only under the condition, that the Q-factor really depends on the 
velocity. 

 
A so far unknown problem however arises with application of (814). So, the velocity in 

(814) is defined with respect to the metrics. Now however, all relativistic relations always 
refer to the matter of fact, that the speed of light is constantly c. Since we have done the 
assumption in the first sections, that the speed of light in this model is also constantly c in 
fact, but not in reference to the metrics but in reference to the subspace, a contradiction 
arises here concerning the velocity v. 

 
If we have applied the expression v for the velocity anywhere, so this is always related to the 
subspace with it. Since there is no subspace known in the SRT therefore always the velocity 
in reference to a frame of reference is meant, which usually (but not always) is assumed as 
resting. In general (if no rotation comes into play) this is associated with the free fall. But by 
analogy with our model the free fall is being granted, whenever an observer/body/particle  
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doesn't move in reference to the metrics. Now, this observer in the free fall, according to this 
model, still is moving in reference to the subspace (cM) then again, for which reason we 
added  the share cM(v=0) to a velocity defined in reference to the metrics (only this can be 
measured) in all cases with the exception of figure 119, which leads to the shifting of the 
functions towards a negative v, as we can well recognize e.g. in figure 107-110. 

 
Now of course, it's possible to calculate even with the velocity in reference to the 

subspace. Then, (814) would have to be altered in the following manner: 
 

˜ Q 0   
˜ Q 0

 1 v ˜ c M
c

2
˜ Q 0

2 v ˜ c M
2

c2

1
t
˜ T 

1
2 2r

˜ R 

2
3

            Velocity vs.
subspace   

 (815) 

 
In both cases there is however another essential circumstance to take into account. If the 
relativistic mass-increase is calculated with e.g. the help of the relativistic dilatation-factor 

, at which point the velocity is referred to the subspace, so, beside v as further input 
variable even the rest mass m0 is needed. According to the SRT, this is defined as the one 
mass a body owns, when it doesn't move in reference to the frame of reference. In this case 
however, this frame of reference is the subspace and the body cannot be in rest to it, because 
the metrics, even if the body remains in rest to the metrics, still is moving with the velocity 
cM in reference to the subspace. And this share neither can be balanced by a negative 
velocity, since the body is in the centre of the universe simultaneously, so that only positive 
velocities are defined, directed onto the world-radius. 

 
With small initial-Q-factors, this share cM can take on a magnitude, which no longer can 

be disregarded, so that  already at v = 0 in reference to the metrics has a value, which 
strongly differs from 1. Now let's apply the „classic“ value, determined in accordance with 
the SRT, i.e. with a velocity of zero in reference to the metrics, so we'll get a wrong result, 
because with v = 0 the relativistic mass should have to be equal to m0 then. But this is not the 
case. Although, with normal conditions, this difference appears only from the 30th decimal 
place on, we cannot disregard it. 

 
In order to reduce this contradiction, we are forced to redefine the quantities rest mass, 

rest-length, rest-period etc. From now on, we want to mark the value in effect with a velocity 
of zero in reference to the subspace as UR-rest-mass/-length/-period etc. and, since already 
many times used, we want to maintain the designations m0, x0, t0… for them. The „classic“ 
value for a velocity of zero in reference to the metrics on the other hand, we will mark as 
SR-rest-mass/-length/-time period from now on, using the variables m*, x*, t*… *… etc. for 
them. Whereas there is no need to redefine the SR-rest-mass/-length/…, to the UR-rest-
mass/-length/… the following definitions apply: 

 
 

 
 The UR-rest-mass/-length/… etc. is equal to the mass/length/… etc. at a 
 gravitational field strength (gravitational potential –g00)  of 1. 
  

 
 

These would be the conditions in a true MINKOWSKIan space. So, the UR-rest-mass/… even 
could be called the MINKOWSKIan rest-mass/… Although, this is not identical to the rest-
mass/… at the point of time T , since then the cosmologic red-shift, caused by the 
expansion of the metrics, would not have been considered. Both, UR- as well as SR-rest-
mass/… still remain reference-frame-dependent quantities with it. 

 
Because of the two options of definition for the velocity v and the two rest masses/-

lengths… with it four different combinations turn out on the calculation of the relativistic  
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mass/length… etc. We want to consider this at the example of the relativistic mass-increase 
more exactly. Based on (612) and (655) applies: 

 
m   m0  

 

(v  ̃c M )
               v-

-rest-mass     (816) 

 
According to (612) cM is already contained in . Therefore, we must subtract this part. The 
function-course of x (x= , , ) distinguishes itself by the fact, that all graphs at v = 0 go 
through the point 1 and there is no shifting in v-direction. If we define the velocity in 
reference to the metrics, which is the normal case, so we have to modify (816) as follows: 

 
m   m0  

 

(v)
                        v-  

-rest-mass     (817) 

 
If not separately declared, all formulae and graphic representations in this work are based on 
this combination. Examples are presented in the figures 107…110, 113 and in figure 114. 
What does it look like however, if we do not want to work with the UR-rest-mass, which is 
only an imagined value, but with the SR-rest-mass, which one can really measure? Is there a 
relation, with whose help both can be converted in one another? This is the case indeed, 
there are actually four relations in sum: 
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            (818) 

0   * (0)
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            Wavelength
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0   * (0)
   *   ̃

            Wavelength
antineutrino  

 

 
In this connection, the velocity is referred to the metrics once again. With the neutrinos it's 
to be recognized that the difference between both wavelengths under normal-conditions (Q0) 
is vast. Now, using the first expression of (818) in (816) and (817) we obtain the missing 
two combinations: 

 

m   m* 

( ˜ c M )
(v ˜ c M )

               v-subspace    
SR-rest-mass     (819) 

 

m   m* 

(0)
(v)

  m* 

˜ 
                      v-metrics        

SR-rest-mass     (820) 

 
It shows, the expressions sinα cancel each other, because the vectors cM and vM point into 
the same direction and the angle α always derives from the frame of reference (cM) The 
same applies even to the time-like expressions and to the neutrinos by the way, even if the 
reciprocal comes into effect for them. At the neutrinos, instead of sin  the value cos  
cancels out including the sign. Thus, simplifying we can say, only the expression sin  as 
well as cos  must be replaced by the equivalent sin x (x= , , ), if we want to use the 
SR-rest-value instead of the UR-rest-value. Btw. this applies even to expressions being 
differentiated or integrated, as e.g. the tensor-expressions at the end of this work, because  
and ˜  are constants. 
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After all, these relations apply independently, whether the Q-factor Q0´ depends on the 
velocity or not. In combination of this dependence with the determination of it's 
commendable to calculate with expression (820). Therefore this combination carries a 
particular weight. Therefore, the course of  for certain Q-factors Q0 103 is shown in 
figure 131 once again, in order to work out the difference to figure 108 more exactly. With 
larger Q-factors there is no difference anyway (identical to figure 105). In terms of physics, 
it's about the same phenomenon however. The different courses are caused by the different 
definition of velocity and rest mass only. 

 
 

 
 
 
 
Figure 131 
Course of the relativistic mass-increase in dependence on the velocity in  
reference to the metrics under application of the SR-rest-mass for Q-factors Q0 103. 

 
 
Since even this problem has been solved now, another question remains open:  What like 

is the speed-component vG, caused by the gravitative action of a nearly located mass-
affected body, to be classified? This share is to assign to the metric share cM definitely, 
because the properties of space outside this body really change in such a manner, as if there 
would be a lower Q-factor. This applies independently from the fact, that this share (at least 
temporarily up to the impact) can be evened out by a negative velocity. Let's recapitulate 
once again. We said, that a lot of the MLE´s inside the body are quasi pressed-out by the 
space-demanding action of the particles from which it consists. As a result the metric lattice 
outside is compressed, which leads to a smaller value of the PLANCK’s fundamental length 
r0. These are however exactly the qualities of a space-segment with smaller Q-factor. 
 
If the Q-factor really should depend on the velocity, another last, further effect arises. If a 
body is moving with the velocity v in reference to the frame of reference S and we put the 
centre of the frame of reference S′ into the centre of this body, so the velocity of S′ in 
reference to the subspace must be of the same size, irrespective of the frame of reference on 
which the observation takes place. If the velocity in reference to S has a value v, so the 
velocity v′ of S′ in reference to the metrics does not have the value zero, as expected, even 
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if assuming the value Q0 for S. Rather, it has a value different from zero. This is based on 
observations and on the fact that cM never can be greater than 0.851661c. Another reason is, that 
S is no longer in the middle of the universe then. We just can say, only a body in the free fall, 
which is in the centre of the universe, doesn't move in reference to the metrics. That means 
furthermore, the value Q0 measured at an arbitrary position, applies everywhere. It figures 
something like an universal frame of reference. But the relativity-principle is not injured 
nevertheless, since there is a quasi infinite number of these „universal“ frames of reference, at 
which point no one of them is marked. 
 

That means, if I accelerate a body, being in rest to the metrics (system S) initially, onto a 
velocity v in reference to the metrics, so it will move even in its inherent frame of reference 
with a definite velocity in reference to the metrics. 

 

 
 

 
Figure 132 
Entrainment-effect during acceleration: Course of the difference-velocity to the metrics in S′   
in dependence on the velocity v in reference to the metrics in S for Q-factors Q0 103  

 
 
The fact, that he measures a lower Q-factor in its inherent system, also means then again 

that the velocity cM′  is greater than cM in S, whereat the velocity in reference to the subspace 
remains constant (cM+v = cM′ +v′). With acceleration so to speak, the body picks up a part of 
the metrics, it accelerates these. Therefore, I would like to call this effect the entrainment-
effect. This is caused by the interaction between body and metrics, which is mediated by the 
space-like photons. During acceleration the metrics counters the body with a certain 
resistance (inert mass). As a countermove, on overcoming of this impedance (force), the 
body entrains a part of the metrics accelerating it in turn (cM′ ). 

 
During acceleration of the body, just the difference-velocity v+cM(0)–cM(v). is changing. 

The course of the difference-velocity with certain initial-conditions is diagrammed in figure 
132. In this connection, the velocity v is defined in reference to the metrics and it shows, the 
difference even can become negative. But with most calculations this can be ignored in 
peace. One must only know that the velocity in reference to the subspace is constant. 
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I don't want to brush a possible fourth alternative under the carpet at this point, which 
means that this model is wrong. Maybe, I have overlooked something… 

 
 
 

7.2.4. Principle of the Maximum Gravitative Coupling 
 
We have seen that there are essentially no fundamental contradictions with the idea of the 

universal relativity, considering this model. Also, we have seen that and why we get 
involved in a row of additional problems, if we abandon the principle of the minimum 
gravitative coupling. 

 
Now there is a multiplicity of other models which, already in the formation, are 

incompatible with the statements done in this model. These are the ones particularly, which 
are based on a disappearance of the gravitational-»potential« in the infinite. But this is not 
applied to the statements done by EINSTEIN, because these have been formulated so 
universally, that they are applicable even to a pure radiation-cosmos and that's about here. If 
we just want to calculate e.g. the curvature of space, we only must insert the corresponding 
values of the metric wave-field as output variables. 

 
For a minimum gravitative coupling applies: The mass determines the geometry, but the 

geometry does not determine the mass. It reigns something like the „free market economy“, 
the inherent laws of the SRT are independent from those of the URT and therefore we don't 
require such relation at all. But now, we have the inverse case on hand: The geometry (r0) 
determines mass, time, energy, wavelength etc. in all. 

 
Now one could think, there should be even the inverse dependence, namely that, where 

the mass determines the (local) geometry. Although, the mass is just determined by the 
relation M = D /c2 whereby as well  as D depend on the frame of reference (r0) in turn. 
The mass just already somehow is contained in the energy-momentum tensor of the metric 
wave-field from which arises, that the field-equations of the URT are filled automatically, a 
fact, which already d’INVERNO pointed out in [30]. That means, not the mass determines the 
geometry but only the existence of particles within the metrics, at which point the metrics 
(the metric wave-field) dictates, how much mass these particles have. 

 
So, all quantities seem to be coupled somehow together. Therefore, I would like to name 

this new principle the Principle of the Maximum Gravitative Coupling. With IX. in section 
6.2.7. we already formulated something similar. Here some more detailed: 

 
 

 
XII. Principle of the Maximum Gravitative Coupling: All physical quantities like  
 space, time, mass, energy, wavelength etc. form a canonical ensemble, at  
 which point the exact values are determined by the phase-angle of the metric  
 wave-function (Q-factor) only. The progression of the phase-angle is synonym- 
 ous with the progression of time (tics). The existence of fermionic particles  
 resp. particle-concentrations as space-demanding interference of the metric  
 wave-field as well as its existence is cause for the gravitative effects. The  
 boundary between special and universal relativity-theory is annulled. 
 

 
 
 

7.2.5. Metric functions  
 

After we have formulated the line-element for this model having made even deeper 
contemplations about the angles in the triangle as well as about their physical meaning and 
dependences of the discrete coordinates, it's opportune to calculate certain values, which  
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carry a great weight in the SRT. Basis for it is always the metric tensor resp. the line-
element, which in terms of physics both characterize the same phenomenon. 

 
 
 

7.2.5.1. The  metric connection  
 
One of these „certain values“ is the RIEMANN curvature tensor. In order to calculate it, we 

require a function called the metric connection. According to [30] this is defined as 
follows: 

 
       (821) 

 
On this occasion, gad is equal to the component gad of the inverse matrix gab and b equal to 
the partial differential-operator  / b. The rest remains incomprehensible for the reader with 
„normal“ engineer-education first of all. Unfortunately, one does not go more into detail in 
literature more often than not. 

 
But since we want to determine the values of our line-element, we don't get around an 

exact calculation of (821). The simplest way, to understand an expression exactly, is, to try, 
to automate the calculation. Then, one usually does even no errors, unless, the formula is 
wrong. 

 
As tool for it, we use the program »Mathematica« in turn, which is, among other things, 

even able, to calculate the partial derivative (D[f(x),x]). As input-values we are concerned 
first of all with the matrix of the metric tensor, which we assign to the variable Mx. 
Furthermore, we require the inverse matrix, which we can compute with the built-in function 
Inverse[Mx] and another function Di, with whose help, on the basis of the subscript, we can 
infer the coordinate, with respect to which shall be differentiated. For the genuine 
MINKOWSKIan line-element we obtain then: 

 
Mx={{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};   (822) 
Inx=Inverse[Mx];         (823) 
Di=Function[Part[{ct,x,y,z},#+1]];            (824) 

 
In order to access the individual components of Mx resp. Inx, we define another function 
MPart[Mx,a,b], whereby the individual coefficients can take on the value 0 ≤ a ≤ 3 in each 
case (Part[x,n] is implemented in »Mathematica«). 

 
The function of the metric connection itself we want to name with MGamma[a,b,c,Mx]. 

With it, the values a, b, c and Mx a priori are fixed as input variables. 
 
But what's about the component d? This is first no input variable. It's value arises from the 

EINSTEIN summation convention, which implies, that there is always to be added up across 
doubly (or multiple) appearing indices, at which point the value-range arises from the input 
variables, (here 0…3). That means we have to calculate (821) four times in total, whereby 
the value of d is incremented by one each time, beginning with zero, adding up the results 
afterwards. That looks as follows in »Mathematica«-notation then: 

 
MPart=Function[Part[Part[#1,#2+1],#3+1]];     (825) 
MGamma=Function[For[Mg=0;n=0,n<4,n++,     (826) 
Mg+=(1/2 (MPart[Inverse[#4],#1,n] ) (D[MPart[#4,n,#3],Di[#2]]+ 
D[MPart[#4,n,#2],Di[#3]]-D[MPart[#4,#2,#3],Di[n]] ))]; Simplify[Mg]]; 

 
The function Simplify[x] only is used to simplify the result (summarizing of equivalent 
expressions). Thus, this function has been uniquely defined and we can begin with it's 
calculation. Altogether there are 64 possible solutions whereby in general only a part of  
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them will be different from zero. Because  applies, it can be derived directly from 
(821), there are merely 16 independent solutions (bb=bb).  But before we'll determine the 
solutions of our line-element, it's opportune, to calculate first the solutions of the 
MINKOWSKIan line-element. 

 
With (822) we obtain  as solution(s), i.e. all connections vanish. This is 

synonymous with the disappearance of the RIEMANN curvature tensor, as we will already 
see, or said more popularly, at the MINKOWSKIan line-element the curvature is equal to zero. 
Then, we are concerned with an even or flat metrics. 

 
This statement well agrees with the cited facts in [30], our program seems to be just right. 

How does it look like with spherical coordinates however? This question is important, since 
our line-element is using spherical coordinates too. 

 
In [30] it states to it: »… In an universal coordinate-system won't necessarily vanish the 

connection-components however. For example, we find in spherical coordinates that  is 
having the non-vanishing components 

 

  
Annotation:   

        (8.5 [30]) 

 
Let's calculate the RIEMANN Curvature tensor however, so we find  in turn, as 
demanded by the theorem (§6.11 [30]).« This appears plausible, but it's unfortunately not 
correct. In [30] namely there is a misprint. Using the corresponding spherical initial values 
instead of (822) and (824) 

 
Mx={{1, 0, 0, 0},{0, -1, 0, 0},{0, 0, -r^2, 0},{0, 0, 0,-(r^2*Sin[theta]^2)}}; 
Di=Function[Part[{ct,r,theta,phi},#+1]];      (827) 
 

we obtain with the exception of the component  the same results, as in (8.5 [30]). The 
negative sign is missing with . With the exact values: 

 

       (828) 

 
the RIEMANN curvature tensor really vanishes. Before however, we first have to compute it. 
We will do this in the next section. 

 
 
 

7.2.5.2. The RIEMANN curvature tensor  
 
This is commonly marked with the symbol Ra

bcd. It is just about a 44-matrix with 256 
components overall. We take over the definition of the individual components from [30] in 
turn hoping, that it is correct: 

 
      (829) 

 
We name the function to the determination of an individual component of the RIEMANN 
curvature tensor with Rabcd [a,b,c,d,Mx], at which point the upper-case A should refer to a 
superscript index (RAbcd≠Rabcd).  
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Thus, the values a, b, c, d and Mx are input variables. We add-up across e. Please add-up 
only the two last products, since only they are containing e. I would have been able to spare 
unnecessary work and four weeks endless searching, if I would have taken this into account 
from the beginning. Furthermore, we must be careful, that we don't use the same symbols for 
the loop-variables and we obtain as »Mathematica«-program: 

 
RAbcd=Function[For[RA=0;m=0,m<4,m++,RA+= 
MGamma[m,#2,#4,#5] MGamma[#1,m,#3,#5]- 
MGamma[m,#2,#3,#5] MGamma[#1,m,#4,#5]];     (830) 
Simplify[RA+D[MGamma[#1,#2,#4,#5],Di[#3]]- 
D[MGamma[#1,#2,#3,#5],Di[#4]]]]; 

 
With the genuine MINKOWSKIan line-element with Cartesian and spherical coordinates all 
solutions become zero. According to [30] the solutions must fill the relation  
which is the case indeed (trivial). The program seems to be just right. 
 

The RIEMANN-tensor vanishes, but what does it look like with the RICCI-tensor Rab or with 
the curvature-scalar R? In order to compute them, first of all let's have a look at the lowered 
tensor Rabcd. By analogy with [30] we obtain it with the help of the following relation: 

 
         (831) 

 
The following permutation-rules apply: 

 
          (832) 

 
It becomes more difficult with it to sort out the dependent components. Expression (831) can 
be transformed into the following simple program: 

 
Rabcd=Function[MPart[#5,#1,#1] RAbcd[#1,#2,#3,#4,#5]];     (833) 

 
A summation doesn't take place here. With Cartesian coordinates, all results are equal to 
zero, as well with spherical coordinates. The conditions (832) are filled trivially. Also Rabcd 
vanishes with it. Thus, we can set about to compute the RICCI-tensor. 

 
 
 
 

 
7.2.5.3. The RICCI-tensor  

 
This is marked with the symbol Rab. Thus, it's about a 42-Matrix with 16 components 

overall. According to the definition in [30] applies: 
 

           (6.83 [30]) 
 

Even this expression cannot be correct like that. Now I found a second source indeed, 
unfortunately just there the middle part, which is of immense importance, has been 
calculated by another way namely with the help of the KRONECKER-delta-function, being 
easily to program on the one hand, being unhelpful on the other hand, since D’INVERNO 
does not provide any further information, whether and in what extent is to be added-up. 
Therefore we want to proceed the other way in that we compute Rab without the aid of Rabcd. 
According to my opinion, expression (6.83 [30]) should correctly read: 

 
         (834) 

 
Let's just start from (834) and define the function Rab[a,b,Mx] to: 
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Rab=Function[For[Ri=0;n1=0,n1<4,n1++,Ri+=RAbcd[n1,#1,n1,#2,#3]];  (835) 
Simplify[Ri]]; 
 

In both cases, the result is zero for all components again. To the conclusion still the scalary 
curvature R = gabRab remains, even called RICCI-scalar. Here, the definition in [30] is correct 
in turn. In »Mathematica« the value arises to: 

 
RaB=Function[MPart[Inx,#2,#2] Rab[#1,#2,#3]];    (836) 
Rr=Function[For[R1=0;n2=0,n2<4,n2++,R1+=RaB[n2,n2,#]];Simplify[R1]]; (837) 

 
RaB is the raised tensor Rab = gbbRab. The value of the scalary curvature for the genuine 
MINKOWSKIan line-element in Cartesian and spherical coordinates is equal to zero.   
 

 
 

7.2.5.4. Solutions for this model without navigation-gradient  
 
Now, let's take an observer being in the free fall and in the point (T, 0, 0, 0). With it 

applies R = 0. Considering the current condition, we can also set t = 0. Thus, the navigation-
gradient becomes equal to one and can be disregarded. 

 
In terms of physics, we look at the observer in his frame of reference. Then, the metric 

tensor is defined as follows: 
 
Mx={{(Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]])^2, 0, 0, 0},  
{0, -(Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]] )^2/(1-RhoQ[Q]^2)^2, 0, 0},  (838) 
{0, 0, -r^2, 0}, {0, 0, 0, -(r^2*Sin[theta]^2)}}; 
Inx=Inverse[Mx];         (839) 

 
For reasons of simplification we reckon with the angle  only. Therefore, we must still 
multiply g11 with 2. Since the angle  depends on the frame of reference, being a constant 
with it, we must not define on the function AlphaQ. The same is applied even to RhoQ(cM), 
which depends on the frame of reference too.  

 
Then, we obtain the following independent solutions, different from zero, for the connecti-

ons : 
 

             (840) 

 
Just only 22

1  and  are involved. All other solutions resemble those of the MINKOWSKIan 
line-element. As next, we want to specify the solutions, different from zero, for the 
RIEMANN curvature tensor : 

 

  

 
All solutions fill the demand  with it. Particularly the bracketed expression, 
which corresponds to the difference 1–g11 is interesting. It appears in all expressions and can 
be traced back, based on (762), on the following approximation: 
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           (841) 

 
Therefore, from here on, we will not state explicitly any approximative solutions. To the 
calculation of the lowered tensor  we use the formula (833) as well as the input-values 
(838) and (839). We get only one single independent, component, different from zero. It 
reads:  

   (842) 

 
For the RICCI-tensor  we obtain the following solution: 
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abR        (843) 

 
Applying the present-day values, all components are directed to zero, which agrees with the 
observation very well. To the conclusion still the scalary curvature. This arises to: 

 

    Scalary curvature   (844) 

 
Interestingly enough, the factor 2 in (844) cancels out with the factor 1/2 in (0.25). Even 
here, the curvature tends against zero, if we apply the current values. But if r is very small, 
i.e. it tends against the value r0, the curvature no longer vanishes but ascends very quickly. 
This shows very good, if we apply the approximation for the bracketed expression in (844): 

 
      Scalary curvature approximation  (845) 

 
If we assume a certain distance r in the microscopic range, so this also depends on Q0, i.e. on 
our frame of reference. It applies: r ~ Q0 and with it R  ~ Q0

–3. Thus, we have described the 
curvature for microscopic dimensions. But if we move far, far away from the coordinate-
origin, coming into the proximity of the world-radius, the curvature should increase too. 
Also this varies with time, which doesn't have derived from the former relations. For that 
purpose, we must include the navigation-gradient into our contemplations. 
 
 
 
 
 

 
7.2.5.5. Solutions for this model with navigation-gradient  

 
We reconsider only the solution for a test-body in the free fall to the point of time T+t in the 
distance r of the coordinate-origin without presence of matter (vacuum-solution). The 
following expressions apply locally with it, not however across the entire distance. Then, we 
would be forced again to integrate with respect to r, obtaining only an implicit solution like 
with the gravitational-»constant«. Since the test-body is in the free fall, it doesn't move in 
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reference to the metrics. Else, the solution would be even more complicated, because the
 
distance r would depend on time and way additionally then. In terms of mathematics, such a 
solution would not be impossible, but we don't want to pursue it in this place, since it would 
go beyond the scope of this work. 

