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Preface

In this book, we study the notions of Smarandache n-structure CI-

algebras and Smarandache weak BE-algebras.

Smarandache algebraic structures have been studied in a series of

eleven books by W. B. Vasantha Kandasamy, one book by Jaiyeola Temi-

tope Gbolahan, and tens of more books by W. B. Vasantha Kandasamy

and Florentin Smarandache, including the neutrosophic algebraic struc-

tures as well. The study of Smarandache algebraic structures has caused

a shift of paradigm in the study of algebraic structures. Smarandache al-

gebraic structures simultaneously analyses two or more distinct algebraic

structures.
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There are three types of such structures: a) Smarandache Strong

Structures, b) Smarandache Weak Structures), and c) Smarandache Strong-

Weak Structures.

A Smarandache Strong Structure on a set S means a structure on S

that has a proper subset P with a stronger structure.

By proper subset of a set S, we mean a subset P of S, different from

the empty set, from the original set S, and from the idempotent elements

if any.

In any field, a Smarandache strong n-structure on a set S means a

structure {w0} on S such that there exists a chain of proper subsets

Pn−1 < Pn−2 < < P2 < P1 < S

where ′ <′ means ’included in’, whose corresponding structures verify the

inverse chain

{wn−1} > {wn−2} > > {w2} > {w1} > {w0}

where ′ >′ signifies ’strictly stronger’ (i.e., structure satisfying more ax-

ioms).
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And by structure on S we mean the strongest possible structure {w}

on S under the given operation(s).

As a particular case, a Smarandache strong 2-algebraic structure (two

levels only of structures in algebra) on a set S, is a structure {w0} on S

such that there exists a proper subset P of S, which is embedded with a

stronger structure {w1}.

For example, a Smarandache strong semigroup is a semigroup that

has a proper subset which is a group. Also, a Smarandache strong ring

is a ring that has a proper subset which is a field.

Properties of Smarandache strong semigroups, groupoids, loops, bi-

groupoids, biloops, rings, birings, vector spaces, semirings, semivector

spaces, non-associative semirings, bisemirings, near-rings, non-associative

near-ring, binear-rings, fuzzy algebra and linear algebra are presented in

the below books together with examples, solved and unsolved problems,

and theorems.

Also, applications of Smarandache strong groupoids, near-rings, and
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semirings in automaton theory, in error correcting codes, in the construc-

tion of S-sub-biautomaton, in social and economic research can be found

in the literatures.

A Smarandache Weak Structure on a set S means a structure on S

that has a proper subset P with a weaker structure.

By proper subset of a set S, we mean a subset P of S, different from

the empty set, from the original set S, and from the idempotent elements

if any.

In any field, a Smarandache weak n-structure on a set S means a

structure {w0} on S such that there exists a chain of proper subsets

Pn−1 < Pn−2 < ... < P2 < P1 < S

, where ′ >′ means ’included in’, whose corresponding structures verify

the chain

{wn−1} < {wn−2} < < {w2} < {w1} < {w0}

where ′ <′ signifies ’strictly weaker’ (i.e., structure satisfying less axioms).
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And by structure on S we mean a structure {w} on S under the

given operation(s). As a particular case, a Smarandache weak 2-algebraic

structure (two levels only of structures in algebra) on a set S, is a struc-

ture {w0} on S such that there exists a proper subset P of S, which is

embedded with a weaker structure {w1}.

For example, a Smarandache weak monoid is a monoid that has a

proper subset which is a semigroup. Also, a Smarandache weak ring is a

ring that has a proper subset which is a near-ring.

A Smarandache Strong-Weak Structure on a set S means a structure

on S that has two proper subsets: P with a stronger structure and Q

with a weaker structure. By proper subset of a set S, we mean a subset

P of S, different from the empty set, from the original set S, and from

the idempotent elements if any.

In any field, a Smarandache strong-weak n-structure on a set S means

a structure {w0} on S such that there exist two chains of proper subsets

Pn−1 < Pn−2 < ... < P2 < P1 < S
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and

Qn−1 < Qn−2 < ... < Q2 < Q1 < S

where ′ <′ means ’included in’, whose corresponding stronger structures

verify the chain

{wn−1} > {wn−2} > ... > {w2} > {w1} > {w0}

and respectively the weaker structures verify the chain

{vn−1} < {vn−2} < ... < {v2} < {v1} < {v0}

where ′ >′ signifies ’strictly stronger’ (i.e. structure satisfying more ax-

ioms) and ′ <′ signifies ’strictly weaker’ (i.e. structure satisfying less

axioms). And by structure on S we mean a structure {w} on S under

the given operation(s).

