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In math there are some classic problems of number theory which have not been solved 

yet.Two of these problems are as below: 

1. «Pair of twin primes » (where difference is equal to 2 such as pairs of twin 

prime numbers (3;5); (5;7); (11;13); …) are infinite. 

2. «It is possible to show any even number, starting from 4, as a sum of two 

prime numbers » 

2nd problem is known as «Goldbach-Euler problem».  

In order to solve these problems we have compiled a table determining if the numbers 

like 6m-1 and 6m+1 )( Nm  are prime or composite. (Table 3) 

We have solved these problems as below by using some facts and conclusions besides 

Table 3. 

First, let's start with 2nd problem. First problem will be solved along the proof process, 

too. Since 4=2+2; 6=3+3; 8=3+5, then we can solve the problem for the numbers 

greater than 8. It is clear that, we should look at the natural numbers in the form of    

12n-2; 12n; 12n+2; 12n+4; 12n+6 and 12n+8 where Nn . 

According to the divisibility rule for 6, natural numbers are divided into 6 groups as 

following: 
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 1) 6m; 2) 6m+1; 3) 6m+2; 4) 6m+3; 5) 6m+4; 6) 6m+5 Nm  

Since, these groups, which get values greater than 3 are composite numbers, except 

second and sixth, so any prime number which is greater than 3 should be in the form of 

6m+1 or 6m+5 (6m-1). 

Conclusion 1. Any prime number greater than 3 can be shown as 6m+1 or 6m-1.  

Let's write all groups of even natural numbers greater than 8 as following, which we 

showed above as 12n-2; 12n; 12n+2;12n+4; 12n+6;12n+8 : 

12n-2=(6k1-1)+(6k2-1); NkNk  21 ; nkk 221   

12n=(6k1-1)+(6k2+1)   «_________________» 

12n+2=(6k1+1)+(6k2+1) «_______________» 

12n+4=(6k1-1)+(6k2-1) NkNk  21 ; 1221  nkk   

12n+6=(6k1-1)+(6k2+1) «________________» 

12n+8=(6k1+1)+(6k2+1) «________________» 

Now let's figure out the conditions of being prime of the numbers which are in the form 

of 6m-1; 6m+1, where Nm . In order to do so, let's first look for the conditions of 

being composite of the numbers 6m-1; 6m+1 ( Nm )  . 

It is obvious that, there cannot be prime multiplier of  2 and 3 in the composite numbers 

of 6m-1 and 6m+1. So, if 6m-1 and 6m+1 are composite numbers, then each prime 

multiplier of these numbers are not less than 5.  

Therefore, 

Nkk 21;   

)16)(16(16)16)(16(16 2121  kkmkkm  

)16)(16(16)16)(16(16 2121  kkmkkm  

It should be noted that if there are more than 2 multipliers in the 16 m , then number of 

each of 6k1-1 6k1+1; 6k2-1 6k2+1 should be odd. We consider number of multipliers as 

two, while it doesn't affect the whole calculation (it is as (6p-1)(6q-1)(6t-1)=6k-1). 

Let's write 4 possible cases of (2) more detailed: 

6m1+1=(6k1-1)(6k2-1)=6(6k1k2-(k1+k2))+1; m1=6k1k2-(k1+k2) 

6m2-1=(6k1+1)(6k2-1)=6(6k1k2-(k1-k2))-1; m2=6k1k2-(k1-k2) 

6m3-1=(6k1-1)(6k2+1)=6(6k1k2-(k1-k2))-1; m3=6k1k2-(k2-k1) 

(1) 

(2)  



6m4+1=(6k1+1)(6k2+1)=6(6k1k2+(k1+k2))+1; m4=6k1k2+(k1+k2) 

So, we got following result : 

in case of Nkk 21;  

a) if m1=6k1k2-(k1+k2), then 6m1+1 is a composite number  

b) if m2=6k1k2-(k1-k2), then 6m2-1 is a composite number 

c) if m3=6k1k2-(k2-k1), then 6m3-1 is a composite number 

d) if m4=6k1k2+(k1+k2), then 6m4+1 is a composite number 

It is seen from the expressions of m1, m2, m3 and m4 (3), that  m1 and m4 is symmetric 

with respect to k1 and k2 .  m2 and m3 is also symmetric with respect to k1 and k2 . 