 
Another option would be the inclusion of point-masses resp. mass-distributions, when the 

body is not in the free fall. On this occasion, we should have to insert the sum cM+vG instead 
of v, making the solution much more complicated in turn (the angle  should have to be co-
included into the derivatives), so that we neither want to examine this case any longer. 
Rather, this could be object of an autonomous work being published to a later point of time. 

 
Just let's begin in that we define the metric tensor Mx and it's inverse matrix Inx. We take 

expression (759) as template. Since now there is a cross-over-dependence between r and t, 
we must move the speed of light c from the 00-coordinate to the metrics itself: 

 
Mx={{(c*Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]])^2/(1+t/T), 0, 0, 0},  
{0, -(Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]])^2/(1-RhoQ[Q]^2)^2* 
((1+t/T)^(1/2)-(2r/R)^(2/3))^2, 0, 0},  
{0, 0, -r^2, 0}, {0, 0, 0, -(r^2*Sin[theta]^2)}};     (846) 
Inx=Inverse[Mx];         (847) 

 
From reasons of performance, it's opportune, to calculate expression (847) only once, and to 
replace it with a fixed definition then. Otherwise the expression is recalculated with each call 
and the computing-time for the determination of the scalary curvature can amount to 24 
hours now and then. We just replace (847) by: 
 

Inx={{(1/c*Sin[AlphaQ[Q]]/Sin[GammaPQV[Q, 0]] )^2*(1+t/T ), 0, 0, 0},  
{0, -(Sin[AlphaQ[Q]]/Sin[GammaPQV[Q,0]] )^2*(1-RhoQ[Q]^2)^2/  (848) 
((1+t/T)^(1/2)-(2r/R)^(2/3))^2, 0, 0},  
{0, 0, -r^(-2), 0}, {0, 0, 0, -(1/(r^2*Sin[theta]^2))}}; 

 
With it changes even our function Di, giving the parameter, with respect to which should be 
differentiated: 

 
Di=Function[Part[{t,r,theta,phi},#+1]];      (849) 

 
By the way, the function Simplify should be applied as early as possible. Unfortunately it is 
not almighty, so that we doesn't come around to post-simplify by hand. In the following 
calculations, the chain-rule is applied repeatedly to the differentiation with the effect, that 
the results strongly increase in their complexity. Since the differentiation takes place 
automatically at this point, each human error is ruled out a priori. If errors should appear 
nevertheless, so these are to be attributed to the manual simplification. 
 
At first, we want to compute the independent metric connections again. To the simplification 
of the representation, we will take up following substitutions: 

 

        
macroscopically

      0
*

000  
exactly

 (850) 

 
More final expression arises directly from (236). To the calculation of the solutions, we can 
work with the left-hand expression then again, at which point we can substitute only when 
exercising in such ranges whose dimensions are in the proximity of r0 and in all strongly 
degenerate conditions. The validity of the following solutions is not restricted thereby, 
because r0 is a reference-frame-dependent constant. Then, we get for the metric connections:
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00
0 H  ; 11

0   

4

˜ R c
 t (t r)

01
1   ˜ H 1

t (t r)
 ; 11

1 2
3

r 1 r
t r

22
1 r  

1
t r 2

2

2  ; 33
1 r  

2 1
t r 2

2

2    

12
2   r 1; 33

2

13
3   r 1; 23

3   

    (851) 

 
Please pay attention to the italic notation by all means. From security-reasons however, the 
italic parameters t and r are always collected in an individual partial expression in all 
expressions, so that a mix-up with t and r becomes nearly impossible. Furthermore, we 
benefit from the following relations: 

 
  (852) 

 
as well as from (767). The expression  is the classic relativistic dilatation-factor (1–v2 /c2 ) 

–

1/2, in which we apply the propagation-velocity of the metric wave-field cM in place of v. In 
the normal case, the value is extremely close to one. For t = 0 (nowadays) even t in italics is 
one and it applies r (0) = 0. Then solution (851) passes into in (840), which is an evidence for 
that we have calculated correctly.   

 
To the further saving of computer-time, even the connections can be defined as functions. 

Then, the associated »Mathematica«-program looks like this: 
 
MGamma=Function[Which[ 
{#1,#2,#3}=={0,0,0},-1/(2(T+t)), 
{#1,#2,#3}=={0,1,1},(1+t/T)^(1/2)*((1+t/T)^(1/2)-(2r/R)^(2/3))/ 
                               (2*T*c^2*(1-RhoQ[Q]^2)^2), 
{#1,#2,#3}=={1,0,1},1/(2T)/((1+t/T)^(1/2)*((1+t/T)^(1/2)-(2r/R)^(2/3))), 
{#1,#2,#3}=={1,1,0},1/(2T)/((1+t/T)^(1/2)*((1+t/T)^(1/2)-(2r/R)^(2/3))), 
{#1,#2,#3}=={1,1,1},-2/(3r)*(2r/R)^(2/3)/((1+t/T)^(1/2)-(2r/R)^(2/3)), 
{#1,#2,#3}=={1,2,2},-r/(((1+t/T)^(1/2)-(2r/R)^(2/3))^2)* 
                       (Sin[AlphaQ[Q]]/Sin[GammaPQV[Q,0]])^2*(1-RhoQ[Q]^2)^2, 
{#1,#2,#3}=={1,3,3},-r*Sin[theta]^2/(((1+t/T)^(1/2)-(2r/R)^(2/3))^2)* (853) 
                       (Sin[AlphaQ[Q]]/Sin[GammaPQV[Q,0]])^2*(1-RhoQ[Q]^2)^2, 
{#1,#2,#3}=={2,1,2},1/r, 
{#1,#2,#3}=={2,2,1},1/r, 
{#1,#2,#3}=={2,3,3},-Cos[theta]*Sin[theta], 
{#1,#2,#3}=={3,1,3},1/r, 
{#1,#2,#3}=={3,2,3},Cos[theta]/Sin[theta], 
{#1,#2,#3}=={3,3,1},1/r, 
{#1,#2,#3}=={3,3,2},Cos[theta]/Sin[theta], 
True,0]]; 

 
The number (853) doesn't belong to it of course. The formula has been checked with (826). 
Thus, as next, we can set about to determine the independent solutions for the RIEMANN 
curvature tensor . To the better check and because I have made the effort now and then, 
we want to present all dependent and independent solutions (≠ 0):  

 

˜ H   
1

2 ˜ T 
  H   

1
2 ( ˜ T t)

˜ R   2c˜ T R   2c  ( ˜ T t)

Ra
bcd



 
 

251 

 
 

         

 

              

 

             

 

         

 

       

 

              

 
              

 
              

 
          

 

       

 
              

 
              

 
          

  

        

 
All remaining components are zero. The solutions fill the demand in turn, 
albeit there are more than before. That's not astonishing, because g11 depends both on the 
time t, as on the distance r. 

 
For the lowered RIEMANN curvature-tensor  we obtain the following solutions, 

different from zero: 
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The related components have been collected to the better overview. So we can better see, 
that condition (832) is filled. Particularly interesting is, that a part of the solutions are 
velocities (escape-velocity Hr) having even a physical meaning without doubt. 
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For the RICCI-tensor  now we get the following solutions, which unfortunately no longer 
can be presented in matrix-form, unless in the landscape view: 

 

  

     

 

        RICCI-tensor  (854) 

 

 

 
The rest is equal to zero. If we apply the present-day values, so all components incline to 
zero in turn. Thus, the metrics behaves approximately in a MINKOWSKIan manner, exactly, 
as anticipated by LANCZOS. For the scalary curvature applies: 

 

  Scalary curvature    (855) 

 
The course of the scalary curvature for several initial-Q-factors is presented in figure 133. 
The complete expression r*  for r (850) ), the values 0…1 corr. 0…R for r, as well as ρ0 
according to (209) were used. It is here only about relative values in comparison with the 
world-radius, i.e. it's possible to infer on the course of the curvature, but the values aren't 
comparable with each other. 
 

  Exact world radius ƒ(Q) linear 

 

      Exact world radius ƒ(Q) log10 

 
 

  
 
Figure 133 
Relative scalary curvature for  
various initial-Q-factors 
 
 
Particularly interesting is the course for an initial Q-factor >106, which corresponds to the 
standard-case of an observer in a space of vanishing curvature (nowadays). Here it shows 
again the ascend in the microscopic range, which we could already observe in the previous 
section. But in contrast, the curvature escalates too, when approaching the half world-radius.  
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To the better overview, the course for Q0>106 for positive (space-like) and negative (time-like 
distances) has been separately presented once again in figure 134. In principle, no difference 
appears there, only a small asymmetry around the point zero. 

   

 
 
Figure 134 
Relative scalary curvature for   
the standard-case Q0>106 

 
The curvature within the „limits“ of the universe is positive, i.e. the space is closed as well at 
the microscopic as at the macroscopic domain. A singularity resides at both ends. Outside, 
the space is open, in so far as an „outside“ should exist at all. 

 
It becomes interesting, if the initial factor becomes smaller, e.g. if we put the origin of our 

frame of reference into an area of high curvature or if we simply go back along the time-
scale to a point shortly after big bang. Now the macroscopic singularity moves from R/2 to 
the point R at Q0 =1, This corresponds to the conditions directly at the SCHWARZSCHILD-
radius, which well agrees with our prevision of a phase jump to that point of time. This must 
include the entire universe in order to be complete. That happens by a short-term increase of 
the expansion rate. The particle horizon moves to 2cT in order to re-drop later. The world 
radius R shrinks shortly after the maximum. Thereafter it re-swells again up to compen-
sation. The course R(Q) is shown in the small pictures right of figure 133. It has been taken 
from [46] or even figure 2 in the annex. 

 
If we go back any farther, so we come upon an open universe with negative curvature. 

The singularities in the chosen case Q0 =2/3 are at the point R/4 and 5/4R, but only for 
positive (space-like) distances. Thus there is an unbalance not to be neglected. The exact 
course is shown in figure 135, anew under application of the exact expression r* of (850).  

 
That might be the reason why material particles (ground state Q0 =2/3) cannot propagate 

like time-like photons (negative direction). Into their own (positive) direction they are 
blocked by a couple of unbreachable poles. They are trapped between (0.25…1.25)  r1 that 
is ( …  r1). Therefore they can only exist in the form of circular standing waves, the so- 
called DEBROGLIE-matter-waves. Space-like photons (see figure 100) just haven’t a real 
solution until Q0 = 2.318249. That value approximately corresponds to the fourth power of 
1.25. In contrast, an imaginary solution corresponds to a propagation, right-angled to the 
propagation direction, which is a circular path in fact. 
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Figure 135 
Relative scalary curvature 
for the case Q0 =2/3 

 
To the conclusion we already want to specify the determinant of the metrics, as it is 

frequently used, namely in the form (–g)1/2. We use the built-in function Det[M] to calculate: 
 

    Determinant  (856) 

 
Thus, we have established a sound basis, in order to compute the energy-momentum tensor 
of the vacuum, based on this model. 

 
7.2.6. The energy-momentum tensor 

 
At first we compute the lowered tensor Tik namely for a body in the free fall, i.e. the 

vacuum-solution. To the calculation, we can use the famous EINSTEIN equation (0.25) which 
is generally valid. Expression (0.25) means at the same time, that the so-called cosmologic 
constant  is equal to zero. As input variable, we require the metrics and the therefrom 
derived functions RICCI-tensor and the scalary curvature. 

 
         (0.25) 

 
For the calculation, we use the program »Mathematica« in turn and the following script: 

 
Rr00=-2/r^2*(1-(1/(tt-rr)^2+4/3*rr/(tt-rr)^3)*Sin[Al]^2/Sin[GaGa]^2*beta^-4); 

 
Mx={{c^2*Sin[GaGa]^2/Sin[Al]^2/tt^2, 0, 0, 0},  
{0, -Sin[GaGa]^2/Sin[Al]^2*beta^4*(tt-rr)^2, 0, 0},  
{0, 0, -r^2, 0}, {0, 0, 0, -(r^2*Sin[theta]^2)}};  
            (857) 
Rik={{0,1/(T*r)/(tt*(tt-rr)),0,0},{1/(T*r)/(tt*(tt-rr)),-4/(3*r^2)*rr/(tt-rr),0,0}, 
{0,0,(1-(1/(tt-rr)^2+2/3*rr/(tt-rr)^3)*Sin[Al]^2/Sin[GaGa]^2*beta^-4),0}, 
{0,0,0,(1-(1/(tt-rr)^2+2/3*rr/(tt-rr)^3)* 
Sin[Al]^2/Sin[GaGa]^2*beta^-4)*Sin[theta]^2}}; 

 
The calculation itself takes place by the execution of the following line: 

 
Simplify[Rik-1/2*Rr00*Mx]             (858) 
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Since it is about the multiplication with a scalar, the asterisk is written here and not the point 
(the * even can be omitted). After the simplification by hand, we get the following 
components different from zero: 

 

 

 
         

            (859) 

 

 

    

 
Please pay attention again to the italic variables, which have been defined in the previous 
section (852). Since no more differentiation takes place, we can work on with these from 
now on. An examination of the units of measurement leads to the interesting result that we 
are concerned here neither with energetic nor with impulse-units. This is just right, because 
the energy-momentum tensor is not called so, because it describes energy or impulse on any 
way but because it, among other things, results from the energy- and impulse-distribution in 
space. Indeed, the components are containing all these information, including the probable 
existence of one or more mass-distributions, the mass of the test-body, its impulse, velocity 
and direction of motion. More final although not in (859), since these components are 
applied only to a body in the free fall. Thus, also the existence of an any mass-distribution 
cancels out then (equivalence-principle). 

 
If we would want to co-include all these values into the calculation, we would have to 

calculate all expressions anew, incipient from the line-element, now applies r = ƒ(t,s) and 
sin   =ƒ(v,r,m) additionally. Because of the multiple derivatives, then additionally 
expressions appear in the results like the acceleration a, the integral across the way s and the 
way s itself. Because of the pathway-dependence and the infinite number of options of 
matter-arrangement therefore no universal solution can be given, so that we have to 
determine all tensors and scalars for each problem anew. By no means the solutions will be 
simple, even the vacuum-solution in the free fall is already complicated enough. 

 
In terms of mathematics however, we have put all fundamentals in order to reach an 

explicit solution, unless we have to integrate across a larger distance r at the end in order to 
get a not-local result. Then there is no explicit solution, as we have already seen. Fortunately 
this case plays no role, if we consider bodies in the free fall only. These, that is to say, don't 
move in reference to the metrics and the distance-function with constant wave count vector 
is known. 
 
Now however back to the energy-momentum tensor. As next, we will calculate the inverse 
tensor Tik, which we require to the determination of the geometry Gik. Now please don't get 
the idea, to calculate the inverse tensor directly with the help of the »Mathematica«-function 
Inverse[Tik]. You still get a result indeed, but this is so complicated, that you cannot use it in 
this form. The simplification with the help of Simplify[Inverse[Tik]] finally breaks down 
because of memory-lack. 

 
The solution is in following approach: First, we generally calculate the inverse tensor 

under exploitation of the fact, that, on the one hand, a bulk of the components is zero and, on 
the other hand,  T01 = T10 applies. After subsequent simplification, we foist the component-
definitions, in that we define them only now (use the function Clear[] for additional run). We 
do the following approach: 
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MPart=Function[Part[Part[#1,#2+1],#3+1]]; 
Tik1={{t00,t01,0,0},{t01,t11,0,0},{0,0,t22,0},{0,0,0,t33}};   (860) 

 
TIK2=Simplify[Inverse[Tik1]]       (861) 

 
        t11              t01 
{{---------------, --------------, 0, 0},  
      2               2 
  -t01  + t00 t11  t01  - t00 t11 
  
        t01              t00                       1                  1 
  {--------------, ---------------, 0, 0}, {0, 0, ---, 0}, {0, 0, 0, ---}} 
      2                2                          t22                t33 
   t01  - t00 t11  -t01  + t00 t11 

 
 

I just presented the result in the original-output-format, since it's only about an intermediate-
solution, which speaks in behalf of itself. In any case, it's not all too complicated. Now, we 
foist the component-definitions: 

 
t00=c^2/(tt^2*r^2)*(1-(1/(tt-rr)^2+4/3*rr/(tt-rr)^3)*beta^-4* 
Sin[Al]^2/Sin[GaGa]^2)*Sin[GaGa]^2/Sin[Al]^2; 
t01=-1/T*r^-1/(tt*(tt-rr));        (862) 
t11=1/r^2*(1-(tt-rr)^2*beta^4*Sin[GaGa]^2/Sin[Al]^2); 

 
We can dispense with T10, T22 and T33 since we can write down the result immediately. We 
get the other components by execution of: 

 
Simplify[MPart[TIK2,i,k]]        (863) 

 
The results must be simplified by hand once again and are being pretty complex. To the 
simplification of the representation and avoidance of errors, we take up a substitution again, 
namely as follows: 

 

   (864) 

 
The components, different from zero, of the inverse energy-momentum tensor Tik are then: 
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As it shows, the components of the inverse energy-momentum tensor are already quite 
complex however. They will simplify with the calculation of the geometry Gik then again. 
The examination of the components T0k. For a MINKOWSKI-world namely applies: 

 
          (869) 

 
This expression is generally [30] interpreted as the energy-conservation-rule. It can be easily 
shown, that expression (869) doesn't apply for this model. Is this perhaps a fundamental 
error of this model? This is not the case, because according to [5], the energy-conservation-
rule is »only an empirical rule, thus it could be violated by yet unknown physical 
phenomenons«. There is just no definite proof for its universal validity and indeed with e.g. 
the cosmologic red-shift it seems to be about an effect, by which the energy-conservation-
rule is violated. Here, energy quasi is discreated by the increase of the wavelength of the 
cosmologic background-radiation. 

 
Now, one could modify the rule in such a manner that energy can be discreated indeed, 

however not recreated from the nothingness. But including the primordial impulse into the 
contemplation, we would have to reject even this weakened form. The primordial impulse 
according to this model just results from the inherent-solution (initial-value = 0) of the 
corresponding differential equation. Furthermore, this model permits even imaginary 
energies as well as masses. It would be possible with it that energy „vanishes“ temporarily 
(being inactivated), in order to „reappear“ later on. An example would be the weak 
interaction in form of the neutrino-capture. 

 
Altogether it's possible to say that no arguments can be derived from the violation of the 

energy-conservation-rule in order to discard this model. 
 
 
 

7.2.7. Solution of the field-equations of the relativity-theory 
 

7.2.7.1. The coupling-constant 
 
After we have completed all pilot surveys and specified the energy-momentum tensor of 

the vacuum for test-bodies in the free fall, finally remains, to compute the associated 
geometry Gik. According to [30] this arises to: 

 
          (870) 

 
In this connection,  is a proportionality-factor, which is even marked as the coupling-
constant of the URT. It must not be mixed-up with the specific conductivity of the subspace 

0. Its value arises from the NEWTON’s borderline case, which, of course, must be filled also 
for this model. But before simply substitute here we want to re-engage with the 
substantiation of (870), as it has been presented in [30] from p.189 on. 

 
We first of all assume, that the energy-momentum tensor in MINKOWSKI-coordinates fills 

the conservation-equations: 
 

kT
ik  0           (871) 

 
However we are concerned neither with MINKOWSKI-coordinates, nor (871) is fulfilled, as 
we have seen exactly in the previous section. Now D´INVERNO assumes that the principle of 
the minimum gravitative coupling suggests the universal-relativistic generalization: 

 
kT

ik  0          (872) 
 

(covariant derivative). Furthermore, the Einstein-tensor should vanish because of the 
contracted Bianchi-identity: 

 

kT
0k  0

Gik  T ik
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kGi
k  0   therefrom follows  kG

ik  0   (873) 
 

The condition (873) is really filled, as from the properties of the RIEMANN curvature tensor 
in section 7.2.5.5. under application of 

 
aRdebc cRdeab bRdeca  0         ([30] 6.82) 

 
easily can be shown. From (872) and (873) concludes D´INVERNO, that both tensors must be 
proportional to each other. The problem now seems to be, that D´INVERNO with the 
derivative of (872) refers on the principle of the minimum gravitative coupling, which we 
just have declared as invalid for our model. Instead, we have replaced it with the principle of 
the maximum gravitative coupling, which as such demands the proportionality of both 
tensors even much more strongly. That's tantamount to the statement: „The matter 
determines the geometry“, so that there don’t should be any problem in this sense. 

 
A question however remains open with respect to the classic interpretation, respectively it 

results from the principle of the maximum gravitative coupling additionally. Whereas, 
according to the classic theory, we can write down the coupling-constant immediately after 
it's determination with the help of the NEWTON’s borderline case ( [30]), there are two 
options available with this model: 

 

      or      (874) 

 
On this occasion, the choice is not necessarily easy for, since the (local) gravitational-
constant, according to this model, is a function of space and time once again. By the 
following gedankenexperiment however we acquire the right solution: When the principle of 
the maximum gravitative coupling truly is so much more powerful, the proportionality must 
be guaranteed (870) always and everywhere, otherwise the NEWTON’s borderline case would 
be fulfilled only in the point r = 0. But since the energy-momentum tensor already contains a 
space-temporal dependence, only the right-hand expression (874) remains as single option. 
Therefore, after substitution of (700) applies: 
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Since expression (875) contains reference-frame-dependent values (  ̃R ,   ̃r 0 ,  ̃̃ ) the geometry 
now depends additionally on the frame of reference, a fact, which actually goes without 
saying, if we rescind the limit between SRT and URT. Considering a body from another 
frame of reference, we will observe not only the condition-variables of the body itself by 
different means but also the geometry of the space around, since it now owns a structure. In 
the classic relativity-theory, one assumes, that the universe, with exception of matter and 
radiation, is filled by »NOTHING«. And a »NOTHING« doesn't change because of that it's 
observed from another frame of reference. We can write therefore: 
 
 

 
XIII.  The geometry is determined by matter and the frame of reference. 
 

 
Now we want to continue in that we compute the geometry, associated to the energy-

momentum tensor. The geometry Gik is also known as EINSTEIN-tensor. 

 8
G
c2  8

 ̃G 
c2
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7.2.7.2. The geometry of the vacuum 
 
 
After the determination of the inverse energy-momentum tensor and the coupling-factor, 

we must only form the product of both, in order to get the (inverse) geometry Gik. Since this 
is trivial in terms of mathematics, the results should not extra be presented. 

 
We however do not actually look for the inverse geometry Gik, whatever should be that, 

but for the geometry Gik. Furthermore we have seen that the inverse energy-momentum 
tensor alone consists of very complex expressions. If we now try to calculate the normal 
geometry from the inverse geometry (under application of the function Inverse[GIK]), so we 
are right next to the limits of the program »Mathematica« in turn. These express themselves 
in it that the computer-time rises into the immeasurable. But I did not watched for the result 
at all. Instead I have been concerned about, whether the calculation of Gik can take place 
even more simply and particularly more quickly. Expression (870) in combination with 
Inverse[GIK] namely is not especially well-suited for the calculation of Gik. With a similar 
approach like in the previous section now can be shown, that Gik can be calculated directly 
from Tik. For symmetrical tensors applies then: 

 
          (876) 

 
As it looks like with asymmetrical tensors and universal matrices, we do not need to 
examine in this place, since Tik is always symmetrical. Then, we get for the geometry: 
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On this occasion, I applied all possible transformations from the premier sections. Also the 
units of measurement have been presented, so that you can imagine, at least approximately, 
which physical content do the individual components have. This fact is also the reason, why 
the work cannot be continued at this point. Indeed, it's possible to calculate a stuff, but that 
does not satisfy anyway, especially since we already have gone off on a tangent from the 
standard-model. 

 
Particularly interesting at (877) are the components G00 (pressure) and G11 (density). More 

final only can be the density of the empty gravitational-field without matter. Unfortunately, 
all interesting components depend on the distance rs. For a test, we just want to calculate the 
density for the entire universe (r  = R/2). Then, we get: 

Gik  
1

Tik
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29 30 0 1

3 3

M1 3 3
(R/2) 1.29784 10 kg dm (R/2)

2 R 2 4 R

  
   

 
11 11G G  (878)

 
 

with M1 = Q0 m0. The result is exact 2/3 of the density of the metric wave field (346a), 
determined in section 4.6.2. which is obviously much more than the gravitational field only 
(⅔ gravitation, ⅓ EM-field). Furthermore the value is about 3 magnitudes greater than the 
matter-density of 1.845·10–31

 kg dm–3 determined in section 4.6.4.2.5., which may be regar-
ded as proof, that we are living in a radiation-dominated universe or else said, the matter is 
only of local influence, being irrelevant for processes, which include the entire universe. 
Therefore, it even does no sense, to search-on for „hidden“ masses. 