As a particular case, a Smarandache strong-weak 2-structure (two

levels only of structures in algebra) on a set S, is a structure {w0} on

S such that there exist two proper subsets P and Q of S, where P is

embedded with a stronger structure than {w0}, while Q is embedded
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with a weaker structure than {w0}.

For example, a Smarandache strong-weak monoid is a monoid that

has a proper subset which is a group, and another proper set which is

a semigroup. Also, a Smarandache strong-weak ring is a ring that has

a proper subset which is a field, and another proper subset which is a

near-ring.

See

http://fs.gallup.unm.edu/SmarandacheStrongStructures.htm

http://fs.gallup.unm.edu/SmarandacheWeakStructures.htm

http://fs.gallup.unm.edu/SmarandacheStrong-WeakStructures.htm

This book gives a lot of scope for the reader to developing the subject.

This book has three chapters.

In Chapter one, an elaborate recollection of BE/CI-algebras are

given. It also gives notions about these algebraic structures and their

properties in details.

Smarandache structure on CI-algebras, Smarandache filter and Smaran-
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dache ideals are defined and discussed in Chapter two.

Chapter three defines the notion of Smarandache weak BE-algebra,

Q-Smarandache filters and Q-Smarandache ideals.

Arsham Borumand Saeid

2013- Kerman
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1 Introduction and Preliminaries

The processing of certain information, especially inferences, is based on

certain information, and it is done on classical two-valued logic. Logic

appears in a ‘scared’ (respectively ‘profane’) form which is dominant in

proof theory (especially in model theory). The role of logic in mathe-

matics and computer science is two folded - as a tool for applications in

both areas, and a technique for laying the foundations.

Non-classical logic including many-valued logic, fuzzy logic, neutro-

sophic logic, etc. takes advantage in front of the classical logic to handle

information with various facets of uncertainty, such as fuzziness, random-

ness, and so on. Non-classical logic has become a formal and useful tool

for computer science to deal with fuzzy and especially neutrosophic in-

formation and uncertain information. Among all kinds of uncertainties,

incomparability is an important one which can be encountered in our life.

In recent years, motivated by both theory and application, the study

of t-norm and N-norm-based logic systems and the corresponding pseudo-
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logic systems has been become a greater focus in the field of logic. Here,

t-norm and N-norm-based algebraic investigations were first done ac-

cording to the corresponding algebraic investigations, and in the case of

pseudo-logic systems, the algebraic development was first done according

to the corresponding logical development.

As it is well known, BCK/BCI-algebras are two classes of algebras

of logic. They were introduced by Imai and Iseki [11, 12]. BCI-algebras

are generalizations of BCK-algebras. Most of the algebras related to the

t-norm based logic, such as MTL-algebras, BL-algebras [9], hoop, MV -

algebras and Boolean algebras et al., are extensions of BCK-algebras.

The Smarandache algebraic structures theory was introduced in 1973

by Florentin Smarandache. In [14], Kandasamy studied the Smarandache

groupoids, sub-groupoids, ideal of groupoids, seminormal sub groupoids,

Smarandache Bol groupoids, and strong Bol groupoids and obtained

many interesting results about them. Smarandache semigroups are very

important for the study of congruences, and they were studied by F.
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Smarandache since 1973. R. Padilla studied the first Smarandache alge-

braic structures in 1998.

In [13] Y. B. Jun discussed the Smarandache structure in BCI–

algebras. He introduced the notion of Smarandache (positive implica-

tive, commutative, implicative) BCI–algebras, Smarandache subalge-

bras and Smarandache ideals and investigated some related properties.

In [5], Borumand Saeid and Namdar studied the concept of Smarandache

BCH–algebras and obtained many interesting results about Smaran-

dache (fresh, clean and fantastic) ideal in a BCH–algebras. Smaran-

dache BL–algebras have been invented by Borumand Saeid et. al [6],

and they deal with Smarandache ideal structures in Smarandache BL–

algebras. A. Ahadpanah and A. Borumand Saeid introduced the notion

of Smarandache hyper BCC-algebras [1].