 

If           )(6);( 2121211 kkkkkkm   

              )(6);( 2121212 kkkkkkfm   

   

  then,      );();;( 214213 kkmkkfm       

If we take these into consideration, we should look for the solution within the condition 

of m1<m2m3<m4 assuming that 
21 kk  . 

Then we will get following conclusions from the equalities of (3) which we showed 

above. 

Conclusion 2 :  Where Nkk 21,  

If 
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is a composite number.  

 

Conclusion 3 : 

 If  ))()((\)( 324141 mmmmmmm  then 6m-1 

 If  ))()((\)( 324132 mmmmmmm  then 6m+1  

is a prime number.  

 

Conclusion 4 : If )( 4321 mmmmm   , then 6m-1 and 6m+1 are twin primes. 

(4) 

(5) 

(3)  



 

Last conclusion is also seen from the following table:  

      m  

 
/41 mm   /32 mm    = )()( 3241 mmmm   )( 4321 mmmmm   

6m-1 P C C P 

6m+1 C P C P 

   

In the table, P is for prime numbers;  C is for composite numbers. 

And now let's figure out ways to find m1, m2, m3 and m4. It is clear that, 
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In (6), there are a rows and a columns. So, we can write (6) more generally as 

following:  

 (k1;k2)={(a;a); (a+1;a); …, (2a-1;a)}   (7)             Na   

Now let's consider the values of (k1;k2) in (7) in the expressions of m1, m2, m3 and m4 in 

(3). 

 k1=k2=am1=6a
2
-2a; m2=6a

2
; m3=6a

2
; m4=6a

2
+2a 

 (k1;k2)=(a+1;a)m1=6a
2
+4a-1; m2=6a

2
+6a-1; m3=6a

2
+6a+1; m4=6a

2
+8a+1 

 (k1;k2)=(a+2;a)m1=6a
2
+10a-2; m2=6a

2
+12a-2; m3=6a

2
+12a+2; m4=6a

2
+14a+2 

Let's write the expressions of m1, m2, m3 and m4 in the following table: 

      m  

(k1;k2) 
1m  2m  3m  

4m  

(a;a) 6a
2
-2a 6a

2
 6a

2
 6a

2
+2a 

(a+1;a) 6a
2
+4a-1 6a

2
+6a-1 6a

2
+6a+1 6a

2
+8a+1 

(a+2;a) 6a
2
+10a-2 6a

2
+12a-2 6a

2
+12a+2 6a

2
+14a+2 

–––––––– ––––––––– ––––––––– ––––––––––––– ––––––––––––––– 

–––––––– ––––––––– ––––––––– ––––––––––––– ––––––––––––––– 

–––––––– ––––––––– ––––––––– ––––––––––––– ––––––––––––––– 

 Table 1 

 

(6) 



We can easily show that in the Table 1, m1 and m2 are arithmetic series where the 

difference of columns is 6a-1;  m3 and m4 are arithmetic series where the difference of 

columns is 6a+1. 

So, where a, Nn  

m1=(6a-1)(n+a-1)-a 

m2=(6a-1)(n+a-1)+a 

m3=(6a+1)(n+a-1)-a 

m4=(6a+1)(n+a-1)+a 

If we consider (8) in Table 1, then we will get Table 2. 