 
 

7.2.7.3. The 3-layer-model of the metrics 
 
Considering the expressions of (877) once again, so it shows, that they are containing 

(partially hidden) quantities of the subspace (0, 0, c), the metric wave-field (0, r0), the 
quantum-theory (h) and quantities of the macrocosm (T, R) at the same time. In this 
connection, all quantities, marked with a tilde (~) including h are part of the same canonical 
ensemble, called the frame of reference. All these quantities have influence on the geometry 
of the universe. On the other hand (877) describes only the upper level or layer, the 
macroscopic metrics, that is the space or better the space-time, we live in. 

 
To the better understanding the basic construction of the metrics is presented in figure 136 

once again. It consists of three overlapping layers. Therefore, I would like to name this 
model the 3-layer-model of the metrics. 

 

Layer 0

Layer 1

Layer 2

Subspace

Metric wave-field

Macroscopic metrics

r2 ?

r1

r0

R

Magnitude
Area of application

Subatomic particles
and atoms

 
 

Figure 136 
The 3-layer-model of the metrics 

 
The magnitude of the individual layers, the scale is logarithmic, is logged at the left 

margin. Therefore it is possible that the subspace owns a lower limit and a structure too. 
Unfortunately, we can only suspect this. The only one we know about subspace is, that it 
owns the physical properties 0, 0, Z0 and c. That means, the speed of light in reference to 
the subspace is always c constantly. 

 
Above, there is the metric wave-field, described by the relations in the premier sections. 

The PLANCK's fundamental length r0 forms the upper ending.  
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All processes, running in areas of larger dimensions than r0, are described by the 
macroscopic metrics gik. For the sake of completeness, the location of the atoms and 
subatomic particles is presented within this macroscopic metrics as well. But since these are 
independent spherical symmetrical solutions of the field-equations, they appear only in 
passing at this point, as interferences, the gravitative effects are caused by. 

 
The deeper we go down, all the greater the field-energy, which is masked by quantum-

effects in reference to the superjacent layer. Such a quantum-effect e.g. is the spin of the 
MLE, which compensates the energy of the metric wave-field in reference to the 
macroscopic metrics (T = 0K). This structure figures an essential advantage in reference to 
other models. It just allows the existence of areas with negative (difference-)energy, which 
e.g. LANCZOS disclaims as unphysical. Also the question would be become clear, where the 
energy comes from to the production of virtual particle-antiparticle-pairs. This „borrows“ 
the universe from the subjacent layer. 

 
The whole matter becomes more interesting, if we extend the contemplation to the 

underlying subspace. If this should own inherent energy too, so it's density should be even 
more essential above the one of the metric wave-field, namely in the magnitude of the 
primordial impulse. On the other hand this would explain, from where its energy could 
come. Then, similar to the processes with the (quantum-)pair production (virtual or real), it 
may be, that there are analogue effects within the subspace, allowing the pair production of 
whole universes. In this sense, I only hope that we don't live in a virtual universe… 
Quantum theory is very strange. 

 
 
 

7.3. Even gravitational-waves 
 
D´INVERNO reminds in [30] on the possibility of the existence of even-frontal 

gravitational waves. Now, we could try, based on the relations of this model, to define such 
a wave-function, especially since D´INVERNO presents an usable approach for it. Although I 
am of the opinion that such a wave-function would not correspond to the realities, since we 
have already found a metric wave-function. Such a course of action would be approximately 
comparable with the attempt, to define a wave-function for the envelope of an amplitude-
modulated radio-signal, when the wave-function of the carrier wave is already known. Here 
it's much more opportune, to assign the transportation-function (wave-function) to the carrier 
wave and to consider the envelope only as a function of it's own. And with the macroscopic 
metrics it's the same. This can be compared with the envelope, whereas the transportation 
takes place by the metric wave-field. 

 
Nevertheless we should not reject the explanations of D´INVERNO, because they still 

contain a lot of interesting information. Also, they aren't flatly to be regarded as wrong. 
 
Based on the linearized form of the field-equations and with the help of the calculus of 

variations D´INVERNO draws the conclusion that these waves should consist of two 
independent components (h22 and h23) having transversal character, and whose polarization-
planes are oriented in the angle of 45° to each other. 

 
Furthermore, the amplitude of the h23 -component should be about the factor 1/ 2  smaller 

than that of the h22 one. I would not like to go more in detail (these you can look up in [30] 
looks). but only examine, in what extent our model turns out to be compatible with the 
statements of D´INVERNO. In figure 1 we had already pictured the crystalline structure of the 
metric wave-field, just as predicted by LANCZOS. If we look for independent components, 
filling the conditions named above, so we find the subsystems painted in figure 137 and 138, 
which are twisted to each other about an angle of 45° in all three spatial dimensions indeed, 
and also the geometrical „dimensions“ are right. The metric wave-field of this model could 
just really be the legendary gravitational waves. 
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Figure 137             Figure 138 
h22 -component of an oscillating even-    h23 - component of an oscillating even- 
frontal gravitational wave (+ polarization)    frontal gravitational wave (  polarization) 

 
 
By the way, our model avoids some inconsistencies addressed by D´INVERNO. One of it is 

the problem with colliding even-frontal gravitational-shock waves. D´INVERNO draws the 
conclusion that these no longer remain even-frontal then, just that the shape of intrinsic 
singularities must actually occur, which never have been detected. All together, the problem 
is elusive, mathematically and physically. 

 
This disadvantage is avoided by our model. The reason is, that the metric wave-field 

forms the space itself, being everywhere and always and it's isotropic besides. Therefore, not 
at all there's going to be a „collision“ of two waves and the problem is not a real one. Thus, 
also the search for gravitational (shock-)waves does not make any sense. And we can 
relativize even another statement of D´INVERNO. On p. 373 namely he writes: »Although 
such solutions—as infinitely extended objects—are extremely unphysical, so one however 
hopes that they describe some characteristics of real waves of isolated sources in the long-
distance-zone...«. Now the expansion of course is not infinite but nearly infinite only. But if 
there is a grain of truth at this model, so such waves would not be unphysical by no means 
then. 

 
7.4. Experimental tests 

 
To each reasonable theory normally the verification belongs on the basis of experimental 

tests. Now, it is not always easy, as a general rule with cosmologic problems actually 
impossible to enforce experiments at all. Thus, in the end only the standard-set remains, 
consisting of following components: 

 
1. The gyration of perihelium of the Mercury 
2. The light-distraction in the gravitational-field 
3. The gravitative red-shift 
4. The delay of light 
5. The Eötvös-experiment 
 
These are all described in [30] in detail. But the exact verification we could have spared 

ourselves in this case. The reason is, that we have come to relations or statements in our 
model, which match those of the classic EINSTEIN theory in the approximation. But since the 
measuring results of the above mentioned experiments are partially quite inaccurate, we will 
come to the result that our model is (can be) right automatically, exactly as the classic 
EINSTEIN model. Partially, the measuring-precision is not even enough thereto. Since 
maximally one of both model can be right (minimally none), it's about no exact proof 
therefore. The only experiments as well as measurements, which could result in a proof, may 
be: 

 
6. Proof and determination of the value of the specific conductivity of the vacuum by 

measurement on the basis of quantum physical effects (e.g. superconductivity, 
ratio between gravity and strong interaction). Status: didn't take place. Chance of 
success: low, because value too extreme. 
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7. Determination of the exact value of the electron charge as a function of q0 on the 
basis of quantum-electro-dynamic contemplations using the exact curvature-
function. See section 6.2.2. The result however still differs negligibly, possibly 
the QED-differences must be accepted durably. 

 
8. Determination of the value of the HUBBLE-parameter on the basis of locally 

measurable quantities. See section 7.5. 
 

9. Determination of the value of the HUBBLE-parameter on the basis of the exact 
temperature of the cosmologic background-radiation. See section 7.5.3. 
 

10. Verification of the value of the HUBBLE-parameter, calculated according to this 
model, with the help of exact astronomic measurements. The value determined in 
section 4.3.4.4.6. is already quite passable. In section 7.5.5. is taken up a 
comparison with more actual measurements. 

 
Maybe, the proof even takes place in a completely different domain. 
 
 
 
 
7.5. Relations between the HUBBLE-parameter and locally measurable quantities 

 
 

7.5.1. EDDINGTON’s numbers and the unity of the physical world 
 
On the occasion of the then 100th birthday of A. S. EDDINGTON in [32] an article has been 

published, in which his efforts were appreciated, to develop an uniformly built physics . So, 
EDDINGTON assumed, that „all structures (and the corresponding operators) can be referred 
on one unique »operand«, namely the universe“. Because from the basic-constants of the 
physics dimensionless numbers can be formed, of which some directly regard the ratio of 
micro- and macrocosm. Particularly, we are interested in the following value, given by him: 

 

C 1
4 0G

e2

memp
         (879) 

 
Of course, EDDINGTON had withhold 0 and the factor 4  at that time, „as these are equal to 
one“. However, for the sake of completeness, we insert it at this point because we would get 
a wrong result otherwise. Expression (879) is equal to the ratio of electric and gravitative 
attraction between an electron and a proton, just at a hydrogen-atom. It's about a 
dimensionless number with the value 2.26903·1039 resp. 2.85135·1040, when omitting the 
factor 4 . Now it would appear, that C somehow corresponds with a dimensionless number 
of this model. Here the Q-factor Q0 ≈ 7.5419·1060 would offer itself, which is equal to the 
phase-angle of the metric's wave-function being identical to the frame of reference. In order 
to test, whether such a relation is possible, we first of all proceed like with the examination 
of the fine-structure-constant. We replace the electron charge e by the charge of the MLE q0, 
as well as the electron mass me and the proton mass mp by the mass of the MLE m0 under 
application of (29), (31), (36) and (37): 
 

C 1
4 0G

q0
2

m0
2   1

4 0G
G

Z0 c
  1

4
      (880) 

 
Exactly like with the fine-structure-constant we obtain the geometrical factor 1/4  even here. 
Therefore we can assume C to be really suitable for this purpose. Since the electron charge 
and –mass at Q0=1 are equal to the charge and mass of the MLE in the approximation and 
this and C also would have to be equal to one then (in reality it is the case at Q0=2/3), we 
leave out the factor 1/4  in future considering the value: 
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C 1
0G

e2

memp
  2.85135 1040       (881) 

 
This equals to Q0

2/3 approximately, as a comparison with the astronomic value [] shows:       

C
3
2

1
0G

e2

memp

3
2

  4.81478 1060 [7.5419 1060]     (882) 

 
Now, with the help of H 0

Q0

 (54) the HUBBLE-parameter can be calculated: 
 

H(C
3
2 ) 118.885  

1 1 [75.9]   (883) 
 
 
Obviously, the left-hand value doesn't match the astronomic observations. Maybe there is a 
constant factor, to multiply expression (882) with, in order to find out a better matching 
result. With a constant factor (we already omitted 4 ) the expression still can be used in the 
thought manner, because it's a constant. During the determination of H for a constant wave 
count vector we had also noticed, that the HUBBLE-parameter H1 for the entire universe (R/2) 
is exactly 3/2 times greater than the local value H0. Let's give a try to 2/3 therefore: 
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  7.222169 1060 [7.5419 1060]  (884) 
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Now the result fits the value determined in section 4.3.4.4.6. (75.9 kms–1Mpc–1) very well. 
But this match can be a pure coincidence. Therefore, we must examine, whether the 
temporal shift as well as the shift with Q0 of the values, used in (884), are being consistent 
with the shift of H0. Therefore we combine (884) with (29) and (54) under consideration of 
the following dependences: 
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Applying these dependences to the left expression, we get the following: 
 

H0~Q0

5
2     Actual as per expression (886)          H0~Q0

4
2    Reference due to  H0

1
2T

  (887) 

 
Once again to the information: T is the local age, a time-constant of this model, and not to be 
mixed-up with the total-age 2T. What like however to interpret this difference? The most 
simply it would be to argue that it is really about a coincidence, when the left value of (885) 
matches the observations. But we don't want to make it so simple. Therefore let's return to 
the supposition of EDDINGTON, that „all structures (and the corresponding operators) refer to 
one unique »operand«, namely the universe“ (as a whole). What would it mean, when 
expression (886) really would describe the properties of the universe as a whole? 
 

In the course of this work, we have worked out the dependencies of the various quantities 
on Q0. And in section 4.5.2. we determined, that the expansion-velocity for distances greater 
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than 0.01R is not given by H0r, but by Hr, at which point H, according to the distance, takes 
on values between 1/(2T) and 3/(4T) (330). For the universe as a whole (distance R/2) 
applies H=3/(4T) then. This arises from the demand that for such distances the distance-
function with constant wave count vector is applied. Now, also explains the excessive value 
of (883) and why we had to multiply it just with 3/2. This alone could already be regarded as 
appearance-proof. But further applies: 
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As it shows, all quantities, except for the local metrics, which determines also the distances 
between bodies, connected by means of gravity in the local area (<0.01R), expand according 
to the same function of the universe as a whole. Neither this can be else. If really all 
quantities, including the local metrics, would expand according to the same function, no 
expansion would be detectable at all. Here turns out a weak point of all so-called standard-
models: They either all work with a linear metrics or with a patchwork as metrics and thereat 
actually should be to be detected no expansion at all. Therefore the universe may own only a 
non-linear metrics, as described in this work. Calculating the expansion-velocity as well 
locally as for the universe as a whole, so we obtain: 
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It can be shown, that this is applied to any distances between r0/2 and R/2. The expansion-
velocity just changes according to the same function, irrespective how far away the 
considered area is. As a result, the structural integrity of the universe remains intact. The 
contradiction has been solved. 
 
With it, we have proven, that expression (886) according to this model is really suitable to 
the determination as well of H1 (universe as a whole) as of H0, at which point the more final 
value always amounts to 2/3 of H1. 

 
Do we must worry about our metering rule? The answer is no. Since at present, the meter is 
defined on the basis of the speed of light and a time-etalon oriented at atomic scales and 
these all trace the universe as a whole, the same is applied even to the metering rule. But 
there should still be specialists, who reckon with miles... 

 
Now, we have found a possibility to determine H0 with the help of locally measurable 

quantities. This is based on the hydrogen-atom. The question is, is there yet another one? 
Indeed. In (888) we can read, that the fundamental length r0 and the electron radius re are 
varying according to different functions on Q0. Thus, also should have to be determined Q0 
and with it H0 too. Under application of (3), (27) and (687) applies: 
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This on the other hand corresponds to a value of H0:
 

H0       2
3

 

32 2
0Ghme

3

0
2e6        71.9845  kms 1Mpc 1 [75.9]   (891) 

 
This value is based only on the electron and the metrics and is proportional to Q0

–5/2. Thus, 
this is been suitable to the determination of Q0 and H0 too. Interestingly enough, the just 
determined value differs from the first one, namely about 10.102%, which corresponds to 
the average QED-correction-factor. Obviously, the usual QED-specific inaccuracies, which 
result from the logarithmic periodicity of the universe, appear here in turn.     
 

Even this value fits the one, determined with the help of the propagation-function of this 
work, this is compatible with the distance-function with constant wave count vector, and can 
be brought in accord with the astronomic measurements in the next section too. Even if we 
have gotten two different results, we already are able to specify H0 more exactly than the 
astronomers. But that is not yet enough. Combining both values, the first amounts to 
approximately 1040, the re/r0-based to approximately 1020, we acquire an especially simple 
relation: 
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e4   115.132  kms 1Mpc 1     (895) 

 
Here, even the factor 4  has been taken into account, being omitted in (881). The 
expressions are proportional to Q0

–5/2 in turn and do not contain the PLANCK’s quantity of 
action surprisingly (no QED-difference?). In the numerator are only mechanical, in the 
denominator only electric quantities. The coverage is with Q0 103, i.e. starting with the time 
just after big bang. Since the expression also form a sort of median value between the two 
other relations and both, the relations in the atom and in the vacuum are considered at the 
same time, I would mark it as precise. Whether that is correct, we will see. To the 
comparison once again all three results in table-form: 
 
 

Expression Q0 H0 H0 H1 H1 QED V 

 [1] [s–1] [kms–1Mpc–1] [s–1] [kms–1Mpc–1] Correct. factor ? 

(884) 7.2222·1060 2.569·10–18 79.257 3.853·10–18 118.885 1.10102  

(892) 7.4576·1060 2.487·10–18 76.544 3.731·10–18 115.132 1.06626  H
(890) 7.9518·1060 2.333·10–18 71.985 3.499·10–18 107.977 1.00000  

 
Table 7 

HUBBLE-parameters as a function 
of local quantities (overview) 

 
7.5.2. Distance-vectors 

 
 
Due to the progress in the technical domain taken place in the most recent time, the 

astronomers are able to look into the universe deeper and deeper and with it even farther 
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back in time. The farther one looks however, all the more the structure of the universe 
becomes notably and must be taken into consideration on the interpretation of the measuring 
results. Otherwise the much money would have been poured down the drain. 

 
But before expanding further, just let's have a look at a so simple quantity, like the 

distance respectively the spacing to a stellar object. The astronomer just sits in front of his 
telescope, observing an object and he tries to determine with different methods, how far 
away it is. And before he can determine the HUBBLE-parameter, he must determine the 
distance respectively the spacing to the object of course. And the first problem already 
appears here: What do we actually mean by distance as well as spacing? And what do we 
really want to determine? 

 
In the close-up range this question can be answered relatively simply: The spacing is 

equal to the distance and the light from the object has covered this, when it has arrived at the 
observer. But if we leave the close-up range, looking at objects farther away, it's no longer 
like this. At first, we look at the object by means of photons, which have moved from the 
object into our direction. Thus, in reference to the metrics, it's about an (incoming) time-like 
vector (figure 139 and 140 rT red pictured), a negative distance. We call it time-like distance. 
It corresponds to the constant wave count vector of the metrics. On this occasion, we how-
ever actually observe the zero vector and not the time-like vector. With vanishing curvature 
both coincides indeed. As it looks like, when there is a curvature, will be presented later. 

 
But the object, we observe nowadays, is already located at a completely different position, 

as our observation-data want to make believe, since these are already totally „outdated“, 
when they reach us. One feature of this model is now, that this is not the case. Even when 
the signals are already very old, the object really resides in reference to the observer's R4-
coordinate-system at that very position, where he observes it. The length of the vector from 
the object to the observer however cannot be influenced by him, because he is just only 
observer. 

 

 
 

 
 

 
Figure 139 Figure 140 
Distance-vectors with an object Distance-vectors with an object 
at the edge of the universe (schematized) in the close-up range of the observer (schematized)  
 
But if the observer has the intent, to visit the object, that would be an (outgoing) space-like 
vector then, a positive distance/spacing, this cannot take place on the same way, which the 
ray of light has covered, because the observer would have to move with c thereto and each 
zero vector is unique. Now, another distance/spacing is applied to him. 
 
To the difference between distance and spacing: These are (approximately) equal in the 
close-up range only. With larger distances, objects in the free fall remove themselves 
according to the distance-function with constant wave count vector. That would be the real 
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spacing (rK blue pictured). With it, also the definition of the space-like distance arises (rR 
green pictured). This is the shortest way between the observer or better the traveller and the 
object. It is an imagined line and coincides with the coordinate r of the coordinate-system. 
Locally, it is equal to the space-like vector of the metrics. 
 

But this way, the destination cannot be reached in the free fall, as an analogy from the 
navigation suggests, the difference between latitudinal and great-circle-distance. When start 
and destination are on the same latitude and if it's not exactly about the equator, the great-
circle-distance is always smaller than the latitudinal-circle-distance. During great-circle-
navigation however, the captain must change the course continually, just accelerate, whereas 
he could theoretically continue his journey without acceleration on the latitudinal circle, just 
in the free fall, when the water resistance would be zero. Thus, the voyager has the chance, 
to influence the distance, namely by means of navigation. To the better overview the 
definitions once again: 

 
 

 
1. The zero vector rN is the way, a ray of light covers, at which point the velocity in reference  
 to the subspace is c constantly. In the local range it is equal to the geometrical sum of  
 space- and time-like vector. 
 
2. The time-like distance rT is the way, a ray of light, starting from the source, has covered,  
 when it has been arrived at the observer. In the local range, it corresponds to the time- 
 like vector of the metrics. But actually the zero vector rN is observed. 
 
3. The spacing rK is the distance between two objects in the free fall. The vector proceeds  
 along the field-lines of the gravitational-field and varies according to the spacing-function  
 with constant wave count vector. It corresponds to the zero vector rN of the metrics. 
 

 4. The space-like distance rR is the shortest vector between a traveller and his destination.  
  It's about an imagined line. It is identical to the coordinate r of the coordinate-system. In the  
  local range, it corresponds to the space-like vector of the metrics. If one wants to travel  
  along this line, permanent navigation (acceleration) is necessary. 

 

 
 
But let's descend to the time-like distance once again. This is the distance, the astronomer 

determines, when he analyzes incoming light- or radio-signals (zero vectors). They are 
subject to a red-shift according to the propagation-function in section 4.3.5.4.3. resp. 5.3.2. 
The time-like distance is limited to the maximum time-like distance, which results from the 
total-age 2T. It applies rTmax = R = 2cT. In the course of this work, we had learned that the 
maximum space-like distance amounts to only the half of it: rRmax = R/2 = cT. Furthermore 
we had demonstrated that, on the basis of the efforts of EINSTEIN it's possible to convert both 
distances in one another namely according to (280): 
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      (280) 

 
Considering the two expressions now, one recognizes that these fail at the „edge“ of the 
universe. The left-hand expression submits a negative infinite time-like distance for R/2, the 
right-hand expression a space-like distance of  0.447214 R = 0.894427 cT for –R/2. Actually, 
a value of 0.5 R = cT should arise however. In section 4.3.5.3. on the other hand we have 
learned, that the maximum propagation-velocity of the metric wave-field is 0.851661c and 
not c to the point of time 0.748514 t1. With it, the maximum space-like distance would 
actually have the value 0.851661 cT only and not 0.894427 cT respectively cT. This contra-
diction has been solved in section 4.5.2.2. 
 

Another characteristic of this model is, that „edge“ of the universe is not simply an edge 
but, according to it's nature, a SCHWARZSCHILD-radius and a singularity resides behind it. As 
determined in section 4.3.5.3. the maximum propagation-velocity of the metric wave-field 
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amounts to 0.851661c indeed, namely to the point of time 0.748514  t1. At the same time we 
have learned, that the metric wave-field already existed before, having propagated with a 
lower velocity. What actually has happened to this part of the universe? Definitely, it should 
have been „overtaken“ somehow by the later, more quickly propagating part. 

 
On the other hand we know that the physical relations differ in this part from those of the 

other one, namely to the effect that the more aged part is spatially closed, whereas the junior 
part is spatially open (Q0>1). That means, the part of the universe we live in, is not the whole 
thing. There is a small part, which is neither accessible, nor observable for us. Thus, derived 
from a known SF-series, I would like to call it hyperspace. In figure 141 I just tried to 
demonstrate the relations at the „edge“ of the universe. 

 

 
Figure 141 
Relations at the edge of the universe 

 
With the time-like vector we must pay attention to the following: This can be both, an 

incoming (negative distance), as well as an outgoing vector (positive distance). An observer 
always is concerned with an incoming vector, whose length is limited to –2cT. The light has 
traversed the entire universe then and has been rearrived at it's starting point, a time-like 
singularity (event horizon). The farthest starting point of an incoming time-like vector is in 
the distance –cT. The maximum length of an outgoing time-like vector on the other hand is 
unlimited because it directs to future. Of course, it is even subject to the parametric 
attenuation. It's impossible to send signals back in time. 

 
For that reason it's also impossible, to look back simultaneously up to the point of time –T 

(reckoned from now on) and up to a distance –R/2, because the elder signals have passed us 
long ago. What we see, are all junior signals, maximally half as old as the universe. 
Spatially, we can look back up to the „edge“ –cT with it, temporally not at all (see also 
figure 69). The signals directly from the big bang –2T form an exception. These have 
reached their starting point again and are to be observed as cosmologic background-
radiation, although with extreme red-shift. The picture, which it generates, is really the view 
from the point of observer to the point of time –2T, however mirror-inverted in all four 
dimensions (an outgoing time-like vector becomes an incoming one). The range between –
2T and –T is also accessible indeed, but these signals come from areas at the opposite end, 
with a lower distance than –R/2, at which point the signal is coming „from behind“ on a 
detour. In this case applies, the older the signal, the nearer the source (neater). 

 
Concerning the space-like vectors an observer in the free fall resides on a space-like 

singularity, even if he does not take notice of it. This expresses itself to the effect, that no 
negative distances are defined for him. As comparison, the North-pole may act in this place.
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Being situated on this, all ways lead southward, the individual does not take notice of it 
however. The maximally possible spatial distance would be –cT with it. Thus, time-like 
vectors from the past and space-like vectors would be approximately equally long. 

 
In that regard, the result of the left-hand expression of (280), which we get for a time-like 

distance –cT, namely – , is not really wrong. Since this spacing borders directly on a 
SCHWARZSCHILD-radius no light from there can reach the observer. However, the expression 
submits a wrong result for a distance of –0.851661 cT. And similarly it's with the right 
expression of (280).     

 
With it, both expressions are been suitable only conditionally for the calculation of 

problems involving the universe as a whole. Nevertheless they are perfectly enough for the 
calculation of astronomic data, since only objects with a fraction of the spacing –cT can be 
observed until now. For deeper contemplations however, we require the correct expression, 
which results from section 6.1.2.1.2.: 
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The angle  is given by (482) in connection with (206). The expressions don't shall be 
presented again but the course as a function of Q0.  
 
  

 
Figure 142 Figure 143 
Angle  as a function of Q0 Functions sin  and cos  as a function of Q0  

 
As it shows, both trigonometric functions from a value of Q0>102 on are equal to one resp. 
zero, so that (896) coincides with (280). But this value is first underrun almost directly at the 
SCHWARZSCHILD-radius so that (280) can be used as approximation almost for the entire 
universe. For the point with the maximum propagation-velocity, the so-called wave-front, 
we get with the help of (53) a value of Q0 =  0.865167 and for  = 2.41953. Thus, it's within 
the SCHWARZSCHILD-radius (Q0 =  1) and cannot be observed. 

 
For an angle  = π/2 in expression (896) on the right we obtain for the space-like distance 

a value rR(–cT)  =  cT/ , as presented in figure 141. This value is indeed somewhat lower, 
than the maximally possible space-like distance rRmax = 0.851661 cT, which indicates, that 
the wave-front is moving resp. has moved on a curvilinear track. The value for rT, we have 
inserted, however is not exact. It only applies „almost at the edge“. Directly at the 
 SCHWARZSCHILD-radius applies Q0 =  1 and the angle  has another value. The exact 
behaviour of the distance-vectors is presented in figure 144 and 145. 

 
What does it look like however with the spacing with constant wave count vector? From 

figure 140 emerges that this, with small distances, must be equal to the other two vectors  
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(approximately). Directly at the SCHWARZSCHILD-Radius it should exactly amount to cT 
according to our model. If we look for a conversion-function turns out, that (280) which we 
already wanted to discard, is been suitable for it very well, however with rK instead of rT: 
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Both expressions are defined positively only and apply even exactly. For rK and rT applies: 
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For an angle  ≈ π/2 just almost in the entire universe, the constant wave count vector 
coincides with the (negative) time-like distance-vector. Therefore it also seems to be that a 
conversion can be taken up with the classic relations of the SRT from space-like into time-
like coordinates. The SRT describes nothing other than observation-phenomenons of moved 
bodies by means of photons. Simultaneously, we can see here, why the SRT fails with strong 
gravitational-fields (e.g. black holes) and with it even at the edge of the universe, because 
there the vectors diverge, and that all. 
 

And some more we see: Because of the coincidence of the constant wave count vector 
with the time-like distance-vector, of course also the gravity propagates on the same way 
like the photons, namely as zero vector, that means with light speed. Otherwise, even no real 
R4- coordinate-system would be possible. We have found a contradiction-free solution with 
it. Our guess (897) had been right. In the close-up range and even far in excess actually all 
three vectors coincide. For example with 400 Mpc distance, the difference between rR and rT 
is about 2% and with it far below the observation-error. 
 

Now we want to try to demonstrate, like the three distance-vectors behave at the „edge“ of 
the universe in general and specifically. For reasons of recognizability, we want to display 
the distance-quantities as a function of the Q-factor Q0. For that purpose indeed, we require a 
function of the space-like distance with respect to the Q-factor. With (606) we already had 
found the inverse function Q0(rK) (all functions, hitherto occurring in the course of this work 
are always based on r=rK). Disregarding the time t applies: 
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Applied in (896) and (897) under consideration of the angle α, according to (482) and (206) 
with 2 0t = Q0 we obtain the courses shown in figure 144 and 145. 
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Figure 145 
Course of the distance-vectors rR, rK and rT 

at the SCHWARZSCHILD- 0=100) 
 
 
Whereas all vectors in the large scale proceed in the same way as expected, the time-like 

vector deviates in a striking distance to the SCHWARZSCHILD-radius and takes a different 
course. Interestingly enough, only the time-like vector is influenced by the singularity. This 
is even no miracle, is it about a temporal singularity after all (no values t<0 defined). In this 
connection is to be paid attention to the fact, that the light is actually a zero vector and 
disposes as well of a space-like, as of a time-like component. When only the time-like vector 
is influenced, it means that the wavelength changes admittedly, but not the propagation-
velocity c, a known phenomenon. But actually the zero vector has the value c only in 
reference to the subspace. however, the difference is not measurable at all, because it's all  
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too little. Therefore, an observer, who doesn't move in reference to the metrics (free fall), 
always measures the time-like vector. Under regular conditions (Q0) however, the difference 
is not measurable at all, because it's all too little. 

 
At the SCHWARZSCHILD-radius the time-like distance shortens locally on –0.264589R and 

sinks to –0.25R in the point of the maximum propagation-velocity of the metrics, the wave-
front. This point is an inflexion point at the same time. Finally, rT achieves a minimum of –
0.2071071R, reascends and tends toward a value of –0.2578068R. Even in accordance with 
the SRT, at a singularity a shortening should occur, however boundless with the exception of 
the value zero. Although, at that time EINSTEIN did not reckon with the possibility, that the 
right angle  could vary. The same behaviour as in the distance R/2 would be to observe 
also at the SCHWARZSCHILD-radius of a black hole, if we could take up measurements there. 

 
 
 
 

7.5.3. Determination of the HUBBLE-parameter with the help of the CMBR-temperature  
 
 
In section 4.6.4.2.6. with (405) we already formulated a relation between the phase-

angle/Q-factor of the metrics Q0 and the resulting temperature of the cosmologic back-
ground-radiation. With the astronomically specified value of the HUBBLE-parameter of 
section 4.3.5.4.6. (75.9 kms–1Mpc–1) and the value Q0 =  7.5419·1060 resulting from it arises a 
temperature of 2.86632K for the cosmologic background-radiation. Because of a calculation 
error in a former edition I made use of H0 = 76.7545 kms–1Mpc–1 temporarily. Thus it’s 
possible, that this value still appears in one or the other graphic. But one cannot see the 
difference, since it’s near by 75.9.  

 
Interestingly enough, this value is close to the value of 3.18K already predicted 1896 by 

GUILLAUME and EDDINGTON (= 82.63 kms–1Mpc–1). Both assumed at that time, that there are 
(converted) 2000 stars on average in the 10 pc-surroundings of a star with the magnitude 1m. 
The energy emitted by these stars leads to an energy-density, which corresponds to a 
radiation-temperature of 3.18K. See [39] for details. 

 
Although, the calculation contained an essential error. One assumed in those days that the 

supposed average star-density should be available throughout the whole universe, because 
the existence of external galaxies did not have been commonly accepted as well as was 
known until 1924. 

 
Fortunately, we are now in a better situation. So, we don't need to calculate the radiation-

temperature but we can measure it absolutely accurate. The average radiation-temperature, 
determined with the help of the COBE-satellite, is about 2.72548 ± 0.00057K (Wikipedia). 
Now, it's no problem of course, to determine the corresponding values Q0  and H0 by 
rearrangement of (405b). Indeed it is to be pointed out, that neither 1 nor 1 are exactly 
defined by locally measurable quantities. Rather, they depend on Q0  as well as H0  
themselves, the values, we actually want to determine. We however know the values  and 

0 . It applies 1 = Q0 0 and 1 = Q0 : 
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All equations are based on the approximation 2  for the proportionality-factor of WIEN’s 
displacement law. Applying the above-mentioned measured value 2.72548K, we get a value 
of von  8.3415·1060 for Q0.  This corresponds to a value H0 =  68.6215 kms–1Mpc–1. This value 
most likely match our solution (890), but it's somewhat too low, since the latest studies 
submitted H0 to be somewhere between 71 and 75 kms–1Mpc–1 (FREEDMAN, KIENZLER 72). 
But it may be, that the CMBR-temperature, for which reasons ever, is simply lower as it 
actually should be. Possibly, beside expansion and cosmologic redshift, there are yet other 
effects, leading to an additional cooling. Adsum, as one possibility [40.1] shall be 
mentioned.  
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 [1] [s–1] [kms–1Mpc–1] [K] [K] [%] 
(884) 7.2222·1060 2.569·10–18 79.2562 2.92907 +0.20359 +7.46988 
(892) 7.4576·1060 2.487·10–18 76.7545 2.88247 +0.15699 +5.76009 
(TAB1) 7.5419·1060 2.460·10–18 75.8966 2.86632 +0.14084 +5.16753 
(890) 7.9518·1060 2.333·10–18 71.9843 2.79146 +0.06598 +2.42086 
(COBE) 8.3415·1060 2.224·10–18 68.6215 2.72548 ±0.00000 ±0.00000 

 
Table 8 

Calculated and measured CMBR-temperature in comparison with the  
values of the HUBBLE-parameter determined  in section 7.5.1. 

 
To the conclusion, we want to determine the real difference to our calculated temperature 

(890). Inserting (890) into (902) we get a nominal temperature of 2.79146K. With it, the 
measured temperature is about 0.06598K lower than the calculated. For solution (892) a 
temperature of 2.88247K would be necessary, for (884) even 2,92907K, which shows up 
both as less realistic. Therefore, we can assume solution (890) with 71.985 kms–1Mpc–1 to be 
the most probable one. 

 
In table 8 all values, even the ones used in former sections, are recapitulated. For the fact, 

that the measured CMBR-temperature is about 0.06598K smaller than the calculated one, I 
would like to blame the gray body. Indeed we considered the coefficient of absorption εν, at 
the gray body it depends on the frequency however. Please find the exact calculation in [47] 
resp. here in the annex. In any case, the measured value is smaller than the calculation. If it 
had been larger, the model would have been refuted. That’s not the case. A delta of only 
+2.42086∙ −  with a time span of 13.5839 billion years, an in-coupling temperature of 
2.6864∙ 153K, as well as of a redshift z11 of 1.42701∙ 92, overall, this can be seen as a 
complete success. I would say, the model predicts the temperature very precisely. To the 
verification of the favoured value we will make a comparison with astronomical 
observations in the next section. 
 
 
7.5.4. The supernova-cosmology-project 

 
 
Another option to choose the correct one from the three solutions, is the comparison with 

the latest astronomic observations. The most important project of late has been the super-
nova-cosmology-project. One observed a lot of type Ia supernovae, which all own the 
particular property, to have the same luminosity approximately, so that they can be used as a 
standard-candle. Aim of the research [45] was the determination of the HUBBLE-parameter 
and of course, to determine, which of the world-models stated until today comes closest to 
the reality. The examination indeed has caused more confusion, than that it has led to 
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rational results, as we will see yet. Reason however is not the research itself but the missing 
of a correct world-model, as I intended to make it with this work. 

 
Before we go on into detail, at first another section, which deals with the fundamental 

values of observation being focused to physicists, astronomers and technicians, which work 
with different units of measurement as known and it's difficult to understand one another 
therefore. 

 
 

7.5.4.1. Measurands and conversions 
 
Since we want to deal only with one concrete project, only the quantities, which are 

specifically relevant for the supernova-cosmology-project, should be exemplified. In reality, 
in physics, astronomy and radio-astronomy there is yet a large number of further quantities. 
Whom it interests, I recommend [44], which also the declarations, done in this section, are 
based on. 

 
Initially with the project, astronomic objects, supernovae of the type Ia, which appear to 

the observer as punctual objects with a certain luminosity, have been observed. The 
measured luminosities have been compared with the red-shift z (307) and have been collated 
with the luminosities predicted by the various world-model. What however do we mean by 
luminosity? 

 
In astronomy there are four types thereof at all, once the apparent brightness, the 

bolometric brightness, the absolute and the absolute bolometric brightness. It is given in 
magnitudes [m, mb, M, Mb]. It is about a logarithmic unit of measurement, which is defined 
historically. With the bolometric brightness, the entire frequency domain in accordance with 
the STEFAN-BOLTZMANN radiation-rule is considered, it's about the logarithm of the quotient 
of the two values power and surface [Wm–2], which the physicist marks as POYNTING-vector 
S . In the astronomy, this value is called flux F, in the technical department field-strength S. 
With the non-bolometric values the unit of measurement [Wm–2Hz–1] is used. The 
measurements are dependent on frequency and bandwidth then. But for us only the 
bolometric values are of note. Another important value is the (bolometric) luminosity L. In 
the physics and in the technical domain it is marked as power P as well as level p. Unit of 
measurement is the Watt [W] as well as the decibel [dB]. Thus, we can define: 
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 Brightness   (906) 

 
As usual with logarithmic units of measurement, always a reference-quantity F0 as well as L0 
is needed. The values has been taken from [42] and [44] and read as follows: 
 

F0  2.51 10–8Wm–2 L0  3.09 1028W    (907) 
 
A star with the luminosity L0 has exactly 0 magnitudes (written 0M). The absolute brightness 
(flux) is defined in a distance of 10pc of the source, but it has no meaning for us. Even in the 
technical domain there is such a logarithmic dimension, the dB (decibel): 
 

S P  10lg S  

S0

 dB  10lg P 4 r2

P0 4 r2  dB  10lg P  

P0

 dB Field-strength/level (908) 

 
Another, more rarely used logarithmic unit of measurement is the Neper p[Np] = ln(P/P0). 
The original definition of P0 comes from the telecommunication and is defined as a power 
P = 1mW on 600 . But in the radio-technology and with it even in the radio-astronomy this 
value is not used, since we are concerned there with much smaller quantities in general. 
Therefore, the following relative values are used: 
 

S0  1 pWm–2  10 12Wm–2 P0  1 pW  10 12W     (909) 



 
 

277 

In order to avoid a mix-up with the historic definition, instead of dB mostly the unit 
dBpWm–2 or dBpW as well as dBpWm–2Hz–1 or dBpWHz–1, when there is not the entire 
spectrum included. The power P at the input of a receiver with adaptation simply results 
from the POYNTING-vector S, the effective surface A of the antenna used and the gain G of 
the antenna: 

    (910) 
 
Since the decibel is also a logarithmic unit, a simple conversion is possible into the 
astronomic units. For P[dBpW], Mb[M], S[dBpWm–2], mb[m], L[W], F[Wm–2] applies: 
 

P = 404.9 – 4 Mb Mb = 101.225 – 0.25 P           (911) 
  

S = 44 – 4 mb mb = 11 – 0.25 S      (912) 
 

P = 120 + 10 lg L L = 10 
0.1P−12      (913) 

 
S = 120 + 10 lg F F = 10 

0.1S−12      (914)  
 
L = 10 

28.5−0.4
 
M b  Mb = 71.225 – 2.5 lg L     (915) 

 
F = 10 

−7.6−0.4
 
m b  mb = 19 – 2.5 lg F      (916) 

 
All obscurities should be removed with it, so that we can turn to the results of the supernova-
cosmology-project. 
 

 
7.5.4.2. Results of the supernova-cosmology-project 

 
The results of the project have been published by PERLMUTTER in [45] in detail. To the 

better understanding, what's actually a supernova of the type Ia, I recommend the work of 
HERRMANN [42]. The most important is, a SN Ia has a maximum absolute brightness, which 
results from its structure. If the star is greater, a supernova of other type, which can be 
recognized by its characteristic, develops. Therefore it's possible to use a SN Ia as a 
standard-candle, at which point the brightness mostly is something smaller than the 
maximum indeed, because not all SN Ia achieve the maximum brightness. 

 
The apparent bolometric brightness at the observer has been compared by PERLMUTTER in 

a diagram with the associated red-shift z. Even HERRMANN [42] and HEBBEKER [43] are 
using the same diagram, at which point in [43] is deferred in detail to the common standard-
big-bang-model once again, being based on the classic EINSTEIN evolution-equation with 
and without cosmologic constant. 

 
The observations now submitted, that further (older) SN Ia appear somewhat darker, as 

they actually should be according to the standard-model without cosmologic constant (  = 0). 
The case  = 0 just doesn't fits the observations. The option, that SN Ia earlier could have 
had other qualities, is being excluded by all authors and even by myself.     

 
Rather the discrepancy is interpreted in such a manner, that  should have a value 

different from zero, which means, that the expansion-rate of the universe, just the HUBBLE-
parameter, doesn't decrease, as always assumed until now, but increases on the contrary. 
Thus, the observed SNae would be farther away, than it would arise from the measured red-
shift z. The lower brightness would be explained with it. Although this leads to incongruities 
with other observations. In order to avoid these, a complicated construct is used, which 
demands extremely exact synchronizations to the point of time T = 0 and even afterwards, 
which appears to be pretty implausible, because nobody can exactly say, on which physical 
phenomenon this effect should be based on. 

Poynting-vector 
Apparent bolom. brightness 

Power 
Luminosity 

Poynting-vector 
Flux 

Luminosity 
Absolute bolom. brightness 

Flux 
Apparent bolom. brightness 

Power 
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While PERLMUTTER contents himself with the hint on the option  ≠ 0, HERRMANN and 
HEBBEKER even demand the existence of „dark matter“ with hitherto yet unknown qualities 
and of an effect with the name „quintessence“ which should be the cause for the increasing 
expansion-rate, quasi a sort of anti-gravity. For my part however, I consider this hypothesis 
to be off the point, since the discrepancy can be explained even more simply, only with the 
help of known physical rules (Ockham's razor). Only, one must have the courage then to use 
an alternative model. The standard-big-bang-model has failed for a long time, even in other 
points. Unfortunately, the common view latterly seems to tend more and more into the 
direction „dark matter“ and „quintessence“, which can be regarded as criterion, that the 
proponents of the standard-model are at their wit's end.   

 
But when the HUBBLE-parameter should decrease on and the observed objects should be 

located in the correct distance, as only explanation remains, that the photons during their 
propagation are subject to an additional attenuation, not known until now. And exactly this 
is an essential quality of the model on hand1.  

 
In section 4.3.4.4. we had worked out the propagation-function for a loss-affected medium 

with expansion and overlaid wave. Different from the propagation-function for a loss-free 
medium there the attenuation rate  is different from zero. It has the value 1/R. Therefore we 
want to forecast the observed brightness of SNae Ia with the help of this function. For the 
graphic representation, we need the function mb(z). Based on (906) we obtain for the 
apparent brightness mb then: 

 

mb  2.5lg F  

F0

   2.5lg LIa

4 r2 2.51 10–8Wm 2      (917) 

 
In doing so we notice, that the value LIa, the luminosity (power) of the standard-candle 
supernova Ia is missing. And indeed, neither in [42], [43], [44] nor in [45] such a one is 
specified. Fortunately, the colleague Wolfgang Hillebrandt from the Max-Planck-Institute 
for Astrophysics (MPA) Garching could help me with this problem. According to his 
information, the maximum luminosity of a SN Ia has a value of 1036W approximately. That's 
the upper limit. If we put it into (917) still the distance r is missing Since we look at the 
matter starting from the source toward the observer, we obtain it with the help of (309a) 
without correction-term. It applies: 

 

mb  2.5lg 

1036m2

4 r2 2.51 10–8   2.5lg 

1
˜ R 2

 1044m2

2.51 

1
((z 1)

4
3 1)2

  (918) 

 

mb  2.5lg 

˜ H 0
2

c2
1044m2

2.51 

1
((z 1)

4
3 1)2

  2.5lg 1.41103 1026s2
˜ H 0

2

((z 1)
4
3 1)2

 (919) 

 
That is the function mb(z) without consideration of the additional attenuation. Since also the 
z-axis must have a logarithmic scale, we apply the value 10w with –2 ≤ w ≤ 0 instead of z. 
Now,  PERLMUTTER has published all measurements in [45] indeed, but since I do not 
dispose of any procedure, to present it so nice, including the tolerance-limits, I made the 
decision, to take up the comparison with (919) by overlay of both charts.    

 
In figure 146 are presented the relative brightness, calculated with the help of (919), in 

comparison with the observations of the supernova-cosmology-project. Also to be seen are 
the courses calculated by PERLMUTTER for various adjustments of the standard-big-bang-
model. The overlay-markers (+) are to be seen at all corners except for left above. 

 

                                                 
1 Of course, already previously models existed (e.g. tired light) which work with an additional attenuation. All they have failed however, since they 
wanted to attribute the attenuation to the particle properties of the photons only. But the wave properties are the cause in reality. Nevertheless, the 
tired-light-hypothesis appears essentially more plausible, than the assumption of the existence of dark matter and quintessence.. 
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Figure 146 
Calculated apparent bolometric brightness for the three values of the HUBBLE-parameter in  

comparison with the observations of the supernova-cosmology-project (standard-candle = maximum) 
 
In the presentation meets the eye that the three brightness-functions (according to this model 
without consideration of the parametric attenuation) are below the observed values, just they 
have been computed too bright. This is even no miracle, since we used the maximum-value 
as standard-candle. Figure 146 also shows, that solution (890) with 71.985 kms–1Mpc–1 for 
the HUBBLE-parameter comes closest to reality in turn, since it's located at the outer margin 
of the error-tolerance-corridor. Therefore we'll use this value for the further contemplations. 
We determine the real value of the standard-candle, which is the statistical median value of 
all SNae Ia, numerically with the help of (890) for a value at the lower end of the z-axis to 
LIa = 6.1097·1035W. We apply it in (919) obtaining:    
 
 

mb  2.5lg 

˜ H 0
2

c2
6.11 1035m2

2.51 10 8
1

((z 1)
4
3 1)2

  2.5lg 

4.6916 10 10

((z 1)
4
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      (920) 

 
mb  2.5lg 4.6916 10 10 2 2.5lg ((z 1)

4
3 1)  23.32 5lg ((z 1)

4
3 1)          (921) 

 
We need the function mb(z) with parametric attenuation as well. On this occasion we have to 
consider the factor e–r/R=10–r/R·lge from the propagation-function (305). It applies: 
 

mb  2.5lg 

˜ H 0
2

c2
6.11 1035m2

2.51 10 8
e– r

˜ R 

((z 1)
4
3 1)2

  2.5lg 
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4
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 (922) 
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4
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mb  23.32 5lg  ((z 1)

4
3 1) 0.5429 ((z 1)

4
3 1) With param. attenuation (924) 
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Figure 147 
Calculated apparent bolometric brightness for solution (890) of the HUBBLE-parameters in  
comparison with the observations of the supernova-cosmology-project (standard-candle = average)  
 
Figure 147 shows the graphs of expression (921) and (924) in comparison with the 
measurements of the supernova-cosmology-project for solution (890) of the HUBBLE-
parameter. The thin black lines show the expectation-values of the standard-model for  = 0 
with a mass-energy-density M = 0, 1 and 2. For one time, it is an empty universe (0), for the 
other time an universe with „normal“ energy-density (1) and at last an universe with double 
energy-density (2). In this connection, the standard-BB-solution for the „normal“ universe 
covers the propagation-function for a loss-free medium (921). That is also no miracle, 
because both have the same exponent 4/3 in (309a). This case however is not confirmed by 
the observations, just as little an empty universe. For  = 0 even an universe with negative 
mass-energy-density (filled with antimatter) would be necessary. For the optimal 
conformity, we already have to successfully ignore EINSTEIN’s conclusion „the introduction 
of the cosmologic constant was the greatest foolishness, which I ever have done“. Then, 
according to [45] the best match is with M = 0.28 and  = 0.72. Thereat, all along, the sum 
of both values must always be equal to one. The value  is the so-called „dark energy-
density“ which indeed could be identical to our metric wave-field (0K = absolutely dark). 
 
As I said, the whole issue sounds rather improbable indeed, especially since „coincidentally“ 
this optimal course is exactly described by our function (924) (blue graph in figure 147), and 
the whole thing only with the help of known physical objects and relations. It fits!  
 

 
XIV. The observation-data of the supernova-cosmology-project are exactly  
 described by the propagation-function (305) under consideration of the geo- 
 metrical and parametric attenuation (284). The assumption of the existence of  
 any new exotic kind of matter or unknown physical effects is not necessary. 
 