 1m  

(6a-1)(n+a-1)-a 

2m  

(6a-1)(n+a-1)+a 

3m  

(6a+1)(n+a-1)-a 

4m  

(6a+1)(n+a-1)+a 

a=1 5n-1 5n+1 7n-1 7n+1 

a=2 11(n+1)-2 11(n+1)+2 13(n+1)-2 13(n+1)+2 

a=3 17(n+2)-3 17(n+2)+3 19(n+2)-3 19(n+2)+3 

a=4 23(n+3)-4 23(n+3)+4 25(n+3)-4 25(n+3)+4 

–––– –––––––––––– –––––––––––– –––––––––––– –––––––––––– 

–––– –––––––––––– –––––––––––– –––––––––––– –––––––––––– 

–––– –––––––––––– –––––––––––– –––––––––––– –––––––––––– 

Table 2 

 

In order to show values of all rows of Table 2 as a table, let's convert Table 2 to Table 3: 

(8) 

аларыг. 



 
1n    Nn  

1

15
m

n   
2

15
m

n   
3

17
m

n 
4

17
m

n   

2n    Nn  

1

211
m

n 
2

211
m

n 
3

213
m

n   
4

213
m

n   

3n    Nn  

1

317
m

n   
2

317
m

n   
3

319
m

n   
4

319
m

n   

4n   Nn   

1

423
m

n  
2

423
m

n    

Nn 5n     

1

529
m

n  
2

529
m

n  
3

531
m

n  
4

531
m

n  

……… 

1    4         6        6         8     ……… 

2    9        11      13       15   (20)      (24)      (24)       28    ……… 

3   14       16     (20)     22   (31)       35        37        (41)    (48)       (54)       (54)        60   ……… 

4   19       21      27       29    42        46       (50)       (54)     65         (71)        73        (79)     (88)       96  ……… 

5 
 (24)     26     (34)     (36)    53       (57)       63         67      82        (88)       (92)        98    (111)    (119) 

   140      (150)     (150)      

(160) 

……… 

6   29      (31)   (41)      43    64        68        76         80      99       105        (111)      117    

7  (34)    (36)   (48)     (50)    75       (79)      (89)       93    (116)    

8   39     (41)     55      (57)   (86)       90       102      (106)     

9   44       46      62      64   (97)      101     

10   49       51     (69)    (71)   108     

11  (54)     56      76      78      

12   59       61      83      85      

13   64       66      90     (92)      

14  (69)    (71)   (97)     99      

15   74       76   (104)   (106)      

16  (79)      81      

17   84       (86)      

18  (89)      91      

19   94       96      

20   99       101      

21 (104)      

Table 3  

It is obvious from  the table that,  

if Nt , then we can write: 

m1=(6t-1)n-t 

m2=(6t-1)n+t 

m3=(6t+1)n-t 

m4=(6t+1)n+t         

(9)  

It should be noted that in the table, if we multiply the numbers without 

parentheses in 
41 mm    with 6 and subtract 1, then we will get prime 

numbers; and similarly if we multiply the numbers without parentheses in 

32 mm    with 6 and add 1, then we will get prime numbers.  In the table, if 

we multiply the numbers with 6 which are not in the interval [1;119] and 

subtract 1 or if we multiply with 6 and add 1, then we will get twin primes. 



In the Table 3, the numbers in parentheses which are in the interval [1;119] are the 

numbers included in )()( 3241 mmmm  and  if we multiply these numbers with 6 

and add 1 or subtract 1 we get composite numbers. 

Let us give some examples:  

129 m  6·29-1=173 is a prime number. 

3102 m  6·102+1=613 is a prime number. 

)(30 4321 mmmm    6·30-1=179 is a prime number. 

    6·30+1=181 is a prime number. 

179  and 181 are twin primes.  

Now, let's show how to find the numbers in parentheses. These numbers should 

belong to the intersection of 
43423121 ;;; mmmmmmmm  . In order to find the 

same numbers in the columns of 5n-1 and 7n-1, we should find general solution of 

the  indefinite equation of 5n-1=7k-1. 

Nt
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knkn 
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751715

 

So, these numbers are in the form of 35t-1.  

Therefore,   
692

341





t

t
      

1394

1043





t

t
 

Or for the columns of 5n-1 and 11n+2 we can write 5n-1=11k+25n-11k=3 

It is clear that, since GCF(5;11)=1, then there are numbers such as z;  where 

1115   . 

Let's find   and   by using Euclid algorithm.   

1=11-5·2 

Or  5·(-2)-11·(-1)=1 

2 ; 1   

 

611
3)3(11)6(5

3115

1)1(11)2(5

3115


















tn

knkn
 35  tk  

5n-1=5(11t-6)-1=55t-31 

Using this method we can get following formulas.  



m1 

5n-1 

m2 

5n+1 

m3 

7n-1 

m4 

7n+1 

m1 

11n-2 

m2 

11n+2 

m3 

13n-2 

m4 

13n+2 
…….. 

35t-1 35t+1       …….. 

55t+24 55t+31 77t+20 77t-20     …….. 

65t+24 65t+41 91t+41 91t-41 143t-2 143t+2 221t-51 221t+54 …….. 

85t+54 85t+31 119t+48 119t+71 187t+20 187t-20 247t-54 247t+54 …….. 

95t+54 95t+41 133t+41 133t+92 209t+130 209t+79 299t-119 299t+119 …….. 

115t+4 115t+111 161t+111 161t+50 253t+119     

145t+34 145t+111 203t+111       

155t+119 155t+136        

185t+179 185t+6        

–––––––– –––––––– –––––––– –––––––– –––––––– –––––––– –––––––– ––––––––  

–––––––– –––––––– –––––––– –––––––– –––––––– –––––––– –––––––– ––––––––  

 Table 4  

Where p and q are prime, if the expression of mt+   in Table 4 is get from pn+

=qk+  , then m=pq and  =pt1+ =qt2+ . 

It is seen from the Table 3 that,  

in the row of 
1

15
m

n  ; 
2

15
m

n  ; 
3

17
m

n  ; 
4

17
m

n  ; 
1

211
m

n  ; 
2

211
m

n  ; 
3

213
m

n  ; 
4

213
m

n  ; …;  

m1-s are arithmetic series as a1=5n-1; d=6n-1;  

m2-s are arithmetic series as a1=5n+1; d=6n+1;  

m3-s are arithmetic series as a1=7n-1; d=6n-1; and  

m4-s are arithmetic series as a1=7n+1; d=6n+1.    

So, we know how to continue to fill the table downwards and rightwards. 

Now, let's form sums as k1+k2=2n; k1+k2=2n+1 )( Nn : 

k1+k2=2n    k1+k2=2n+1 

1+(2n-1)=2n   1+2n=2n+1 

2+(2n-2)=2n   2+(2n-1)=2n+1 

3+(2n-3)=2n   3+(2n-2)=2n+1 

---------------    --------------- 

---------------    --------------- 

---------------    --------------- 

n+n=2n    n+(n+1)=2n+1 

 

In (10) and (11) 1st addends indicate k1and 2nd addends indicate k2.  

(10) (11) 



Now let's show that in (10) and (11) there are at least 9 twins which those numbers 

do not belong to the numbers in parentheses in Table 3, or they do not exist in 

Table 3. 

In other words, there are at least 18 twins of k1, k2 which belong to the set of  

))()((\)(())()((\)(( 324132324141 mmmmmmmmmmmm   

or none of them belongs to )( 4321 mmmm  .  

We can see from Table 3 that, there are 18 numbers in parentheses in the interval 

of [1;100]  which are  

 20, 24, 31, 34, 36, 41, 48, 50, 54, 57, 69, 71, 79, 86, 88, 89, 92, 97      (12 ). 

It is obvious that in the rest of (12) until 2n, number of them is not greater than n-9, 

there are at least 18 twins of k1, k2  which none of them is in parentheses, or in the 

table, or only one of them is not in the table. 