 There is neither dark matter, quintessence nor increasing expansion!! 
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The only dark matter there is in the heads, that once had to be said. But since science 
requires always new, even more unique evidence, I computed the expectation-values of the 
apparent brightness for SNae Ia, which are even farther away, than the ones, observed within 
the framework of the supernova-cosmology-project, with the help of (921) and (924). They 
are presented in figure 148. Surely, the opportunity arises in the closer or farther future, to 
observe such an object. 
 

 
Figure 148 
Calculated apparent bolometric brightness for   
solution (890) of the HUBBLE-parameter for farther SNae Ia 

 
 

The only true quintessence is, that the present model has been confirmed by the observations 
of the supernova-cosmology-project. Thus, the current value of the HUBBLE-parameter 
amounts to 71.985 kms–1Mpc–1 exactly. That corresponds to solution (890). 
 
 
 
7.5.5. The meaning of the second and third solution 

 
 
After we had tried to calculate the HUBBLE-parameter with the help of locally measurable 

universal constants in section 7.5.1. we found with (884), (890) and (892) not only one but 
even three solutions with different values. In the preceded sections, we verified expression 
(890) as the best corresponding with the observations. Assuming it as the proper value for 
H0, the question arises for the meaning of the second and third solution. Also there is 
properly speaking only one metric wave-field with only one metric wave-function and this 
has even only maximally one actual phase-angle, i.e. there is only one value Q0. 

 
Since the difference between solution (884) and (890) amounts to only 10.102%, which 

approximately corresponds to the effect of the various correction-factors of the fine-
structure-constant in the QED, one could assume, that it is about another QED-phenomenon. 
This however would disagree with the above-mentioned assumption, because the precision 
of the value H0 calculated with (890) wouldn't be guaranteed then. In the QED namely we 
never get an exact result at all. Now however, it may be possible that even the second two 
results are of a certain physical meaning, that a still unknown inherent law is assigned to the 
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difference between the three results. This in turn, would not be part of, but the solution of 
the problem. To this purpose, we want to analyze the three results more exactly. 

 
Dividing all three values by each other, we find out that the variation can be explained by 

a factor , which appears once in the zeroth, once in the first and once in the third power (see 
table 7). In that sense, yet a fourth solution would be possible then, which we however want 
to sort out as „artificial“ in this place, since we would have to multiply the root of (890) with 
the square of (884) to get it. In contrast (892) as the product of both expressions figures a 
sort of geometrical mean. The factor  e.g. can be determined, in that we form the quotient 
of (884) and (892). We obtain: 

 
p

0 e
  (925) 

 

2        (926) 

 
Since there are only quotients of quantities in (925), which vary temporally according to the 
same function, the value  is reference-frame-independent. Interestingly enough, the expres-
sion  (926) is already introduced in the QED. It describes the conditions in the hydrogen-
atom. Looking at solution (890), which has been confirmed by astronomic observations and 
with the help of the temperature of the CMBR, just by the observation of time-like photons, 
so it shows, that only quantities of the electron and the free space are contained there. For 
this reason we can assume, that expression (890) is not only the solution for time-like 
photons but also for the electron, which belongs to the group of the leptons, because the 
electrons should expand too. 
 

Considering figure 96 more exactly, so it shows that the time-like vector c  at the space-
like photons is inverted to that of the time-like photons. That means, it has another value, 
because the metric vector remains unchanged and the zero vector is equal to c constantly. 
That even leads to a different expansion-rate then. Therefore we suppose, that solution (884) 
and/or (892) are describing the HUBBLE-parameter and with it the expansion-rate for space-
like photons. 
 

In contrast to solution (890), in (884) and (892) the proton mass is contained. Therefore 
we can assume, that one of both solutions applies to free, the other one to protons bound in 
the atomic nucleus, since both interact by means of space-like photons with the metrics. 

 
As further difference, expression (884) contains PLANCK's quantity of action, expression 

(892) not. Thus, solution (884) would be significant for space-like photons and the free 
proton. Because of the absence of  (no quantum-effects), because of (926) and since it's 
about a geometric mean, I would assign solution (892) to the whole atoms, i.e. for atoms and 
for all macroscopic bodies there is an own expansion-rate. 

 
In section 7.5.1. we had learned furthermore, that all wavelengths, also that of the 

DEBROGLIE-matter-waves, follow the expansion-rate of the universe as a whole (888). It 
applies ~ Q3/2. Now however, the reference point of the time-like photons is at Q = 1/2, the 
one of the space-like photons at Q = 2/3 in contrast, at which point both points reside at the 
periphery of the universe, the observer, on the other hand, in the centre (applies to a 
whatever observer everywhere). 

 
Now, the expansion of the universe as a whole is determined by the expansion-rate 

(expansion-velocity plus propagation-velocity of the metric wave-field) at its periphery, 
since the largest values are achieved there. Interestingly enough however, it is negligibly 
greater at Q = 2/3, than at Q = 1/2, as we can see in figure 22 with somewhat good will, which 
leads to the higher expansion-rate for space-like photons. On that basis the value 3, the 
offset between (884) and (890), can be calculated relatively simply: 
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 1.  –4 10–4   (927) 

 
The difference to 3 (926) amounts to –4·10–4 only, for what we may already use the 
equality-sign in the QED. Even the value  can be derived similar to (927), whereupon the 
difference is with +5·10–3 something greater indeed: 
 

  1
2

Q2
3

Q1
2

1
2

2
3

1
2

1
2

4
3

 0.  5 10–3   (928) 

 
But then a low difference between particles and antiparticles should exist, expressing itself 

e.g. in the average diameter or the mass. In contrast to the different expansion-rate, for 
which the difference between 1/2 and 2/3 at the edge of the universe is bearing 
responsibility, with them it's about local values, which depend on the essentially higher 
value ( 1060) of the phase-angle/Q-factor Q0 at the place of the observer. That means, the 
smaller diameter and the higher mass at the reference point are being observed reduced 
about a value 1030. And then the low difference between 1/2 and 2/3 suddenly becomes 
unverifiable.     
 

Because of the expansion-rates however the values of particles and antiparticles approach 
more and more, so that they coincide to the point of time T = ∞. The central idea thereat is, 
that the bearer of the effect is the proton. In the proton, there is an unknown „information“, 
an energy-difference, which leads to the different results1. Therefore it's possible to assume, 
that the expressions containing the proton mass, do not submit the correct result (890) by no 
means. As usual in the QED, they must be multiplied with a correction-factor. 
 

Leaving out this, we definitely get a result valid for protons only. There are yet a good 
deal more subatomic particles however. If solution (890) applies for time-like photons and 
electrons, how does it look like with the other leptons then? To the leptons, all kinds of 
neutrino, the myon and the tauon belong besides the electron as well, just as all 
corresponding anti-particles. 
 

In section 5.3.1. we had determined that also the neutrinos are having their reference point 
at Q = 1/2, but not the antineutrinos with Q = 2/3. Since also the space-like photons as anti-
particles (not antiparticles!) of the time-like photons should have their reference point at 
Q = 2/3 but already have been assigned to solution (884), we could assume, that solution 
(890) applies to time-like photons and all leptons, solution (884) to space-like photons, the 
proton and all anti-leptons. 
 

Which applies to the proton, even applies to the neutron and all baryons and mesons, just 
for all hadrons, then. Solution (884) applies with it for space-like photons, all hadrons and 
all anti-leptons. How does it look like with the anti-hadrons then again? From reasons of 
symmetry, solution (890) should apply to them, which leads to the conclusion, that these 
interact, else than „normal“ hadrons, by means of time-like photons with the metrics and by 
means of space-like photons  among each other. But since they move as true antiparticles 
contrary to the normal time-direction, this is no contradiction. 
 

Because of the inverse relations, for anti-atoms and macroscopic bodies consisting of 
antimatter however a different geometric mean would arise, for which instead of (892) the 
4th potential solution would offer itself, which we still had excluded further above. This 
should not extra be presented at this point. It can be determined very simply with the help of 
x after all. For the expansion-rate itself applies, such as in the macroscopic scale the 
HUBBLE-parameter H1 (890) multiplied with the average diameter of the particle. In table 9 
are presented the corresponding values and it's validity: 

 
                                                 
1 In contrast to the electron the proton and all other hadrons consist of several quarks, so that they have a higher mass, than the quarks alone  
  (if this would be possible), because of the binding energy.. 
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SSolution r∙/r Applies to 

 [s–1] Kind of particle 

H1 (890)· 3 3.853·10–18 Space-like photons, hadrons, anti-leptons 
H1 (890)· 2 3.731·10–18 Macroscopic bodies of matter, atoms 
H1 (890)· 1 3.613·10–18 Macroscopic bodies of antimatter, anti-atoms 
H1 (890)· 0 3.499·10–18 Time-like photons, anti-hadrons, leptons 

 
Table 9 

Expansion rates of particles 
 
Now however attracts attention, that the expansion rates of the particles/antiparticles with 
the leptons are swapped with that of the hadrons. The reason is, that these interact directly 
with the metrics and not by means of space-like respectively time-like photons, like the 
hadrons. For the myons and tauons, I would not like to put the hand into the fire however. 
Also table 9 figures only one option of interpretation and should even only be regarded as 
suggestion. 
 

The value  appears in the form of  = 
–2 also as correction-factor in the QED, namely 

always then, when there is at least one proton in the proximity of an interaction. If we e.g. 
look at the interaction of a photon with an electron in the electron shell of an atom, the fine-
structure-constant is applied. Let’s have a look, what happens, when we multiply the fine-
structure-constant with : 
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2       without correction factor 2
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q
e

4
  with correction factor   (929) 

 
Inserting (925) in (929) shows, that the charges cancel out. Only the ratio between electron- 
and proton-mass remains, multiplied with a geometrical factor 4 : 
 

 
–3e em m1 1    (930) 

 
This ratio of two masses is evident for energetic contemplations, with which the impulse 
p = mv is used. Expression (930) is also the starting point for contemplations about the 
electromagnetic interaction between a photon and the electron in a hydrogen-atom. With it, 
the term –1 is applied to the hydrogen-atom 1H only and represents, taken for itself, the 
correction between a raw, thought system of a proton and an electron and the real conditions 
in the hydrogen-atom. In all other cases, with heavier nucleuses and higher energy-
conditions, even more correction-terms come into addition (the exact relativistic corrections, 
the correction of the kinetic energy and the spin-track-interaction).  
 
 
 
 
7.6. Conclusion 
 

I would like to finish this work at this point, because I have filled the task put by myself at 
the start, to determine the exact value of the HUBBLE-parameter On the side, a new model of 
the universe arose never being in contradiction to already saved knowledge, which dispenses 
with such fuss as e.g. dark matter and new, yet unknown and not saved effects. The model 
exactly could be verified on the basis of 8 of 10 tests, at which point 5 of them are filled 
automatically indeed, because of the large similarity with EINSTEIN's model. The current 
value of the HUBBLE-  
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H0 =   kms–1Mpc–1 
 

 
 

When analyzing the temperature of the cosmologic background-radiation there was found a 
small downward difference of 0.2431K to the observed value in comparison with the 
calculated one. With high probability, this is to be attributed to other interactions, so that we 
can regard even this point as filled with a small discrepancy. This problem will be examined 
more detailed in [46]. 
 
The technical determination of the value of the specific conductivity of subspace is still open 
(superconductivity) which probably will remain unfeasible even in the remote future because 
of it's extremely high value. At least, this value can be determined exactly on the basis of 
other relations: 
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e6c
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2G2h2me
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 Sm 1         (932) 

 
This is the only one essentially new quality of the subspace. In table 10 the most important 
fundamental values are abstracted once again, being referred to the newly determined value 
of the HUBBLE-parameter, because this affects the most other values. In order to guarantee 
an accurate verification, a »Mathematica«-program, in which these quantities and their 
relations to one another are specified, finds in the appendix as well. Then, if we modify just 
one single value, which occurs several times, it can easily happen, that one of them will be 
forgotten. Then, we get strange, anomalous results and the search will start. 
 
I hope, that some new thoughts were contained in the work on hand. Thus I ask for an active 
discussion. Furthermore, I ask for understanding that I didn't extend the contemplation to all 
domains, e.g. black holes, formation of the stars/planets etc. as usual. In the case of doubt, I 
the classic doctrine. This work also contains sections, with which you will disagree. 
Nevertheless, I ask the reader to don't discard everything because of that. 

 
 

THE END 
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8. Affidavit 
 
 
Herewith, I declare that I created this work off my own bat having used no other aids as stated. 
With section 3.1.2. it's about an original-citation [1].  Printing, duplication and publication of this 
part are allowed with the agreement of the publishing house only. The imprint of figure 74 takes 
place with friendly authorization of the author [29]. The chart doesn't equals to the original-
condition, it has been supplemented. 
 
With publications of this work in German language, a transcription according to the rules of the 
new orthography (1999 and later) is not allowed. 
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Constant 

 
 

Symbol C 

 
 

Value 
Unit of 

measurement 

 Speed of light c  2.99792458·108 m s–1 
 Induction-constant o • 4 ·10–7 Vs A–1m–1 
 Influence-constant o • 8.854187817·10–12 As V–1m–1 
 Conductivity-constant o • 1.30605·1093 A V–1m–1 
 Boltzmann-constant k • 1.380658·10–23 J K–1 
 Planck's init. quant. of action 1 • 8.38572·1026 J s 
 Planck's quantity of action   1.05457266·10–34 J s 
 Gravitational-constant (init.) G1  1.32722·10–193 m3kg–1s–2 
 Gravitational-constant (Nwt.) G  6.6732·10–11 m3kg–1s–2 
 Poynting-vector metrics (init.) S1  4.417142·10426 W m–2 
 Poynting-vector metrics So  1.38938·10122 W m–2 
 Fine-structure-constant   7.2973530·10–3 1 
 Q-factor/phase metrics (g00

–1) Qo  7.95178·1060 1 
 Planck's mass mo  2.17661·10–8 kg 
 Planck's energy Wo  1.95624·109 J 
 Planck's length ro  1.61612·10–35 m 
 Planck's time-unit to  2.6954·10–44 s 
 Circular frequency of metrics o  1.85501·1043 s–1 
 Wave impedance vacuum Zo  376.73  ≈  2 · 60  
 Cut-off frequency vacuum 1  1.47506·10104 s–1 
 Smallest time-unit vacuum t1  3.38969·10–105 s 
 Smallest length vacuum r1  2.0324·10–96 m 
 Hubble parameter Ho  71.9854 km s–1M pc–1 
 Hubble parameter H0 ( –1)  2.33283·10–18 s–1 
 Total age 2T  1.35839·1010 a 
 Local age T  6.79193·109 a 
 Local age T (t–1)  2.14332·1017 s 
 Local world-radius R/2  2.08234 Gpc 
 Local world-radius R (r–1)  6.42552·1026 m 

 
Table 10:   Actual values of the fundamental constants for solution (890)
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Definitions of Fundamental Constants depending on Q0  
 

For usage with Mathematica 
 
 
 
 
 
(*Units*) 
 
km=1000; 
Mpc=3.08572*10^19 km; 
minute=60; 
hour=60 minute; 
day=24*hour; 
year=365.24219879*day; 
 
 
 
 
(*Basic expressions*) 
 
ep0=8.854187817*10^-12;                    (*Permittivity of vacuum*) 
my0=4 Pi 10^-7;             (*Permeability of vacuum*) 
k=1.380658*10^-23;  (*Boltzmann constant*) 
G=6.6732*10^-11;                               (*Gravity constant Bruker*) 
hg=1.05457266*10^-34; (*Planck constant slashed*) 
qe=1.60217733*10^-19;   (*Elementary charge*) 
me=9.1093897*10^-31; (*Electron rest mass*) 
mp=1.6726231*10^-27; (*Proton rest mass*) 
mn=1.6749286*10^-27; (*Neutron rest mass*) 
ma=1.66057*10^-27; (*Atomic mass unit*) 
 
 
 
 
(*Composed expressions*) 
 
c=1/Sqrt[my0 ep0];                             (*Speed of light*) 
Z0=Sqrt[my0/ep0];     (*Field wave impedance of vacuum*) 
qn=Sqrt[hg/Z0];                                (*Planck charge*) 
Q884=3/2*(qe^2/ep0/G/me/mp)^(3/2);             (*Phase angle/Q-factor Solution 884*) 
Q892=3/8/Pi*qe^4/(ep0^2*me^2*mp*Sqrt[G^3*hg*c]);    (*Phase angle/Q-factor Solution 892*) 
Q890=3/2*(1/4/Pi*qe^2*Z0/me*Sqrt[c/G/hg])^3;   (*Phase angle/Q-factor Solution 890*) 
Q0=Q890; (*Phase angle/Q-factor MAIN SWITCH*) 
Om1=ka0/ep0;  (*Cutoff frequency of subspace*) 
Om0=Sqrt[c^5/G/hg];                            (*Planck's frequency*) 
H0=Om0/Q0;                                    (*Hubble parameter local*) 
H1=3/2*H0;                                     (*Hubble parameter whole universe*) 
r1=1/(ka0 Z0);                                 (*Planck's length subspace*) 
r0=Q0 r1;                                      (*Planck's length vacuum*) 
R=Q0^2 r1; (*World radius*) 
t1=1/(2 Om1);                                  (*Planck time subspace*) 
t0=1/(2 Om0); (*Planck time vacuum*) 
T=1/(2 H0);                                    (*World time constant*) 
TT=2T/year; (*The Age*) 
ka0=c^3/(my0 G hg H0); (*Conductivity of vacuum*) 
G1=G/Q0^3; (*Gravity constant initial*) 
h=hg*2*Pi; (*Planck constant unslashed*) 
h1=hg*Q0;                                      (*Planck constant initial slashed*) 
alpha=1/(4 Pi)*qe^2/qn^2; (*Fine structure constant*) 
m0=Sqrt[hg c/G]; (*Planck mass*) 
W0=Sqrt[hg c^5/G]; (*Planck energy*) 
S1=h1 Om1^2/r1^2; (*Poynting vector metric initial*) 
S0=S1/Q0^5; (*Poynting vector metric actual*) 
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12. Abbreviations 
 
* 
. Labelling of the first temporal derivative .. Labelling of the second temporal derivative 
^ Labelling of a peak value  
* Labelling of a conjugate complex value 
~ Labelling of a reference-frame-dependent quantity (constant) 
 without labelling it's about a variable 

 
A 
a Acceleration 
a0 Bohr's hydrogen-radius 
ai Factor i 
A Factor, amplitude 
A( ) Amplitude response 

 Angle, attenuation rate 
, ,  Angle in the metric triangle 
 

B 
B Induction 
B0 Induction in the MLE 
B Factor 
B( ) Phase response 

 Angle, phase rate, relativistic dilatation-factor (1–v2 /c2 )–1/2 
0 Phase rate of the metric wave-field 
 

C 
c Speed of light (constant in reference to the subspace) 
c, c Complex wave-propagation-velocity 
cM Propagation-velocity of the metric wave-field 
C Capacity 
C0 Capacity of the ball-capacitor in the MLE 
CMBR Cosmic microwave background-radiation 

 
D 
D Electric charge-density (influence) 
 Phase-angle of the MLE, angle 

 Kronecker-symbol 
∂ Partial differential-operator 
∂b Partial differential-operator ∂/∂b 

 
E 
E, E Electric field-strength 
E0 Electric field-strength in the MLE 
e Electron charge, Euler constant (2.71828...) 
er Unit-vector on r 
 Angle 
0 Dielectric constant of the subspace (vacuum) 
ν Coefficient of absorption of the gray body 
 Factor 
ab Minkowskian metrics (math.) 

k
i
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F 
f Function 
F Function 
F, F Force 
Fg, Fg Gravitational-force 
Fm, Fm Lorentz-force 
Fz, Fz Centrifugal force 
0F1 Hypergeometric function 

 2 0t– r, electric potential 
 Angle of intersection of the metr. speed-vector with the x-axis 
0 Magnetic flux in the MLE (momentary value) 
i Initial value of 0 
 NEWTON's gravitational-potential 
( ) Phase-shift during wave-propagation 
 

G 
g Acceleration of gravity 
gik, gik Metrics (mathematical object) 
G Gravitational-constant (not fixed) 
G0 Specific conductance per meter 
G1 Gravitational-constant with Q0 =1 

, n,  angle in the metric triangle 
 Complex propagation rate 
 Gamma-function 

 Metric connection 
 

H 
hik, hik Fourfold-vectors 
H, H0, H1 HUBBLE-parameter 

 HANKEL function of n'th order Jn(x)+jYn(x) 
 Conj. complex Hankel function of n'th order Jn(x)–jYn(x) 

H, H Magnetic field-strength 
H0 Magnetic field-strength in the MLE 

 PLANCK's quantity of action (not fixed) 
1 PLANCK's quantity of action with Q0 =1 
i PLANCK's quantity of action initial-value 
 

I 
i Electric current (momentary value) 
i0 Electric current in the MLE (momentary value) 
i1, i2, i3 Partial currents in the MLE-model 
I Electric current 
Im(x) Imaginary-part 

 
J 
j Imaginary unit  
J0 Mass-moment of inertia of the MLE 
J0(x) BESSEL function of zeroth order 
Jn(x) BESSEL function of n'th order 

 
K 
k BOLTZMANN-constant 

bc
a

H
 n
(1) (x)

H
 n
(2) (x)

1
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 Coupling-constant of the URT 
0 Specific conductivity of the subspace 
0R Specific conductivity of the metrics (vacuum) 

 
L 
l Length 
L Inductivity 
L Moment of momentum 
L0 Inductivity of the MLE 
L(x) LAGRANGE's function 

  (x) LAPLACE transform 
lg log10 
ln loge 
lx LAMBERT's W-function lx(xex) 1 (ProductLog) 

 Wavelength 
,  Wave count vector 
 

M 
m Factor, mass 
m* SR-rest-mass 
mH HUBBLE-Mass Hħ/c2 = m0Q0

−1 

m0 PLANCK-mass, UR-rest-mass 
M1 MACH‘s counter mass m0Q0 
me Electron mass 
mp Proton mass 
M Mass 
Mn(x) Modulus of the HANKEL-function  
MLE MINKOWSKIan line-element (physical object) 

 Induction-constant generally ( 0 r) 
0 Induction-constant of the subspace (vacuum) 
 

N 
n Quantity, factor 

 Neutrino, frequency 
 

O 
00 (x) Series, tending against zero 
02 (x) Series, tending against zero 

 Relative frequency /(2 1) resp. /(2 0) 
 

P 
p Laplace-operator 
P Power, point 
P0 Power dissipation of the MLE 
Pv Power dissipation generally 
π Ratio of circumference and diameter at the circle (3.1415....) 

 Magnetic potential 
 Product MG 
( ) Share of the attenuation-factor , caused by the amplitude response 
 

Q 
q Charge (momentary value) 
q0 Charge of the ball-capacitor in the MLE 

2 2
n nJ (x) Y (x)
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Q0 Q-factor and phase-angle (2 0t) in the MLE 
QED Quantum-electrodynamics 
QM Quadratic median 
 
R 
r Radius absolute 
r´ Radius after substitution 

r Radius relative  

r0 Planck's fundamental length (radius) 
r1 Planck's fundamental length for Q0 =1 (subspace-constant) 
rC Radius of the ball-capacitor in the MLE 
re Electron radius according to the classic opinion 
R World-radius 2cT 
R Scalary curvature 
R0 Shunt-resistor in the MLE-model 
R0R Series-resistor in the MLE-model 
Rs Schwarzschild-radius 
Rik, Rik RICCI-tensor 
Raa

bcd, Rabcd RIEMANN's curvature tensor 
Re(x) Real part 

 Density 
0(x) Function (209) 
 

S 
s Way 
S Entropy, electr. current-density 
S, Sb Entropy 
S, Sk Power-density (Poynting-vector) 

(t) Dirac-impulse 
i Eigenvalues 
 

T 
t Time absolute (in the frame of reference) 

t Time relative  

t1 Period of the oscillation of the MLE with Q0 =1 
T Local age, total-age = 2T 
TPh Phase delay 
TGr Group delay 
T  Period of the function sin  
T, Tb Temperature 
, 0, 1 Time-constants 
 Trigonometric function (209) 
 Angle in the coordinate-system 
 

U 
u Voltage (momentary value) 
u0 Voltage in the MLE-model (momentary value) 
U Voltage 
U Gravitational-potential (new definition) 

 

2r
˜ R 

2
3

1
t
˜ T 

1
2



 
 

300 

V 
v Velocity 
vM Velocity in reference to the metrics 
vPh Phase velocity 
vGr Group velocity 
V Detuning (oscillatory circuit), magneto motive force 

 
W 
w Energy-density 
W Energy 
W0 Energy of the MLE 

 Angular frequency universal 
0 Angular frequency of the MLE 
1 Angular frequency of the MLE with Q0 =1 
D De-Broglie-angular frequency of matter 
e Angular frequency of emission of CMBR 
s Angular frequency of immission of CMBR 
k Angular frequency CMBR nowadays 
T Thermal maximum CMBR 
 

X 
x Way 

 Factor at WIEN’s replacement law 
 Rotatory-angle with the LORENTZ-transformation 
 Magnetic charge-density (permanent magnet) 
(r,t) Red-shift with wave-propagation 
 

Y 
y Way 
Y0 Bessel function of zeroth order (von NEUMANN's function) 
Yn Bessel function of n'th order (von NEUMANN's function) 

 
Z 
z Way, factor, red-shift 
Z Wave impedance 
Z0 Wave impedance of the vacuum (≈2π·60 ) 
ZF Field-wave impedance complex   
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1. Fundamentals 
 
 
This article is based on a model I published in [1], the idea stems from Prof. Cornelius 

LANCZOS. It defines the expansion of the universe as a consequence of the existence of a 
metric wave-field. The time-function is based on the Hankel function, which consists of the 
sum of two Bessel functions (J0 and Y0) in turn. The particular qualities of the Bessel function 
lead to an increase of the wavelength, which is defined by the spacing between two zero-
transits. Thus, the model leads to a quantization of the universe into discrete line-elements 
with particular physical characteristics. An individual line-element can be described by the 
model of a loss-affected oscillatory circuit with shunt-resistor. A special quality of the model 
consists in the fact, that the Q-factor of this oscillatory circuit is equal to the phase-angle 2 0t 
of the above-mentioned Bessel function. It applies Q0 = 2 0t. The value 0 corresponds to the 
PLANCK's frequency on this occasion. 