Now, let's prove that, number of numbers in the series of (12) until 2n is not 

greater than n-9. We will use the following fact in order to prove our conclusion. 

Fact: 1) If we write the numbers from 1 to 2n in an ascending order with a 

difference  of 2 between each other, number of them will be n.  

A={1, 3, 5, 7, …., 2n-1} n(A)=n 

B={2, 4, 6, 8, …, 2n}      n(B)=n 

2) In the series of natural numbers in an ascending order (until 2n): 

1 – if the number of steps is a1- then it does not affect the whole amount;  

2 – if the number of steps is a2- then it decreases whole amount by a2; 

3 – if the number of steps is a3- then it decreases whole amount by 2a3; 

4 – if the number of steps is a4- then it decreases whole amount by 3a4. 

Therefore, similarly, steps of a1, a2, a3, a4, a5, …, ak decrease the whole amount by 

a2+2a3+3a4+4a5+…+(k-1)ak. 

So, number of them in the interval of [20;2n] will be (2n-19)-(a2+2a3+3a4+…+(k-

1)ak). 

Now,  let's evaluate the series of numbers(which are in parentheses)  until 2n in the 

set of (m1m4)  (m2m3),  (number of terms until 2n in the series of 20, 24, 31, 

34, 36, 41, 48, 50, 54, 57, 69, 71, 79, 86, 88, 89, 92, 97, …  (13) which is in an 



ascending order). This problem will be solved by evaluating the number of terms 

of the numbers in an ascending order which are found as a result of  putting natural 

numbers to t in Table 4. 

Note: Since the numbers in (13) are taken from Table 4, value of each  expression 

which belongs to the table should not exceed 2n. 

Let's look at the difference of numbers of two expressions in Table 4, where 

coefficients of  t are not mutually prime numbers . In those two expressions if the  

common factor of coefficients of t is 5, then difference between them is  

5n-1-(5k-1)=5m{5, 10, …} 

5n-1-(5k+1)=5m-2{3, 8, 13, …} 

5n+1-(5k-1)=5m+2{2, 7, 12, …} 

5n+1-(5k+1)=5m{5, 10, …} 

For this cases the difference is at least 2, 3, 5. 

In Table 4, if the common factor of the coefficients of t is 7 in two expressions, 

then difference between them is  

7n-1-(7k-1)=7m{7, 14, …} 

7n-1-(7k+1)=7m-2{5, 12, …} 

7n+1-(7k-1)=7m+2{2, 9, …} 

7n+1-(7k+1)=7m{7, 14, …}  

In this case the difference is at least 2, 5, 7.  

In Table 4, if the common factor of the coefficients of t is 11 in two expressions, 

then difference between them is  

11n-2-(11k-2)=11m{11, 22, …} 

11n-2-(11k+2)=11m-4{7, 18, …} 

11n+2-(11k-2)=11m+4{4, 17, …} 

11n+2-(11k+2)=11m{11, 22, …}.  

In Table 4, it is clear that the difference is not less than 4, when the common factor 

of the coefficients of t is greater than11 in two expressions. So, in Table 4, if the 

common factor of the coefficients of t is 5 in two expressions, then difference of 

proper numbers is at least 2, 3, 5; 



 if the common factor is 7, then difference is at least 2, 5, 7; 

 if the common factor is 11, then difference is at least 4, 7, 11; 

 if the common factor is 13, then difference is at least 4, 9, 13; 

 if the common factor is 17, then difference is at least 6, 11, 17. 

It is obvious that, if we continue the process, then difference will increase. So, if 

there is a common factor between two expressions in Table 4 and : if the common 

factor is 5 and 7, then the difference of proper numbers will be at least 2; if the 

common factor is greater than 7, then the difference will be at least 4. And now, 

let's evaluate the difference of proper numbers in Table 4, where coefficients of t 

are two mutually prime numbers in these expressions. 

First, let's look at the problem on specific sample and then generalize the 

conclusion. 

Let's look at 55t+24 and 91t+41 where coefficients of t are mutually prime. Let's 

indicate the difference of these expressions with m.  zm  

179155)4191()2455(  mknmkn  (14) 

Since CGF(55;91) is 1, then there are numbers such as N; , where 

19155    

Now, let's find those   and  .         

 

 

So, 

1=17-8·2 

2=19-17·1 

17=36-19·1 

19=55-36·1 

36=91-55·1 

 

Here we can write, 1=17-8·(19-17)=9·17-8·19=9·(36-19)-8·19=36·9-17·19=36·9-

17·(55-36)=36·26-17·55=(91-55)·26-17·55=91·26-55·43 

91·26-55·43=155·(-43)-91·(-26)=1. 

0 



We got general solution of  
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If we take t=1 then, we will get 29;48   . 
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(55·(91t+48(m+17))+24)-(91·(55t+29(m+17))+41)=m 

(5005t+2640(m+17)+24)-(5005t+2639(m+17)+41)=m      (17). 

In (17) by putting  numbers of -4; -3; -2; -1; 0; 1; 2; 3 and 4 for m, we can write 

proper differences as following: 

m=-4 (5005t+34344)-(5005t+34348)=-4  

m=-3 (5005t+36984)-(5005t+36987)=-3 

m=-2 (5005t+39624)-(5005t+39626)=-2 

m=-1 (5005t+42264)-(5005t+42265)=-1 

m=0 (5005t+44904)-(5005t+44904)=0 

m=1 (5005t+47544)-(5005t+47543)=1 

m=2 (5005t+50184)-(5005t+50182)=2 

m=3 (5005t+52824)-(5005t+52821)=3 

m=4 (5005t+55464)-(5005t+55460)=4 

If we simplify the numbers by eliminating the multiples of 5005 , then we will get 

 (5005t+4314)-(5005t+4318)=-4 

(5005t+1949)-(5005t+1952)=-3 

(5005t+4589)-(5005t+4591)=-2 

(5005t+2224)-(5005t+2225)=-1 

(5005t+2499)-(5005t+2498)=1 

(5005t+134)-(5005t+132)=2 

(5005t+2774)-(5005t+2771)=3 

(5005t+409)-(5005t+405)=4 



4318+405=1952+2771=4591+132=2225+2498=4723 

As a conclusion, unchanged sum which is equal to 4723 shows that there is the 

same density among the numbers in parentheses such as 55t+24 and 91t+41 when 

they are in an ascending order. 

132; 134; 405; 409; 1949; 1952; 2224; 2225; 2498; 2499; 2771; 2774; 4314; 4318 

difference 2      difference 4        difference 3      difference 1        difference 1         difference 3        difference 4 

and 4589; 4591 

difference 2 

The order of the differences will be repeated periodically as below, if we add 5005t 

to each of these numbers, where Nt : 

2; 4; 3; 1; 1; 3; 4; 2  

Now, let's look at general case, to the expressions of pqt1+a and p1q1t2+b whose  

coefficients of t are mutually prime numbers in Table 4. Let's say (pqt1+a)-

(p1q1t2+b)=m. Here, t1 and t2 are variables,  p; q; p1; q1N,  m; a; b z . And 

GCF(pq; p1q1)=1. 

Let's indicate the inequality as pqt1-p1q1t2=m+b-a , GCF (pq; p1q1)=1 N , , 

so there are numbers such as  and  , where 111   qppq . 

Therefore, pq (m+b-a)-p1q1  (m+b-a)=m+b-a. 

From here, 

  pqt1-p1q1t2=m+b-a 

  pq (m+b-a)-p1q1  (m+b-a)=m+b-a 

then,  t1=p1q1t+ (m+b-a); t2=pqt+ (m+b-a). Here zt . 