 
A special solution of the MAXWELL equations was found for the Hankel function with 

overlaid interference function, which describes the wave-propagation in the vacuum and co-
includes the expansion. This special solution owns an inherent propagation-velocity in 
reference to the empty space (subspace) which is almost zero to the current point of time. 
Main-idea of the model is, that this propagation-velocity adds up geometrically to the 
propagation-velocity of an overlaid wave, at which point the total-velocity always amounts to 
exactly c in reference to the subspace. Thus, the cosmologic red-shift exactly can be 
described. 

 
One conclusion from the model is the existence of an upper cut-off frequency of the 

vacuum, which could not be detected until now, because its value is about magnitudes greater 
than the technically feasible. Another conclusion of the model is the supposition that each 
photon is connected really or/and virtually with an origin at Q0 = 1/2 That is the frequency, at 
which the excessive energy after the shape of the metric wave-function has been coupled into 
the very same one, as an overlaid wave, where it can be observed until now as cosmic 
background-radiation. Furthermore could be determined, that the bandwidth in the lower 
frequency range exactly matches the one of an oscillatory circuit with the Q-factor 1/2, which 
equals the conditions to the point of time of the input coupling. Hence the intention of this 
article is, to determine, whether the PLANCK's graph can be approximated by application of 
the frequency response given  by the model, upon  the spectrum of an oscillatory circuit with 
the Q-factor ½, furthermore to compare the calculated radiation-temperature with the 
measured one. 

 
Since the cosmic background-radiation exactly follows the PLANCK's radiation-rule more or 

less, it should, because of the indistinguishability of individual photons, apply to a whatever 
black emitter. Therefrom arises the guess, that the existence of an upper cut-off frequency of 
the vacuum could be the cause for the decrease in the upper frequency range. In [1] already a 
simple attempt of an approximation has been taken up, at which point several values of the 
time-dependent frequency response A( )·cosφ have been multiplied with the source-
function, which led to a quite good match, as measured by the simple procedure.  

 
Another aim of this article is, to improve the proceeding any farther in order to make more 

precise statements. Attention should be paid to with the model that with some many 
exceptions (c 0, 0, 0, k) most of the fundamental physical constants are time- and 
reference-frame-dependent (~). And there is a conductivity of the subspace 0 different from 
zero. If you know these 5 values, you are able to calculate all other ones. The model is based 
on the PLANCK’s units (e.g. ω0) which can be obtained from the locally measured values. That 
points into one direction to the values of the universe as a whole (e.g. H0), into the opposite 
direction to the (constant) values of the so called subspace (e.g. r1 ). That is the medium the 
metric wave-field is propagating in. The proportionality factor is the phase angle of the 
temporal function Q0 = 2 0t. 
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2. The WIEN displacement law and the source-function
 
During the examination of the WIEN displacement law meets the eye, that the displacement 

happens exactly at the lower wing pass of the PLANCK's radiation-function, which coincides 
with the wing pass of an oscillatory circuit with the Q-factor 1/2 in this section. Quite often in 
publications the curve is shown in another manner. I prefer the duplicate logarithmic 
presentation, then the curve turns into a straight line. 

 
Considering the WIEN displacement law (902)1 more exactly, the factor x̃ = 2.821439372 

attracts attention particularly. With an oscillatory circuit of the Q-factor 1/2 rather the factor 
2  would be applicable for this, at which point the 2 stems from the source-frequency 2 1. 
The expression  arises from the rotation of the coordinate-system about π/4.  

 
Now the validity of the WIEN displacement law in the time short after BB does not have 

been examined yet and neither PLANCK's radiation-rule nor the WIEN displacement law 
contain any information about the way, temperature varies, when it varies. In [1] I found the 
following relations for the calculation of temperature:  
 

5 5
1 1 1 1k 2 2

2.821439372 Exactly

2 2 Approximation
   Q 0.055693 Q

k 6k k
2.82

2 2

5 5
1 1 1 1 21 1 2

Q 0 055693 Q1 1 2 1 1
5

1 11 1 2kk   Q
k 6k

QQQ 2Q 2k
k x =T

x x  
 

 ([1] 405) 
5 5

1 1 1 1k 2 2 2 0.94280904163
1   Q Q 2

k 3 6k 18k

5 5
1 1 1 1 21 1Q Q1 1 2 21 1

5
1 11 1Q 2k 1k 1k   

k 3
k

k =T
x  

 

   

5 1
2 2– –1 1 0

0 0Q   Q
18k 18k

51 1 Q 2–Q 2
1
2–0

0Q0
kT    0

1
0

 ([1] 902) 

 
Expression εν is the vacuum coefficient of absorption. The calculation of Tk according to [1] 
turns out a value of 2.79146K, which is 0.06598K higher than the measured temperature of  
the CMBR (2.7250K).  
 

During an investigation in the Internet, I found a detailed deduction of the WIEN displace-
ment law [2]. The value of the proportionality-factor can be obtained by the identification of 
the maximum of PLANCK's radiation-rule as follows. We start from (382): 
 

dSk    1
4 2  

3

c2  

1

ekT 1
 es  d    PLANCK’s radiation rule ([1] 382) 

 

dSk    1
4 2

k3T 3

2c2  

kT

3 1

ekT 1
 es  d    x

kT
   d kT dx   (1) 

 

dSk    1
4 2

k4T 4

3c2
x3

ex 1
 es  dx     d

dx
 

x3

ex 1
  0   (2) 

 

3  

x2

ex 1
x3ex

(ex 1)2   3x2(ex 1) x3ex

(ex 1)2   0      (3) 

 
3x2(ex 1) x3ex   0     x3ex

  3x2(ex 1)   (4) 
 

ex(x 3)   3      y x 3 x 3 y  (5) 

                                                 
1 Three-digit numerations always refer to [1] 
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yey 3  yeye3  3      yey  3e 3    (6) 
 

x  3 lx( 3e 3)   2.821439372     x)xe(lx x     (7) 
 
lx is LAMBERT's W-function (ProductLog [#]). Finally, after insertion into the middle expres-
sion of (1) WIEN’s displacement law turns out: 
 

max  =  2.821439372 kT       WIEN’s displacement law    (8) 
 
On success in doing the same even for the source-function with Q = ½, obtaining the same 
result, we would be a step forward in answer to the question: Is the course of the Planck's 
radiation-function the result of the existence of an upper cut-off frequency of the vacuum? 
First of all however, we have to bring the output-function into a form, suitable for further 
processing. We start with (380) with the substitution: 
 
 

Pv  

Ps

1 v2Q2 v   

 
s

s

 s  2 1   

 
s

  

1
2

 

1

 (9) 

 
The expression stems from electrotechnics describing the power dissipation Pv of an 
oscillatory circuit with the Q-factor Q and the frequency  (see [3]), v is the detuning. The Q-
factor is known and amounts to Q = 1/2 at s = 2 1. The right-hand expression results directly 
from the sampling-theorem. The cut-off frequency of the subspace 1 is the value 0 at Q =1. 
After substitution, we get the following expressions: 
 

v   
1 v2  2 2 2           v2Q2  1

4
2 1

4
2 1

2
 (10) 

 

Pv  

Ps
1
4

2 1
4

2 1
2

4 2

4 2     4Ps

2

4 2 2 1
    4Ps 1 2

2

  (11) 

 
You can find that expression more often in [1], among other things even with the group delay 
TGr however for a frequency 1. For a frequency 2 1 applies for TGr and the energy Wv: 
 

TGr = dB( )
d

  1
1

 

1 2

2

  Wv  1
6

PsTGr   2
3

Ps

1

 

1 2

2

  (12) 

 
The factor ⁄  comes from the splitting of energy onto 4 line-elements, as well as from the 
multiplication with the factor ⁄  because of refraction during the in-coupling into the metric 
transport lattice. It oftenly occurs in thermodynamic relations, which doesn't astonish. Thus, 
total-energy of the CMBR during input coupling is equal to the product of power dissipation 
and group delay, that is the average time, the wave stays within the MLE, but only for what 
it’s worth. With the help of (11) we obtain: 
 

Pv  4b  Ps 1 2

2

    Pv  512b  1 1
2

 

1 2

2

  (13) 

 
b is a factor, we want to determine later on. Let's equate it to one at first. We determined the 
value Ps with the help of (394) using the values of the point of time Q = 1/2. Interestingly 
enough, the HUBBLE-parameter H0 at the time t0.5 is greater than 1 and 0. For an individual 
line-element applies: 
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0.5  1

Q0.5

  1
1
2

  2 1 H0.5  1

Q0.5
2   1

1
4

  4 1 (14)

 

Ps  
ˆ ˆ 

i

4 t0.5
2 Q0.5

4   
ˆ ˆ 

i

2
25

4t0.5
2   32 1H0.5

2   128 1 1
2          

ˆ ˆ 
i

2 1
0.5

2
    (15) 

 
Expression (13) is very well-suited for the description of the conditions at the signal-source. 
Here, the power makes more sense than the POYNTING-vector Sk. But for a comparison with 
(382) we just need an expression for Sk, quasi a sort of PLANCK's radiation-rule for technical 
signals with the bandwidth 2 1/Q0.5 = 4 1. Then, this would look like this approximately: 
 

dSk   4bA  

1 2

2

 es  d         (16) 

 
We determine the factor A by a comparison of coefficients (3). We assume, the WIEN 
displacement law (8) would apply and substitute as follows: 
 

A  1
4 2

k4T4
3c2      c 1Q

1r1Q   (17) 

 
We put in 2  1 as initial-frequency into the expression k4T4 That’s advantageous, as we 
will already see. This frequency is not a metric indeed ( x~Q–1), but an overlaid frequency 
( ~Q–3/2). During red-shift of the source-signal, likewise not the factor 2.821439372 but the 
factor 2  becomes effective. Thus applies: 
 

k4T4   (2 2)4

(2 2)4 1
4Q 4

1
4Q 6   1

4
1
4Q 10  Q 10 Q 8

Q2     (18) 

 

A    1
4 2

1
4

1
4Q 8

1
3Q 3

1
2Q 2r1

2Q4   1
4 2

4
0
4

3
0
2r1

2Q4   1 0
2

4 R2        (19) 

 

4A  4 0
2

4 r0
2Q2   4 0

2

4 R2     R  for Q»1    (20) 

 

dSk  
  4b 0

2

4 R2  

1 2

2

 es  d    R  for Q»1   (21) 

 
Indeed, that submits only the expression without consideration of red-shift. We determine the 
actual values to the point of time of input coupling, in that we apply the values for Q = 1/2 in 
turn. It applies: 
 

A    1
4 2

1
4

1
4Q 8

1
3Q 3

1
2Q 2r1

2Q4   28 3 2 4

4 2
1
4

1
4

1

1
3

1
2r1

2   128 1
2

4 r1
2     (22)         

 

4A  512 1 1
2

4 r1
2          dSk  512b 1 1

2

4 r1
2 Q 7

 

1 2

2

 es  d   (23) 

 
b will be determined later on. It shows, the POYNTING-vector is equal to the quotient of a 
power Pk resp. Ps and the surface of a sphere with the radius R (world-radius), exactly as per 
definition. Omitting the surface, we would get the transmitting-power Pv directly. In the 
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above-mentioned expressions the parametric attenuation of 1Np/R, which occurs during 
propagation in space, is unaccounted for. This must be considered separately if necessary. 
 

Now we have framed the essential requirements and can dare the next step, the proof of the 
validity of the WIEN displacement law in strong gravitational-fields. The basic-idea was just, 
that the Planck's radiation-rule (382) should emerge as the result of the application of the 
metrics' cut-off frequency (302) to the function of power dissipation Pv of an oscillatory 
circuit with the Q-factor Q = 1/2 (13) We proceed on the lines of (2), in that we equate the first 
derivative of the bracketed expression (23) to zero. A substitution like in (1) is not necessary, 
because the expression is already correct. It applies: 
 

d
d 1 2

2

 2
(1 2)2

4 3

(1 2)3   2  (1 2)
(1 2)3   0   (24) 

 
2  (1 2)  0      1 0    Minimum            2,3 1   Maximum  (25) 

 
The first solution is trivial, the second and third is identical, if we tolerate negative 
frequencies (incoming and outgoing vector). Now, we must only find a substitution for , 
with which (382) and (23) come to congruence in the lower range. This would be the 
displacement law for the source-signal then (22). Since the ascend of both functions has the 
same size in the lower range, there is theoretically an infinite number of superpositions, 
whereat only one of them is useful. Therefore, as another criterion, we introduce, that both 
maxima should be settled at the same frequency. The displacement law for the source-signal 
would be then as follows: 
 

max  =  a kT         Displacement law source-signal   (26) 
 
at which point we still need to determine the factor a. As turns out, we still have to multiply 
even the output-function itself, with a certain factor b, in order to achieve a congruence. The 
4 we had already pulled out. We apply the value 2 and 2.821439372 for a one after the 
other and determine b numerically with the help of the relation and the function FindRoot[#] 
using the substitution 2x = ay: 
 

a y
2

3

ea y
2 1

4b  

y
2

1 (y
2)2

2

  0   y 10–5 b 2                       for  a 2 2              
b 2.009918917    for  a 2.821439372

 (27) 

 
The maxima overlap accurately in both cases. The lower value a is equal to the factor in 
(903). Thus it seems, that with references, except for those to the origin of each wave with 
2 1, multiplied with , which is caused by the rotation of the coordinate-system about /4, 
rather the approximative solutions with the factor 2  apply. With lower frequencies, the 
factor 2.821439372 of the WIEN displacement law applies then again.     
 
But to the exact proof of the validity of the WIEN displacement law in the presence of strong 
gravitational-fields this ansatz is not enough. We must also show that the maximum of the 
PLANCK's radiation-function behaves exactly according to the WIEN displacement law, that 
means the approximation and the target-function must come accurately to the congruence. 
Since the difference between a factor 2  and 2.821439372 amounts to 0.5% after all, we 
will execute the examination with both values. Only the relations for b = 2  are depicted. 
Now, we can set about to write down the individual relations: 
 

max  =  2 2 kT        Displacement law source-signal   (28) 
 

1
2

 

1

  
1

2 2 kTk
  

x
a

  
y
2

    y   
 

1

       b = 2  (29) 

 
Thus, we have found our source-function. In y it reads as follows: 
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dSk  
  16 0

2

4 R2  

y
2

1 (y
2)2

2

 es  dy     R  for Q»1     (30) 

 
But we aren't interested in the absolute value but in the relative level only: 
 

dS1 
 8  

y
2

1 (y
2)2

2

dy         (31) 

 
We want to mark the approximation with dS2. For the target-function dS3 we obtain: 
 

dS3  
 (2.821439 y

2)3

e2.821439y
2 1

 dy        (32) 

 
In figure 1 are presented the course of the source-function and the PLANCK's graph. 
 

 
 
 

Figure 1 
Planck's radiation-rule and source-function 

in the superposition (logarithmic, relative level) 

3. Solution and evaluation 
 
Of course, there is no shift-information y(Q) contained in these relations. Since the 
considered system is a minimum phase system, we now have to multiply the source-function 
dS1 with the product A( )·cosφ (frequency response). A( ) is the amplitude response, the 
expression cosφ is for the active-share (real-part), because only this is being transferred. The 
result is our approximation dS2. The frequency response is merely applied to a single line-
element, which is traversed by the signal in the time r0/c Thereat r0 is equal to the PLANCK's 
length and identical to the wavelength of the above-mentioned metric wave-function. That 
means, we have to execute the multiplication with the frequency response as often as we like, 
unless the result (almost) no longer changes. 
 
But thereat as well the frequency of the source-function as the cut-off frequency (frequency 
response) decrease continuously. Therefore it's opportune, to take up the displacement 
(frequency and amplitude) later on with the result dS2 (approximation), instead of shifting on 
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and on the location of the source-function. For the proof of our hypothesis indeed this last 
shift is not of interest, so that we won't take up it in this place. 
 
There is another problem with the amplitude response A( ) and with the phase-angle φ. Since 
the cut-off frequency 0 = ƒ(Q, 1) and the frequency  are varying according to different 
functions, it causes difficulties to formulate a practicable algorithm. Thus we use the fact that 
there is no difference, whether we reduce the frequency of the input-function with constant 
cut-off frequency or if we shift upward the cut-off frequency with constant input-frequency. 
We choose this second way incl. the displacement of the approximation at the end of 
calculation. This all the more, since we would be concerned with two time-dependent 
quantities (input-frequency and cut-off frequency) otherwise. To the approximation applies: 
 

2y
2

2 y 2
2

dS 8
1 ( )

      A(y) cos (φ(y)) đy dy           (33) 

 
Expression (33) looks a little bit strange maybe. It’s about a so called product integral, i.e. 
you have to multiply instead of summate. Then, the letter đ isn’t the differential-, but the… 
let’s call it divisional-operator. I don’t want to amplify that, because we anyway have to 
convert expression (33) to continue. We use Q0 = 7.9518·1060 as the current value of the Q-
factor and the phase-angle of the metric wave-function1. It determines the upper limit of the 
multiplication resp. summation. Expression (33) possibly appears somewhat strange to the 
reader. Fortunately the frequency response can be depicted as e-function, so that the product 
changes into a sum. We simply have to integrate the exponent quite normally then. We obtain 
the frequency response inclusive phase-correction with the help of the complex transfer-
function (150) to: 
 

)(e  cos)(A        Frequency response of a line-element (34) 
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2
2

1
arctancosln

1
1

2
1)(      ([1] 302) 

 
As next, we substitute  by y with the help of (29): 
 

( )  

1
2

ln  1 y
2

1
2 (y

2
1)2

1 (y
2

1)2 ln cos arctan y
2

1 y
2

1

1 (y
2

1)2
   (35) 

 
The value  in the numerator of y figures the respective frequency of the cosmic background-
radiation, for which we just want to determine the amplitude. It is identical to the  in 
PLANCK's  radiation-rule. Thereat it's  about an overlaid frequency, which is proportional to  
Q–3/2 in the approximation. Instead of the value 1 in the denominator actually the PLANCK's 
frequency 0 should be written with the frequency response. That is also the cut-off fre-
quency for the transfer from one line-element to another. But with Q = 1 the value 0  is right 
equal to 1, at which point 0 varies with the time; 1  on the other hand is strictly defined by 
quantities of subspace having an invariable value therefore. It applies 0 = 1/Q. The fre-
quency 0 is exactly proportional to Q–1, which means that even y depends on time, being 
proportional to Q–1/2. 
 
Now we however want to freeze the value , at least up to the end of the calculation, which 
has the consequence, that we must divide y by a supplementary function , which is 
proportional to Q1/2. It applies  = cQ1/2 and 

 

( )  

1
2

ln  1 y
2

1
2 y

2
1

2

1 y
2

1
2 ln cos arctan y

2
1 y

2
1

1 y
2

1
2

   (36) 

                                                 
1 The equality of the Q-factor Q0 and the phase angle 2 0t is a special property of this function 

Q0
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The factor c arises from the initial conditions at Q = 1/2 (resonance-frequency 2 1, cut-off fre-
quency 1) to c = 4: 
 

y   
 

0

 ~ 2– 3
2

2
1
2

  1
4

         4 Q     Approximation  (37) 

 
Thus, together with the 2 of y/2, we acquire exactly the same factor 8 as in the source-
function (31). Then, the approximation dS  calculates as follows: 
 

dy
1

8  )y(dS

dQ

Q

1
1

2
yarctancosln

1
1

2
y1ln 

2
1 2

2
2
y

2
y

2

    

0

21

21
2
y

1
2
y

21
2
y

21
2
y2

 e)(   (38) 

 
For the determination of the integral, a value of 103 as upper limit suffices indeed. Over and 
above this, it changes very little. Therefore, I worked with an upper limit of 3·103 in the 
following representations. The integral only can be determined numerically, namely with the 
help of the function NIntegrate[ƒ(Q), Q, 1/2, 3 103]. The quotient of y/2 and  expression 
(37) however describes the dependency y(Q) in the approximation only. There is an exact 
solution as well. According to [1] (209), (299) and (509) applies: 
 

1~
1

)Q~(
(Q)

Q
1

b
a

4

4

 

 

R
R          with  

2
1Q~ =            and   (39) 

 
Q

0 0
1

dQQr3 (Q) 2
1

 
 R         with  4 2222

0 )()( AB2BA1   (40) 

 

A J0(Q)J2(Q) Y0(Q)Y2(Q)
J0

2(Q) Y0
2(Q)

         B J2(Q)Y0(Q) J0(Q)Y2(Q)
J0

2(Q) Y0
2(Q)

  (41) 

 
The factor b arises from the demand, that the exact function  and its approximation should 
be of the same size with larger values of Q. The factor a we will determine later on in turn. 
The functions in (41) are Bessel functions. Problematic in (40) and (45) is the integral, which 
can be determined even only by numerical methods. In order to avoid the numerical calcula-
tion of an integral within the numerical calculation of another integral, it's opportune, to re-
place the integrand by an interpolation-function (BRQ1), and that inclusive the factor B. The 
value r  cancels itself because of (39). We choose sampling points with logarithmic spacing: 
 

brq = {{0, 0}};   
For[x = −8; i = 0, x < 25, (++i), x += .1;  
 AppendTo[brq, {10^x, N[BRQP[10^x]/BGN/(2.5070314770581117*10^x) ]}]] 
BRQ0 = Interpolation[brq];         (42) 
BRQ1 = Function[If[# < 10^15, BRQ0[#], Sqrt[#]]]; 

 
The function BRQP is equal to the product of Q, root-expression and integral in the 
denominator of (45). The value BGN is equal to the initial value of the same product at 
Q = 1/2. You'll find the complete program in the appendix. The factor b arises to 2.5(0703). 
According to (211), (482) and (623) applies further: 
 

       
4
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Q

0 0

4–
Q

0 0

4– dQ1Q2
2
3a  dQ1Q

b
a

56408.0
3

      

2
1

2
1

    (45) 

 
c is the complex propagation-velocity of the metric wave-field. As next, we want to take up a 
comparison of the two functions Q1/2 and BRQ1 (figure 2): 
 

 
 
Figure 2 
Function BRQ1 exactly and approximation 
 
On the basis of the demand, that the result of both functions must be identical with Q»1 we 
choose the factor a to . In this connection is to be remarked that the exact value is  in 
fact. But since we finally will not find, in any case, an exact fit in the course of both 
functions, this small „cheating“ in the initial conditions should be allowed. The value  
namely leads to the result with the smallest difference, so that we obtain the following final 
relation for :  
 

Q

0 0

4– dQ1Q2
2
3    

2
1

   c 3
2

2 3.756    (46) 

 
For  a value of c = 4 would arise. The bracketed expression corresponds to the factor Q1/2 
in the approximation. The course of the integral function in (38) as well as of the dynamic 
cumulative frequency response Ages(ω) = e∫Ψ(ω)dQ you can see in figure 3 and 4. For your infor-
mation the amount of the complex frequency response |Xn(jω)| of subspace is plotted, that’s 
the medium, in which the metric wave field propagates (ΩU = Ω).  
 

n
1 1 1X ( j ) 1
2 1 j 1 j

     Complex spectral function      ([1] 459) 

 
That applies to EM−waves propagating simultaneously with the metric wave field but not to 
the metric wave field itself. They achieve the aperiodic borderline case at Q = ½. 
 