If we consider t1 and t2 in (pqt1+a)-(p1q1+b)=m, then (pqp1q1t+pq( (m+b-a))+a)-

(p1q1pqt+p1q1( (m+b-a)+b)=m. 

By substituting m with (-m) we will get 

 (pqp1q1t+pq( (-m+b-a))+a)-(p1q1pqt+p1q1( (-m+b-a))+b)=-m. 

If x-m and xm are coordinates, where 

x-m=pqp1q1t+pq( (-m+b-a))+a 

xm=pqp1q1t+pq( (m+b-a))+a  

then x-m+xm=2(pqp1q1t+pq( (b-a)+a) will not depend on m.  



So, our conclusion for specific case is also true for general case. 

The sum is not dependent on m. So, the sum for p, q, a, b in any m is the same. 

Therefore, difference of the proper numbers will be 1 only if the coefficients of t 

are mutually prime numbers in any two expressions in Table 4. Also, the number 

of expressions is the same whose differences is  1, 2, 3, 4, … m, where the length 

of interval is pqp1q1. We have showed that the difference of two proper numbers is 

not 1, if the coefficients of t are not mutually prime numbers in any two 

expressions in Table 4. So, we came to the following conclusion : 

Conclusion 5:  In Table 3, in the series of (13) where the numbers in parentheses 

are in an ascending order, the number of consecutive numbers, whose difference is 

4, are much more than the number of consecutive numbers whose difference is 1. 

Conclusion 6:  In each column, in Table 3, number of the numbers in parentheses 

(except repeated numbers in the columns which are in left) are not greater than 

number of remains in the column. 

So, number of the numbers until 2n are not greater than (2n-19):2 ,or n-9 in the 

series of (13). Therefore, when they are in (10) and (11), there will not be any 

number such as (m) at least in 9 rows. 

Now let's solve the second problem which we indicated in the first page. Addends 

are the numbers from 1 to 2n-1 in (10), and the numbers from 1 to 2n in (11). We 

showed that, number of those which belong to (13) are not greater than n-9. Then, 

in each of the series of (10) and (11), there are at least 9 rows which none of two 

addends in these rows exists in (13). Thus, appropriate (k1)s and (k2)s for those 

rows would be in following cases: 

k1; k2m1m46k1-1, 6k2-1 are prime numbers 

k1; k2m2m36k1+1, 6k2+1 are prime numbers 

16,16 21

322

411









kk

mmk

mmk
 are prime numbers 

16,16 21

412

321









kk

mmk

mmk
 are prime numbers 

I  

II  

III 












2

411

Table3k

mmk















16

16

16

2

2

1

k

k

k

 are prime numbers 










Table3k

mmk

2

321















16

16

16

2

2

1

k

k

k

 are prime numbers 










412

1

mmk

Table3k















16

16

16

2

1

1

k

k

k

 are prime numbers 










322

1

mmk

Table3k















16

16

16

2

1

1

k

k

k

 are prime numbers 

Table3kk 21;





















16

16

16

16

2

2

1

1

k

k

k

k

 are prime numbers 

If we consider I – VIII in (1), we will indicate that any even number greater than 8 

is a sum of two prime numbers. 

And now, let's show solution of the first problem. We indicated in the solution of 

previous problem that, any number which doesn't exist in Table 3, determines one 

pair of twin primes. That's why, indicating that the numbers which do not exist in 

Table 3 are infinite, is a solution of the problem. 

In Table 3, let us assign the set of numbers which are not in the columns of  

5n-1; 5n+1  as  A5;  

7n-1; 7n+1  as  A7; 

11n-2; 11n+2  as  A11; 

13n-2; 13n+2  as  A13; 

------------------------------------------------------------------------ 

------------------------------------------------------------------------ 

------------------------------------------------------------------------ 

It is clear that,  

A5={5n; 5n+2; 5n+3} 

IV 

V 

VI 

VII 

VIII 



A7={7n; 7n+2; 7n+3; 7n+4; 7n+5} 

A11={11n; 11n+1; 11n+3; 11n+4; 11n+5; 11n+6; 11n+7; 11n+8; 11n+10} 

----------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------- 

--------------------------------------------------------------------------------------------- .  