 

 
 
 
 
 
 
 
 
 
 
Figure 3 
Course of the Integrals Ψ( ) in (38) for 
the approximation and exact function 
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Figure 4 
Cumulative frequency response Ages( )  
and |Xn(j )| of the metric wave field 
and subspace 
 
 
Thus, all requirements are filled and we 
are able to demonstrate the course of 
the approximation (38) in comparison 
with the target-function (32) and that as 
well for the approximation as for the 
exact function ξ. We use a logarithmic 
scale with the unit decibel [dB] and, 
because it’s about power per surface, 
with the factor 10.  

 
 
Figure 5 shows the shape of the approximation using the approximation (37) for the 

function  (c = 4). One can see, both curves doesn’t match exactly. The maximum frequency 
Ω is downshifted by 18.29% (0.81707). Die maximum deviation of the amplitude Δ A« is 
with +1.20 dB, between both maxima Δ Aª with +0.4285 dB (+10%). That’s comparatively 
seen, not very much. Altogether the function resembles the shape, shown in [1] section 
4.6.4.2.3., obtained by multiplication of the source-function with only 4 choosed values of 
the frequency response. But there are disparities in the declining branch with higher 
frequencies. 
 

 
 
Figure 5 
PLANCK’s radiation-rule and approximation 
with approximation for the function  (relative level) 
 
 
Figure 6 presents the course of the approximation under application of the exact function  
(46) for c = 3.756. With it, the best fit (without group delay correction) turns out (With  c = 4, 
there is only a minor difference to figure 5). But both functions don't overlap exactly neither 
in this place. Once again, the maximum frequency Ω is downshifted by 13.6 % (0.86385). 
The maximum deviation of amplitude Δ A « is about +1.29 dB, between both maxima Δ Aª with 
+0.7835 dB (+19.8%). 
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Figure 6 
PLANCK’s radiation-rule and approximation under 
application of the exact function  (relative level)
 

The course of deviation (logarithm of the quotient of approximation and PLANCK’s 
radiation-rule) as a function of y is shown in figure 7. One sees, from ca. 10  on the relative 
deviation between both functions is strongly growing. But since the absolute level in this 
range is already microscopic (−50dB at the third zero), nobody will take notice of it. Even it 
seems rather to be about a small frequency shift, than about a deformation of the envelope.  
 
Maybe, the downshift of the approximation’s maximum could be a reason for the discre-
pancy between the CMBR-temperature calculated in 7.5.3. [1] to the measured COBE-value 
with the amount of +2.42086% (−2.36363% in the reciprocal case). Although, the form of the 
approximation-graph doesn't correspond to that of a black emitter and the value is too high. 
But during the COBE-experiment, they just have been ascertained, that the spectrum of the 
CMBR is exactly? black. Therefore, more forces are required in order to change the form in 
such a manner, that it equals that of a black emitter. In the next section we will see, which 
influences may come into consideration for that purpose.  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 
Relative offset between    
approximation and radiation-
rule in dependency of the 
used function  
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In figure 7 we can see that we yield an improvement if we use the exact function . Never-
theless a certain left-over difference remains. If we take a look at the course in the 2nd 
quadrant, we can see a „gap“ where an already known function, multiplied with the factor , 
could slot right in there. That’s the group delay TGr of the metric wave field of [1] section 
4.3.2. Caution! The variable Ω there is differently defined, namely as Ω = Ω1 = ω/ω1. Thus, 
let’s  convert the definition to the form used here: 
 

 

22

Gr 2
1 1

dB( ) 2 2T  =        2     
d 1 4

     ([1] 152) 

 
As we can see in figure 7 (blue), the maximum is at ω1 and not at 2ω1. While group delay is 
equal to zero across nearly all decades, that’s not the case in the proximity of ω1 respectively 
ω0 nowadays. But a frequency-dependent group delay always causes a distortion of the 
envelope curve. Hitherto, we considered the frequency response A(ω) and the phase delay 
B(ω), but a group delay correction Θ(ω) is still missing. Rearranged for θ we obtain: 
  

 1 Gr2

2 1 =     2 T
1 4 2

θ        (47)  

 
1 GrT 2 2 lge 0.614185θ θ θ( ) e e 10 10      (48) 

 
We can find the factor  in that we estimate the maximum deviation of +1.29393 dB. We 
have to experiment for a while to find the best match. The decimal power is important, if we 
want to calculate with dB. The course is depicted in figure 7. The group delay correction 
Θ(ω) on dS2 is applied only once:   

 

       

0 2
y y1 12
2 2

1 Gr2 2
y y1 1
2 21 2

Q

1 y y1 1 ln 1 ln cos arctan dy T2 22 2y 1 1
2

2 y 2
2

dS   8  dy
1 ( ) e      (49) 

 
The resulting functions with group delay correction for both ξ are shown in figure 8 and 9. 
 

 
 
Figure 8 
PLANCK’s radiation-rule and approximation 
with group delay correction with approxi- 
mation of the function  (relative level) 
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There is already a better fit of both graphs in figure 8, as we can see. Now the maximum 
Ω  of the frequency is downshifted about 14.3% (0.85714). The maximum deviation of 
amplitude Δ A « is irrelevant because of the curve progression. The difference between both 
peaks Δ Aª is with –0.74601dB (–15.8%). 
 

 
 
Figure 9 
PLANCK’s radiation-rule and approximation 
with group delay correction under application 
of the exact function  (relative level)
 
The best result we have got for the case exact ξ with group delay correction (figure 9). Now 
the maximum Ω of frequency is downshifted about −8.831% (0.91169) only. That value is 
far in excess of the −2.36% deviation between measured and calculated CMBR-temperature. 
The maximum amplitude deviation Δ A « is at about +1.01 dB, between both maxima Δ Aª at 
−0.38246 dB (−8.430% i.e. 0.9157).  
 

  
Figure 10 
PLANCK’s radiation-rule and approximation 
with group delay correction under application of 
the exact function  (relative level) high resolution 
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To the better clarity, the last case is depicted in figure 10 with higher resolution. You can find 
the exact results in table 1. Figure 11 shows a summary of the relative deviations of all 
solutions in comparison with the course of the absolute value of the complex frequency 
response |Xn(jω)| of subspace. 
 

 
Value 

 
Ω⋔ Δ Ω⋔ A  Δ A  Ω  Δ A  Ω  ΔA  

 [1] [%] [dB] [dB] [1] [dB] [1] [dB] 

Planck 1.00000 ± 0.00 1.52727 ±0.00000 −− −− −− −− 
Figure 5 0.81707 −18.29 1.95578 +0.42851 0.41943 +1.20007 −− −− 
Figure 6 0.86385 −13.61 2.28562 +0.75835 0.46495 +1.29393 5.43512 +1.25614 
Figure 8 0.85714 −14.28 0.78126 −0.74601 0.05906 +0.04271 −− −− 

Figure 9 0.91169 − 8.83 1.14481 −0.38246 1.90966 −0.98101 5.50581 +1.01438 
 

Table 1 
Extreme values of PLANCK’s radiation-function and 

approximation according to the function ξ used 
without and with group delay correction  

 

 
Figure 11 
Relative deviation between approximation and  
radiation-rule according to the function ξ used 
without and with group delay correction 
 
 
 

4. WIEN’s Displacement 
 
The solution as per figure 9 seems to best fit the observations, if it weren't for the unsightly 

dent. Let’s suppose, that the ±1dB are „healed up“ during the many billion years or have been 
„ironed out“ by other influences not considered here – at the end, we must carry out, as 
promised, a WIEN-displacement. Starting with the in-coupling frequency 2ω1, with the help  
of the expressions given in [1] section 2, we are able to calculate the temperature of the 
CMBR to compare it with the COBE-measuring:  

 
Values from [1] Q0 = 7.9518·1060, ℏ1 = 8.38572·1026Js, ω1 = 1.47506·10104s−1, ω0 = PLANCK’s frequency 
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Substituting the values specified above, we obtain in terms of figures a value of 2.79146K for 
the temperature Tk, exactly calculated (bracketed expression) even 2.79837K. But the meas-
ured value was 2.72548K ± 0.00057K. That yields a deviation of +0.06598K (+0.07289K) 
respectively +2.421% (2.675%). Now one could mean, that’s an acceptable result, the model 
is quite accurate – far wrong. Not for nothing great efforts are being made in order to 
determine ωK to decimal places as many as possible, since it’s about a flat curve progression 
there and that takes significant effects on other values. Therefore, from now on, we will 
calculate with the exact numbers. 
 
From ([1] 902) arises, that Q0 depends on Tk first of all,  and ω0 can be determined and 
calculated with the help of measurements. And most of the other quantities are strongly 
affected by Q0. Obtaining a value of Q0 = 7.9518·1060 for the calculated 2.79837K we would 
get Q0 = 8,38287·1060 for 2.72548K. But Q0 even affects the value of the HUBBLE-parameter:  
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H0 would amount to 71.9843 kms−1Mpc−1 for the calculated temperature of 2.79837K and 
only 68.2829 kms−1Mpc−1 for 2.72548K. That’s quite a significant difference, which neither 
cannot be solved by number games with the values from table 1. Thus, there must be another 
reason of deviation. 
 
 
 

5. Possible reasons of deviation 
 
Next we want to discuss possible reasons, which may lead to the deviation. The simplest 

and mostly unpleasant one would be, that this model is wrong. But at least, the result, 
somewhat well, coincides the predictions, so that we cannot approve it with sufficient 
certainty. But then there must be another reason. Therefore, the most probable shall be 
discussed as next.  

 
Since the line-element is a minimum phase system, we computed the approximation 

function, by an iterative multiplication of the source-function with the just significant 
amplitude characteristic A( ), as long as the result changes essentially. At the point the 
frequency of the signal-function has dropped far below the cut-off frequency, there is no 
more change to be observed. The factor cos φ emerges from the fact, that only the real-part is 
being transferred (φ = B( )). 

 
That’s the procedure with minimum phase systems in general. But according to [3] p. 340 it 

applies for stable minimum phase systems only! Because only with these, an explicit 
correlation exists between amplitude- and phase response curve, so that we can calculate with 
the amplitude response exclusively. At the line-element just after the input coupling (Q≈1), 
that is shortly after big bang however, it’s not about a stable system at all. Rather, it shows its 
largest dynamics to that point of time, so that our approach may lead to an inexact result, as 
we can see.  
 

If we want to get an exact result, we must also introduce a reference between amplitude 
and phase, quasi a phase-correction, because a phase-lag appears with unstable systems. At 
the observer the phase-lag manifests itself in the form, that the spectral shares with lower 
frequency are more redshifted, than the higher frequent ones. Indeed, the lower-frequent 
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shares aren’t older than the higher-frequent ones (we observe always the same point of time 
at the in-coupling with Q0 = 1/2), but they have covered a longer distance. And that 
automatically leads to a higher redshift. But how this longer way can be explained? The 
lower-frequent shares simply took a different route, than the higher-frequent ones (different 
angle of emission). Because the lower-frequent shares, taking the same way, already have 
passed us. That leads to a kind of achromatism at the observer, which is hard to be detected, 
since the radiation arrives from all directions at once. Even with the propagation-function 
(306) such a phase-lag occurred, characterized by the term ( ). We considered that term 
and we also took a group delay correction. Hence, it cannot be that. 
 
Let’s go to talk about the high dynamics during the in-coupling process. Figure 12 shows the 
course of the energy flux-density vector div S0 of the metric wave field at that point of time. 
One sees, it’s positive in the range 0.52549 < Q < 1.5975. Thus, energy is radiated. The range 
is depicted even in figure 7. In the range below 0.52549 the field is been established, above 
1.5975 the effect of parametric attenuation for overlaid waves can be seen. 
 

 

 
 
Figure 12 
Course of the energy flux-density vector of 
the metric wave field as a function of Q 
 
 

Hence, with the in-coupling process it’s not about a sudden act with before → after, but it’s 
a dynamic process. Energy is absorbed and partially re-emitted, deferred by the group delay 
time. At the same time the CMBR is coupled in, according to the frequency at different 
moments. Concerning the partial re-emission the share of absorbed energy depends on the 
area ratio of both left-hand sections. The numerical integration yields a value of 2.24784 for 
the absorbed, as well as of 0.345719 for the re-emitted energy share. The calculation 
2.24784/(0.345719+2.24784) a value of 0.866700931 turns out in reference to Q. But we need 
the value in reference to the time t. Because t2

 ~ Q, we must resolve the substitution t2 on the 
x-axis in that we extract the root of the result. We obtain a value of 0.930967739. It 
corresponds, except for a deviation of 0.0118413026, to our vacuum coefficient of absorption 
εν = 0,9428090416.  

 
Thus, the deviation has something to do with the gray body [4]. Now, once we already 

considered εν indeed, but only as a constant and with the value at the time of in-coupling. But 
with the gray body εν depends on the frequency ω. If we want to consider that, we have to 
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calculate an εT(ω) respectively a correction term εK(ω) to multiply ([1] 902) with, since εν is 
already included there. In [4] the following is denoted for εT: » Thereby εT correlates with the 
weighted averages of εν resp. ελ, which are equal:  

 
 
       from [4] « (50) 

 
 

But we don’t want to make it as quite as complicated. Therefore we assume, that the root of 
the area ratio should equal the average of εν, i.e. be equal to εT. It applies: εT = ενεK, with 
εν = ⅔  = 0.942809 and εK = 0.987440402. Multiplying the calculated Tk = 2.79837K with εK, 
we obtain a value of 2.76322K, which is about +0.0377K above the measured one. But is it 
correct, to apply εK resp. εT simply as a factor to WIEN’s displacement law? The answer is no. 
It’s about a factor from PLANCK‘s radiation-rule. Applying εT to (1)…(7), it cancels out at the 
end. Herewith the inclination 2 at WIEN‘s displacement rule ( x̃ is the ratio slope/peak-line) 
also applies to the gray body. But even a constant of integration would be possible here. There 
are influences on the displacement indeed. But these depend on the shape of the envelope-
curve and, with it, on the function εν(ω), which we do not know. Therefore we must 
improvise, contriving a function, which well-complies the requirements. Then, at least, we 
can see, which influence a frequency-dependent εν has onto the shape of the curve and with it 
even onto the displacement itself.  
 

As a start the function before the in-coupling must have the value ενmax = ⅔  = 0.942809. 
Furthermore it must vary somehow. We choose a simple change from one to another value. 
As inflection point we choose the moment of in-coupling with Q =1/2 resp. 2ω1. Then y = Ω 
applies. The 0.930967739 from the area ratio of div S0 are our ε̄T. We use the function as per 
(51). Therefrom a lower limit of ενmin = 0.920464 arises. With it ε̄T is a little bit smaller than 
the average, due to the function used. All that appears plausible on the whole, because the 
metric wave field mostly picks up energy before the in-coupling. Thus, it has a higher 
absorption coefficient as thereafter, when a share of energy is re-emitted. Even the offset of 
the zero-transition of divS0 of Q = 0.52549 is mapped very well. If you don’t like it, it’s only a 
model and an optimized example function. Whether it really happens in that manner, is 
another matter. 
 

 
 
Figure 13 
Vacuum coefficient of absorb- 
tion εν as a function of ω 
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max T
max 21 2

1  
min max max T1 2  (51) 

 

T 2

2 0.023682 1
3 1

 K 2

0.023681
1

 (52) 

 
Now we want to analyze the effect of εK on the envelope-curve. We believe in the „self-
healing powers“ of the solution of figure 9 using a clean PLANCK-curve. Since the effect on 
(51) is hardly to be seen in the graphics, we use an additional, exaggerated function εT5 to the 
better presentation. 

 

T5 2
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3 1

 K5 2

0.51
1

 (53) 

 
That corresponds to an ε̄T5 = 0.69281. We obtain the following course with it: 
 

 
 
Figure 14 
Effect of the absorption coefficient εν 
onto the envelope-curve, high resolution 

 
One sees, the function (52) mostly affects the lower-frequent part of the envelope-curve. The 
maximum is up-shifted in frequency. But the inclination in the left part remains constant. 
That applies as I said to the example function only. Natural materials may distort the 
envelope-curve significantly even in this region. Then the regression line applies as a function 
of  ε̄T according to (50). Then it has the same inclination and even only, it’s more or less 
amplitude-shifted (constant of integration!). B.t.w. the regression line σT resp. the lower-
frequent slope is also the line, the WIEN displacement happens at. Here we can see the benefit 
of the duplicate logarithmic presentation, the curve becomes a line then. 
 
The regression line σT can be determined by trying out most suitably. It applies y = Ω too. In 
the duplicate logarithmic presentation the following functions arise: 
 

KT min( ) 10(2  +lg(2 ))  [dB] Slope (54) 
 

KT minˆ ( ) 10(2  – lg lg )minKl minKlgx  [dB] Maximum (55) 
 

εK max = 1.00000 
εK min  = 0.97630 
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K K K
2 2ln10 4.60517

T min min min( ) 2 10 2 e 2 e  Slope linearly (56) 
 
That only applies to the example function used here. The 2 on the right side stems from the 
definition of Ω according to (9). To the black body and with it, even to the PLANCK-curve 
applies εKmin = εT = εKmax = 1. With natural materials we must replace εKmin by ε̄T from (50). The 
course is shown in figure 15. Of course even a regression line for the maximum can be 
defined. With it (x̃), the circle closes to WIEN‘s displacement law. However expression (55) 
isn’t very accurate and the line may miss the maximum with smaller ενmin. But it applies 
exactly to the black body and to our example function. With natural materials even more than 
one maximum may occur. The more the envelope-curve differs from the ideal, the less 
reasonable is it, to speak of a radiation temperature.  
 
From (55) arises, that we, nevertheless can define a WIEN’s displacement law for the gray 
body, at least for the example function and when the curve-shape do not differ too far from 
that of a black body: 
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 (57) 

 
With natural materials εKmin must be replaced by ε̄T again. 
 
 

 
 
Figure 15 
Displacement lines T and T5 
as well as envelope-curves, low resolution 
 

As next we want to determine the frequency-shift ωK2/ωK1. We choose the exaggerated 
function (53), since we cannot see anything otherwise. We want to navigate in the lower-
frequent range, namely at ωK1 = 0.5∙10−3

 ωmax. Therefore we can employ WIEN‘s radiation-
rule: 
 

   

K13
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 2 2
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kkkT  WIEN‘s radiation rule (58) 

 
To the amplitude of dS2 applies (T1=T2=T ) : 
 

WIEN‘s displacement law 
for the gray body 
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By equating we obtain the following expression: 
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 K

33
K2 min K1 K1 K1 0.97630 0.992037  (63) 

 
With it the frequency of our example function shifts downward by +0,8027% at the base. The 
offset of the maximum is +0,4860% (Function FindMaximum[#]). Just for information, with 
the exaggerated function εT5 the base-shift is at +25,99%, at the maximum at +12,64%. Thus, 
in both cases a narrowing of the envelope-curve occurs, at which point the frequency shift at 
the base is nearly twice as large, as at the maximum. Because with the real values only 
fractions of a percent come into effect, it looks like the curve is black. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 
Possible error sources by misinter- 
pretation of the curve-characteristic 
 

Subsequently it’s about errors in the interpretation of actual measured data only. The model 
itself is no issue and it’s irrelevant, whether any universal natural constants change over time 
or not and how. Figure 16 shows what may happen, if we misinterprete the curve-characte-
ristic, by a mistaken application of the black body mathematics to a gray curve. Curve #1 is 
the curve of a black body at the moment of in-coupling, curve #2 is the gray curve. The 
redshift z (displacement) takes place in the direction of arrow along the displacement line σT 
and σT5. You can perform it in a graphics program even manually in the following manner: At 
first duplicate the graph. Then scale it equably by shifting the corner point right above to the 
bottom left with pressed shift key, maintaining the contact with the displacement line left. 
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The result are the curves 3 and 4. Now, however the gray curve 3 can be „inflated“ in such 
a manner, that it almost fits the black curve 4, that’s curve 5 (green). This happens, when a 
too small redshift z is being assumed, a value, which we actually wanted to determine. One 
sees, it’s possible to wangle a nearly perfect covering of the maxima. The difference is, in 
practice, nearly undetectable with εT-values near 1. The result is, that a too small z and a too 
small radiation temperature Tk is calculated, and that by half the offset at the base. 

 
Presuming the calculated Tk-value in the amount of 2.79837K to be the gray temperature, 

under consideration of the interpretation error at the measured value of 2.72548K, the 
application of (57) a measured gray temperature of 2,79164K turns out. Then the calculated 
temperature is only +0.0067K above (+0.25%). Thus, in contrast to the hitherto +7.29%, the 
improvement wouldn’t be insignificant. Of course, I could have configured the example 
function even such, that I hit the measured value exactly. But that would not have been very 
meaningful. 

 
In any case, the effects of a possible gray radiation-characteristic should be considered, 
especially then, when we want to measure extremely accurate. But then we can forget the 
declared accuracy of ± 0.00057K for the measured value resp. it applies only relatively and 
not absolutely. 
 

 

6. Summary 
 
In the course of this article, according to the model in [1], we succeeded in approximating 

the envelope-curve of PLANCK‘s radiation-rule as a function of a dynamic frequency response 
under application of a phase- and group-delay-correction with a residual deviation of ±1dB. 
Furthermore was shown, that the temperature calculated in [1] is in the proximity of the value 
measured by the COBE-satellite. By consideration of the gray characteristic of the CMBR, 
predicted by the model, could be shown, that and how the measured value is determined too 
low under misapplication of the black-body-mathematics to a gray radiation source. Under 
consideration of this issue the calculated CMBR-temperature would be only +0,0067K above 
the corrected, gray temperature. Whether the self-made gray radiation characteristic coincides 
with reality, remains unsettled. It’s about an example here, just showing the conditions with 
the gray body. Altogether no contradictions have been found between the model and reality. 
Furthermore was shown, why the BOLTZMANN-constant has the known value and not another 
one. The reason is the curve inclination at an oscillating circuit with the Q-factor ½.  

 
The results of the work on hand don't exclude the possibility, that the course of the 

PLANCK's radiation-rule could be the result of the existence of an upper cut-off frequency of 
the vacuum. Whether it’s so or not, in both cases the classic deduction [2] would not be 
overruled. Both deductions are compatible and complement each other.  

 
 
 

THE END 
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Off[General::"spell"]
Off[General::"spell1"]
Off[NIntegrate::inumr]
Off[NIntegrate::precw]
Off[NIntegrate::ncvb]

Hankel1=Function[BesselJ[0,#]+I*BesselY[0,#]];
Hankel21=Function[BesselJ[2,#]+I*BesselY[2,#]];

A=Function[(BesselJ[0,#]*BesselJ[2,#]+BesselY[0,#]*BesselY[2,#])/
(BesselJ[0,#]^2+BesselY[0,#]^2)];
B=Function[(BesselY[0,#]*BesselJ[2,#]-BesselJ[0,#]*BesselY[2,#])/

(BesselJ[0,#]^2+BesselY[0,#]^2)];

RhoQ=Function[If[#<30,
Abs[-2*I/#/Sqrt[1-(Hankel21[#]/Hankel1[#])^2]],#^(-1/2)]];
Rho=Function[
  Abs[-2*I/Sqrt[#]/Sqrt[1-(Hankel21[Sqrt[#]]/Hankel1[Sqrt[#]])^2]]];
 (* Rho = Rho(t) c_ *)
InvRhoQ=Function[If[(Abs[#]>.851661),Infinity,If[Abs[#]<=.1,1/

#^2,0.346365+0.998383/#^2-2.50962*#+5.63857*#^2-4.39788*#^3]]];

PhiQ=Function[If[#>20,-Pi/4-3/4/#,N[Arg[-2*I/#/Sqrt[1-(Hankel21[#]/
Hankel1[#])^2]]]]];

InvPhiQ=Function[If[(((-#)>Pi)||((-#)<Pi/4)),Infinity,(*4% 
Error*)If[((-3/4/(#+Pi/4))>6),-3/4/(#+Pi/4),3/4/(1/(#-0.5493137)+Pi/4)-
1.45783361506639903156]]];

RhoQQ=Function[If[#<30,Sqrt[Sqrt[(1-A[#]^2+B[#]^2)^2+(2*A[#]*B[#])^2]],2/
Sqrt[#]]];

(* Arc length unequal RhoQ!!!*)
RhoQQQ=Function[Sqrt[Sqrt[(1-A[#]^2+B[#]^2)^2+(2*A[#]*B[#])^2]]];

rq={{0,0}};
For[x=(-8); i=0,x<4,(++i),x+=.01; AppendTo[rq,{10^x,N[1/RhoQQQ[10^x]]}]];
RhoQ1=Interpolation[rq];

RhoQQ1=Function[If[#<10^4,RhoQ1[#],.5*Sqrt[#]]];
AlphaQ=Function[N[Pi/4-PhiQ[#]]];
BetaQ=Function[Sqrt[#1]*((#2)^2+#1^2*(1-(#2)^2)^2)^(-.25)];
DeltaQ=Function[ArcSin[RhoQ[#]*Sin[AlphaQ[#]]]];

GammaPQ=Function[N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]];
GammaPQa=Function[N[-PhiQ[#]-ArcSin[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]];
GammaNQ=Function[N[-PhiQ[#]+ArcSin[RhoQ[#]*Cos[AlphaQ[#]]]-Pi/4]];
GammaNQa=Function[N[PhiQ[#]-ArcCos[RhoQ[#]*Cos[AlphaQ[#]]]-Pi/4]];

Rk=If[#1<1000,3Sqrt[#1] NIntegrate[RhoQQ1[x1],{x1,0,#1}],#1^2]&; 
(* Exact world radius/r1 *)

BRQP=Function[Rk[#] Sqrt[(Sin[AlphaQ[#]]/Sin[GammaPQ[#]])^4-1]];
BRQPa=Function[Rk[#] Sqrt[(Sin[AlphaQ[#]]/Sin[GammaPQa[#]])^4-1]];
BRQN=Function[Rk[#] Sqrt[(-Cos[AlphaQ[#]]/Sin[GammaNQ[#]])^4-1]];
BRQNa=Function[Rk[#] Sqrt[(Cos[AlphaQ[#]]/Sin[GammaNQa[#]])^4-1]];
BNQP=Function[0.4073456 #^(-6/4)];
BNQN=Function[0.282048 #^(-7/4)];
BGN=1/3 Sqrt[2]*BRQP[.5];



brq={{0,0}};
For[x=(-8); i=0,x<25,(++i),x+=.1; 

AppendTo[brq,{10^x,N[BRQP[10^x]/BGN/(2.5070314770581117*10^x) ]}]]
BRQ0=Interpolation[brq];
BRQ1=Function[If[#<10^15,BRQ0[#],Sqrt[#]]];

M1=Function[Abs[Hankel1[#]]];
SGenau=Function[Pi/2*Rho[#]^2*Abs[Hankel1[Sqrt[#]]^2]];
kk=Function[Expp[Sqrt[2]*Log10[E]*#/(1+#^2)]];
AnU=Function[.5*1/Sqrt[1+#^2]*(1+1/Sqrt[1+#^2])];
FG=Function[.5/(1+I*#)*(1+1/(1+I*#))];

Xline=Function[10^33*(#1-#2(*Wert_x*))];
Xlline=Function[33+(10^#1-Log10[#2](*Wert_x*))];

Pom=Function[Print[StringJoin["x = ",ToString[10^Chop[First[xx/.Rest[%]],10^-
7]]," Om1","  (",ToString[.5*10^Chop[First[xx/.Rest[#]],10^-7]],

" OmU)"]]];
Pol=Function[Print["y = "<>ToString[First[#]]<>" dB   ("<>If[First[#]-

zzz>0,"+",""]<>
ToString[First[#]-zzz]<>" dB)"]];
Expp=Function[If[#<0,1/Exp[-#],Exp[#]]];   
(* Strictly needed to avoid calculation errors *)

xtilde = N[3+ProductLog[-3 E^-3],16];
c = xtilde^2; 
b=xtilde;
S1 = 8*(#1/(2*((#1/2)^2 + 1)))^2 & ; 
S2 = (b*(#1/2))^3/(Expp[b*(#1/2)] - 1) & ; 
Psi0 = (1/2)*Log[1 + (#1/(c*Sqrt[#2]))^2] - 
     (#1/(c*Sqrt[#2]))^2/(1 + (#1/(c*Sqrt[#2]))^2) + 
     Log[Cos[ArcTan[#1/(c*Sqrt[#2])] - 
        #1/((c*Sqrt[#2])*(1 + (#1/(c*Sqrt[#2]))^
            2))]] & ; 
Psi1 = NIntegrate[(1/2)*Log[1 + (#1/(c*Sqrt[Q]))^2] - 
      (#1/(c*Sqrt[Q]))^2/(1 + (#1/(c*Sqrt[Q]))^2) + 
      Log[Cos[ArcTan[#1/(c*Sqrt[Q])] - 
         #1/((c*Sqrt[Q])*(1 + (#1/(c*Sqrt[Q]))^2))]], 
     {Q, 0.5, 3000}] & ; 
Psi2 = NIntegrate[(1/2)*Log[1 + (#1/(c*BRQ1[Q]))^2] - 
      (#1/(c*BRQ1[Q]))^2/(1 + (#1/(c*BRQ1[Q]))^2) + 
      Log[Cos[ArcTan[#1/(c*BRQ1[Q])] - 
         #1/((c*BRQ1[Q])*(1 + (#1/(c*BRQ1[Q]))^2))]], 
     {Q, 0.5, 3000}] & ;

G=6.6732*10^-11;     (*Bruker*)
qe=1.60217733*10^-19;
me=9.1093897*10^-31;
mp=1.6726231*10^-27;
mn=1.6749286*10^-27;
ma=1.66057*10^-27;
anull=5.29177*10^-11 (* Bohrscher Wasserstoffradius *);
re=2.81792*10^-15;
km=1000;
Mpc=3.08572*10^19 km;
my0=4 Pi 10^-7;
ep0=8.854187817*10^-12;
ka0=c^3/(my0 G hg H) (*1.23879 10^93*);
k=1.380658 10^-23;
hg=1.05457266*10^-34;
h=2 Pi hg;
hi=4.99697*10^27;
h1=hg*Q0;
hb1=7.95297*10^26;
hiSp=4.99697*10^27;
Z0=Sqrt[my0/ep0];    (*2 Pi 60*)



Phi0=1.99383*10^-16;
Phi1=6.8626*10^14;
Q884=Function[3/2*(qe^2/ep0/#/me/mp)^(3/2)];        (* #=G *)
Q892=Function[3/8/Pi*qe^4/(ep0^2*me^2*mp*Sqrt[#^3*hg*c])];
Q890=Function[3/2*(1/4/Pi*qe^2*Z0/me*Sqrt[c/#/hg])^3];
c=1/Sqrt[my0 ep0];                         (*2.99792458 10^8*)
Om0=Sqrt[c^5/G/hg];
Om1=Om0 Q0;
Q0=Q890[G];
(*3/2*(qe^2/ep0/G/me/mp)^(3/2)              "884"*)
(*3/2*(1/4/Pi*qe^2*Z0/me*Sqrt[c/G/hg])^3    "890"*)
(*3/8/Pi*qe^4/(ep0^2*me^2*mp*Sqrt[G^3*hg*c])"892"*)
(*7.5419 10^60 "Arbeit"*)
QTAB=7.5419 10^60;
Qrel=Function[Q0*(Sqrt[1+#1]-(2*#2)^(2/3))];
Qabs=Function[(Sqrt[2*ka0*#1/ep0]-Q0*(2*#2)^(2/3))];
H=Om0/Q0;
(*8/3*Pi*G/my0/Z0*me^2*mp/qe^4 2.45972*10^-18*)
r1=1/(ka0 Z0);
r0=Q0 r1;                                     (*1.596 10^-35*)
R=Q0^2 r1;
T=1/(2 H);                                    (*2.03275 10^17*)
t1=T/Q0^2;                                  (*3.57372 10^-105*)
qn=Sqrt[hg/Z0];

(*b = xtilde; Figure 1 *)
Plot[{
Log10[(b*.5*10^y)^3/(Expp[b*.5*10^y]-1)],
Log10[ 8*(.5*10^y/((.5*10^y)^2+1))^2],
Xline[y,Log10[2]]},{y, -5, 3},PlotRange->{-10.1,.45}]

Plot[{(*Log10[BRQP[10^qqq]/BGN/(2.5070314770581117*10^qqq)], Figure 2a *)
Log10[BRQ1[10^qqq]], Log10[Sqrt[10^qqq]]}, {qqq, -1, 10}]
Plot[{(*BRQP[qqq]/BGN/(2.5070314770581117*qqq), Figure 2b *)
BRQ1[qqq], Sqrt[qqq]}, {qqq, 0, 10}, PlotRange -> {-0.3, 9.6}]
Integral

 c=8; (*Factor 8 approx  Figure 3 *)
Plot[{Psi1[y],Psi2[y]},{y,0,10},
(*PlotRange->{-5.8,0.2},*)PlotStyle->RGBColor[0.91,0.15,0.25],PlotLabel-

>None,LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]

 c=8; (*Factor 8 approx  Skipped *)
Plot[{Expp[Psi1[y]],Expp[Psi2[y]]},{y,-4,4}(*,
PlotRange->{0,2.35}*),PlotLabel->None,LabelStyle->{FontFamily-

>"Chicago",10,GrayLevel[0]}]

 c=8; (*Factor 8 approx  Figure 4 *)
Plot[{10Log10[Expp[Psi1[10^y]]],10 Log10[Expp[Psi2[10^y]]]},{y,-3,2},PlotRange-

>{-88,2},LabelStyle->{FontFamily->"Chicago",12,GrayLevel[0]}];

 Plot[{10 Log10[Abs[FG[10^y]]]},{y,-3,2},PlotRange->{-88,2},PlotLabel-
>None,PlotStyle->RGBColor[0,0,0],LabelStyle->{FontFamily-
>"Chicago",10,GrayLevel[0]}];

 Show[%%,%]

 c=8; (* Factor 8 approximated BGN exact Figure 5 *)
Plot[{10 Log10[S2[10^y]],10 

(Log10[S1[10^y]*Expp[Psi1[10^y]]]),Xline[y,Log10[2]]},{y,-3,3},PlotRange->



{-51,10.5},ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}] 
(* Exakt exakt exakt Fehler max +1.3dB *)

 c=7.519884824; (* Sqrt[π] exact  Figure 6 *)
Plot[{10 Log10[S2[10^y]],10 (Log10[S1[10^y]]

+Log10[E]*Psi2[10^y]),Xline[y,Log10[2]]},{y,-3,3},PlotRange->
{-51,4.5},ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}] 

FindMaximum[10 Log10[S2[10^xx]],{xx, 0}];
(* Planck's curve *)
Print[StringJoin["x = ",ToString[(10^First[xx/.Rest[%%]])],
" Om1        (1.000000 OmU)"]]
Print[StringJoin["y = ",ToString[zzz = First[%%%]]," dB    (±0.000000 dB)"]]

FindMaximum[10 (Log10[S1[10^xx]*Expp[Psi1[10^xx]]])-10Log10[S2[10^xx]],{xx,1}] ;
(* Maximum deviation Psi1 *)
Pom[%]
Pol[%%]
 
FindMaximum[10 (Log10[S1[10^xx]*Expp[Psi2[10^xx]]])-10Log10[S2[10^xx]],{xx,0}];
(* Maximum deviation 1 Psi2 *)
Pom[%]
Pol[%%]

FindMaximum[10 (Log10[S1[10^xx]*Expp[Psi2[10^xx]]])-10Log10[S2[10^xx]],{xx,1}];
(* Maximum deviation 2 Psi2 *)
Pom[%]
Pol[%%] 

FindMaximum[10 (Log10[S1[10^xx]]+Log10[E]*Psi1[10^xx]),{xx,-1}];
(* Deviation between maxima Psi1*)
Pom[%]
Pol[%%]

FindMaximum[10 (Log10[S1[10^xx]]+Log10[E]*Psi2[10^xx]),{xx,-3,2}];
(* Deviation between maxima Psi2 *)
Pom[%]
Pol[%%] 

 c=8; (*Factor 8 approx  Figure 7 *)
Plot[{10 Log10[S1[10^y]*Expp[Psi1[10^y]]/S2[10^y]],Xline[y,Log10[2]]},
{y,-3,2},PlotRange->{-3.1,1.35},ImageSize->Full,LabelStyle->
{FontFamily->"Chicago",10,GrayLevel[0]}];

 c=7.519884824; (* Sqrt[π] exact  *)
Plot[{10 Log10[S1[10^y]*Expp[Psi2[10^y]]/S2[10^y]]},{y,-3,2},
ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}];

 Show[%,%%%,PlotRange->{-3.1,1.35}]

 Plot[{10Log10[kk[10^x]]},{x,-3,2.2},PlotRange->{-0.6,3},
PlotStyle->RGBColor[0.06,0.52,0.]];

Show[%%,%,ImageSize->Full,LabelStyle->{FontFamily->"Chicago",12,GrayLevel[0]}]

 c=8; (* Factor 8 approximated BGN exact Figure 8 *)
Plot[{10 Log10[S2[10^y]],10 (Log10[S1[10^y]*Expp[Psi1[10^y]]])-10Log10[kk[10^y]],
Xline[y,Log10[2]]},{y,-3,3},PlotRange->{-51,4.5},ImageSize->Full,LabelStyle-

>{FontFamily->"Chicago",10,GrayLevel[0]}] 



 c=7.519884824; (* Sqrt[π] exact  Figure 9 *)
Plot[{10 Log10[S2[10^y]],10 (Log10[S1[10^y]]+Log10[E]*Psi2[10^y])-
10Log10[kk[10^y]],Xline[y,Log10[2]]},{y,-3,3},PlotRange->{-51,4.5},
ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]

FindMaximum[10 Log10[S2[10^xx]],{xx, 0}];
(* Planck's curve *)
Print[StringJoin["x = ",ToString[(10^First[xx/.Rest[%%]])],
" Om1        (1.000000 OmU)"]]
Print[StringJoin["y = ",ToString[zzz = First[%%%]]," dB    (±0.000000 dB)"]]

FindMaximum[10 Log10[(S1[10^xx]*Expp[Psi1[10^xx]]/kk[10^xx])/S2[10^xx]],{xx,0}];
(* Maximum deviation Psi1 *)
Pom[%]
Pol[%%] 

FindMaximum[10 Log10[(S1[10^xx]*Expp[Psi2[10^xx]]/kk[10^xx])/S2[10^xx]],{xx,0}];
(* Maximum deviation 1 Psi2 *)
Pom[%]
Pol[%%] 

FindMinimum[10 Log10[(S1[10^xx]*Expp[Psi2[10^xx]]/kk[10^xx])/S2[10^xx]],{xx,.5}];
(* Maximum deviation 2 Psi2 *)
Pom[%]
Pol[%%]

FindMaximum[10 Log10[(S1[10^xx]*Expp[Psi2[10^xx]]/kk[10^xx])/S2[10^xx]],{xx,1}];
(* Maximum deviation 3 Psi2 *)
Pom[%]
Pol[%%] 

FindMaximum[10 Log10[S1[10^xx]*Expp[Psi1[10^xx]]/kk[10^xx]],{xx,0}];
(* Deviation between maxima Psi1 *)
Pom[%]
Pol[%%]

FindMaximum[10 Log10[S1[10^xx]*Expp[Psi2[10^xx]]/kk[10^xx]],{xx,0}];
(* Deviation between maxima Psi2 *)
Pom[%]
Pol[%%]

 Plot[{(* Figure 10 *)
10 Log10[S1[10^y]],
10 Log10[S2[10^y]],
10(Log10[S1[10^y]]+Log10[E]*Psi2[10^y]),
10 (Log10[S1[10^y]]+Log10[E]*Psi2[10^y]-Log10[kk[10^y]]),
Xline[y,Log10[2]]
},{y,-0.8,1.4},PlotRange->{-11,4.5},PlotLabel->None,ImageSize->Full,LabelStyle-

>{FontFamily->"Chicago",10,GrayLevel[0]}]

 c=7.519884824; (* Sqrt[π] exact  Figure 11 *)
Plot[{10 Log10[S1[10^y]*Expp[Psi1[10^y]]/S2[10^y]]-10Log10[kk[10^y]],
10 Log10[S1[10^y]*Expp[Psi2[10^y]]/S2[10^y]]-10Log10[kk[10^y]]},{y,-3,2},
ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}];

 Show[%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%,%,PlotRange->{-3.1,1.35}]



 FindRoot[10 (Log10[S1[10^y]]+Log10[E]*Psi2[10^y])-10Log10[kk[10^y]]-
10Log10[S2[10^y]]==0,{y,.5}]

 FindRoot[10 (Log10[S1[10^y]]+Log10[E]*Psi2[10^y])-10Log10[kk[10^y]]-
10Log10[S2[10^y]]==0,{y,1}]

 FindRoot[10 (Log10[S1[10^y]]+Log10[E]*Psi2[10^y])-10Log10[kk[10^y]]-
10Log10[S2[10^y]]==0,{y,2}]

 N[10^0.846931]  (* Level at 2nd null *)
ToString[10 Log10[S2[%]]]<>" dB"

 N[10^1.1612]    (* Level at 3rd null *)
ToString[10 Log10[S2[%]]]<>" dB"

 N[10^1.4142]    (* Level after 3rd null *)
ToString[10 Log10[S2[%]]]<>" dB"

 Plot[{(* Skipped *)
10 Log10[S1[10^y]],
10 Log10[S2[10^y]],
10(Log10[S1[10^y]]+Log10[E]*Psi2[10^y]),
10 (Log10[S1[10^y]]+Log10[E]*Psi2[10^y]-Log10[kk[10^y]]),
Xline[y,Log10[2]]},{y,-3,3},PlotRange->{-51,4.5},PlotLabel->None,
ImageSize->Full,LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}]

w0g=Function[Sqrt[Pi^3/8]*M1[Sqrt[#]]^3*Rho[#]^3];
w0n=Function[#^-(3/2)];
w0nPunkt2Int=Function[-(w0n[#])^2+.897659];
w0gPunkt=Function[(w0g[#+.00001]-w0g[#])/.00001];
w0gPunkt2=Function[(w0g[#+.00001]^2-w0g[#]^2)/.00001];
w0gPunkt2Int=Function[-(w0g[#])^2+.897659];
ka0g=Function[Pi/4*M1[Sqrt[#]]^2*Rho[#]^2];
ka0g2=Function[Pi^2/12*M1[Sqrt[#]]^4*Rho[#]^4];
ka0g2n=Function[1/3*#^(-2)];
ka0g2Int=Function[NIntegrate[ka0g2[tt],{tt,0,#}]];
ka0g2nInt=Function[-1/(6*#1^(3/2))+1/(6*10^(3/2))+0.345818];

Plot[{-w0gPunkt2[t^2]-ka0g2[t^2]},{t,0,3},PlotRange->{-0.22,0.88}, (* Figure 12
*)

PlotLabel->None,ImageSize->Full,LabelStyle->{FontFamily-
>"Chicago",10,GrayLevel[0]}]

b = xtilde; 
Plot[{(* Skipped *)
Log10[S2[10^y]], Log10[S1[10^y]],Xline[y,Log10[2]], 
   2*y + Log10[2], 2*y - Log10[xtilde]}, {y, -3.05, 3.05}, 
  PlotRange -> {0.55, -5.05}, ImageSize -> Full, 
  LabelStyle -> {FontFamily -> "Chicago", 10, 
    GrayLevel[0]}]

b = 2.821439; 
Plot[{(* Skipped *)
N[(b*y)^3/(E^(b*y) - 1)], 10^N[2*Log10[y] + Sin[2]]}, 
{y, 0, 0.15}, PlotRange -> {0, 0.2}]



x=2.972456 10^-63;
y=8.6556 10^-64;
z=y 2^(1/6)/3^(2/3) Q0^-.5;fff=Function[1/(1+(#1/#2)^2)];
fff=Function[1/(1+(#1/#2)^2)];
ggg=Function[1/(1+((#1/#2)-(#2/#1))^2)];
hhh=Function[2*(#1/#2)/(1+(#1/#2)^2)];
Ek3=Function[1-0.0236820832fff[#1,#2]];
Ek5=Function[1-0.5fff[#1,#2]];             (* Ek5 over-scaled !!! *);

 Plot[{
2/3Sqrt[2]Ek3[10^xxx,2Om0],0.942807,.920464,.930967739,
Xline[xxx,Log10[2Om0]]},                                                          

(* Epsilon T *)
{xxx,-2+ Log10[Om0],2+ Log10[Om0]},PlotRange->{0.91,0.95}]

 Plot[{(* Figure 13 *)
2/3Sqrt[2]Ek3[10^xxx,2],0.942807,.920464, 0.930967739,(0.942807+.920464)/2,
Xline[xxx,Log10[2]],Xline[xxx,Log10[1.903]]},                                     
{xxx,-2,2},PlotRange->{0.914,0.946},ImageSize->Full,PlotLabel->None,
LabelStyle->{FontFamily->"Chicago",11,GrayLevel[0]}]
(* Epsilon T *)

aaa = Log10[2]; 
bbb = xtilde (*2*Sqrt[2]*); 
ccc = 1; 
Plot[{(* Figure 14 *)
  10*Log10[(bbb*10^(zzz - aaa))^3/(E^(bbb*10^(zzz - aaa)) - 1)], 
  10*Log10[Ek3[10^(zzz - aaa), ccc]*((bbb*10^(zzz - aaa))^3/
       (E^(bbb*10^(zzz - aaa)) - 1))], 
  10*Log10[Ek5[10^(zzz - aaa), ccc]*((bbb*10^(zzz - aaa))^3/
       (E^(bbb*10^(zzz - aaa)) - 1))], 10*Log10[Ek3[10^(zzz - aaa), ccc]], 
  10*Log10[Ek5[10^(zzz - aaa), ccc]], 
  Xline[zzz, Log10[2]],Xline[zzz,0.35271201428301324],
  10*(2*zzz + Log10[2]), 10*(2*zzz - Log10[xtilde]),
  10*(2*zzz + Log10[2*0.69281]), 
  10*(2*zzz - Log10[xtilde] + Log10[(0.69281+.5)/2])
  }, {zzz, -1.02, 1.02}, PlotRange -> {-10.25, 3.25}, ImageSize -> Full, 
  PlotLabel -> None, LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}]

 FindMaximum[10*Log10[S2[10^zzz]],{zzz,-1.02,1.02}]

 FindMaximum[10*Log10[(bbb*10^(zzz-aaa))^3/(Exp[(bbb*10^(zzz-aaa))]-1)],
{zzz,-1.02,1.02}]

 FindMaximum[10*Log10[Ek3[10^(zzz-aaa),ccc]*((bbb*10^(zzz-aaa))^3/
(E^(bbb*10^(zzz-aaa))-1))],{zzz,-1.02,1.02}]

 FindMaximum[10*Log10[Ek5[10^(zzz - aaa), ccc]*((bbb*10^(zzz - aaa))^3/
       (E^(bbb*10^(zzz - aaa)) - 1))],{zzz,-1.02,1.02}]

aaa = 0*Log10[2]; 
bbb = xtilde (*2*Sqrt[2]*); 
ccc = 0.5 (* Q(max) *); 



Plot[{(* Figure 15 *)
  10*Log10[S2[10^zzz]], 
  10*Log10[Ek5[10^zzz, ccc]*S2[10^zzz]],
  Xline[zzz, Log10[2]], Xline[zzz,-3], 10*Log10[S2[10^-3]],
  10*(2*zzz + Log10[2(1-0.0268)]), 
  10*(2*zzz + Log10[2(1-0.5)])
  (* 2 εKmin *)}, 
  {zzz, -3.8, 1.3}, PlotRange -> {-67.25, 10.25}, ImageSize -> Full, 
  PlotLabel -> None, LabelStyle -> {FontFamily -> "Chicago", 12, GrayLevel[0]}]

aaa = 1*Log10[2]; 
bbb = xtilde; 
ccc = 0.5; 
Plot[{(* Figure 16 *)

10*Log10[(bbb*10^(zzz - aaa))^3/(Expp[bbb*10^(zzz - aaa)] - 1)], 
10*Log10[Ek5[10^(zzz - aaa), ccc]*((bbb*10^(zzz - aaa))^3/

      (E^(bbb*10^(zzz - aaa)) - 1))], 10*Log10[Ek5[10^(zzz - aaa), ccc]], 
Xline[zzz, Log10[2]],Xline[zzz,0.35271201428301324]}, 
{zzz, -3.8, 3.4}, PlotRange -> {-67.25, 5.25}, ImageSize -> Full, 
LabelStyle -> {FontFamily -> "Chicago", 10, GrayLevel[0]}]
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