Let's write sets of A5; A7; A11; A13 … more generally : 

A5=5n1+p1; p1={0;2;3}; Nn 1
 

A7=7n2+p2; p2={0;2;3;4;5}; Nn 2
 

A11=11n3+p3; p3={0;1;3;4;5;6;7;8;10}; Nn 3
 

A13=13n4+p4; p4={0;1;3;4;5;6;7;8;9;10;12}; Nn 4
 

––––––––––––––––––––––––––––––––––––––––– 

––––––––––––––––––––––––––––––––––––––––– 

–––––––––––––––––––––––––––––––––––––––––  

It is obvious that A5A7 is a set of natural numbers which do not exist in the first 

four columns of Table3, and A5A7A11 is a set of  natural numbers which do not 

exist in the first six columns of Table3. 

Firstly, let us find a general formula for the numbers in A5A7. 

5n1+p1=7n2+p2  5n1-7n2=p2-p1;  

Since GCF(5;7)=1, for the variables n1 and n2, we can always find solutions with 

natural numbers for this equation. When solving the second problem, we have 

showed the solution of this kind of problems by using Euclid algorithm.  

It is clear that, 2;3   , in the equation of 175   . From here, 5·3-7·2=1 
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As a result we get, p1={0;2;3} p2={0;2;3;4;5} and when zt  then the numbers 

which belong to A5A7 are found with the formula of x(t)=35t+15p2-14p1 (19). 

Here zt , Ntx )( .  

(18) 



 While n(A5)=3; n(A7)=5, then we can consider possible values of p1 and p2 in (19) 

and since n(A5)·n(A7)=3·5=15, then we will get 15 different expressions of x(t) as 

following: 
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    III  p1=3 
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The multiples of 35 have been omitted in the expressions. 

We can indicate all of fifteen expressions of x(t) in a short form with following 

formula : 

 x(t)=35t+a; a={0,2,3,5,7,10,12,17,18,23,25,28,30,32,33}    (20) 

It is clear from the formula that, there are infinite number of natural numbers in 

Table 3 which do not exist in the columns of 17;15  nn . 

And now let's show that there are infinite number of natural numbers in x(t), which 

do or do not exist in the columns of 11n-2; 11n+2 2n  in Table 3. We can write 

the numbers in 5th and 6th columns as 11k+q 2k Nk  and q={-2;2}.If we solve 

the expression of x(t)=35t+a which do not exist in the first four columns of Table 

3,  by writing as 35t+a=11k+q, then we will get  

    y(t)=385t+176a-175q      (21) 

If we consider the values of a and q, we will see that there are infinite number of 

solutions of this equation. So, we get that there are infinite number of numbers in 

the 5th and 6th columns of table in x(t).  And now let's show that there are infinite 

number of numbers in x(t) (in other words A5A7) which do not exist in the 5th 

and 6th columns of Table 3. In order to do so, we must solve the equation of 

35t+a=11n3+p3 using the value of a in (20), and the value of p3 in (18). The 

solution will be as      

     z(t)=385t+176a-175p3     (22) 

It is obvious that there will be infinite number of numbers in )(tz . 

So, we came to the following conclusion: 



Conclusion 7: There are infinite number of natural numbers which do not exist in 

the first four columns of Table 3 and those which do or do not exist in next two 

columns are also infinite. 

It is clear from the process that, there will always be solution for each created 

linear equation with two variables because the coefficients of the variables will be 

mutually prime numbers. If we continue the process rightward, then we will get the 

following conclusion: 

Conclusion 8: There are infinite number of numbers which do not exist in Table 3. 

And this shows that, there are infinite number of twin primes. 

Both of the problems have been solved. 
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