Recently, H. S. Kim and Y. H. Kim defined a BE–algebra [16]. S. S.

Ahn and K. S. So defined the notion of ideals in BE–algebras, and then

stated and proved several characterizations of such ideals [3]. In [18], B.
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L. Meng introduced the notion of an CI–algebra as a generation of a

BE–algebra.

The notion of BCK-algebra was formulated first in 1966 by K. Iseki,

a Japanese mathematician. This notion is originated from two differ-

ent ways. One of the motivations is based on set theory. In set theory,

there are three most elementary and fundamental operations introduced

by L. Kantorovic and E. Livenson to make a new set from the old sets.

These fundamental operations are union, intersection and the set differ-

ence. Then, as a generalization of those three operations and properties,

we have the notion of Boolean algebra. If we take both the union and

the intersection as a general algebra, the notion of distributive lattice is

obtained. Moreover, if we consider the notion of union or intersection,

we have the notion of an upper semilattice or a lower semilattice. But

the notion of set difference was not considered systematically before K.

Iseki.

Another motivation is taken from classical and non-classical proposi-
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tional calculus. There are some systems which contain the only implica-

tion functor among the logical functors. These examples are the systems

of positive implicational calculus, weak positive implicational calculus by

A. Church, and BCI, BCK-systems by C. AS. Meredith.

We know the following simple relations in set theory:

(A−B)− (A− C) ⊂ C −B

A− (A−B) ⊂ B

In propositional calcului, these relations are denoted by

(p −→ q) −→ ((q −→ r) −→ (p −→ r))

p −→ ((p −→ q) −→ q)

From these relationships, K. Iseki introduced a new notion called a

BCK-algebra.

Definition 1.1 [10] Let X be a set with a binary operation “ ∗ ” and a

constant “0”. Then (X, ∗, 0) is called a BCK-algebra if it satisfies the

following conditions:

13



(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(II) (x ∗ (x ∗ y)) ∗ y = 0,

(III) x ∗ x = 0,

(IV) 0 ∗ x = 0,

(V) x ∗ y = 0 and y ∗ x = 0 imply x = y.

for all x, y, z ∈ X.

For brevity we also call X a BCK-algebra. If in X we define a binary

relation “ ≤ ” by x ≤ y if and only if x ∗ y = 0, then (X, ∗, 0) is a

BCK-algebra if and only if it satisfies the following: For all x, y ∈ X;

(i) (x ∗ y) ∗ (x ∗ z) ≤ z ∗ y,

(ii) x ∗ (x ∗ y) ≤ y,

(iii) x ≤ x,

(iv) 0 ≤ x,

(v) x ≤ y and y ≤ x imply x = y.

Theorem 1.2 [10] In a BCK-algebra (X, ∗, 0), we have the following

properties:
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For all x, y, z ∈ X;

(i) x ≤ y implies z ∗ y ≤ z ∗ x,

(ii) x ≤ y and y ≤ z implies x ≤ z,

(iii) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(iv) x ∗ y ≤ z implies x ∗ z ≤ y,

(v) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,

(vi) x ≤ y implies x ∗ z ≤ y ∗ z,

(vii) x ∗ y ≤ x,

(vii) x ∗ 0 = x.

Definition 1.3 [10] If there is an element 1 ∈ X of a BCK-algebra X

satisfying x ≤ 1 for all x ∈ X, then the element 1 is called the unit of

X. A BCK-algebra with a unit is called to be bounded.

Theorem 1.4 [10] Let (X, ∗, 0) be a BCK-algebra and 1 6∈ X. We

define the operation ” ∗′ ” on X = X ∪ {1} as follows
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x ∗′ y =



x ∗ y if x, y ∈ X

{0} if x ∈ X and y = 1

1 if x = 1 and y ∈ X

0 if x = y = 1,

Then (X, ∗′, 0) is a bounded BCK-algebra with unit 1.

Definition 1.5 [10] Let (X1, ∗1, 0) and (X2, ∗2, 0) be two BCK-algebras

and X1 ∩X2 = {0}. Suppose X = X1 ∪X2, define ∗ on X as follows:

x ∗ y =



x ∗1 y if x and y belong to X1

x ∗2 y if x and y belong to X2

x if x and y do not belong to the same algebra

Next we will verify that (X, ∗, 0) is a BCK-algebra, this algebra is

called to be the union of (X1, ∗1, 0) and (X2, ∗2, 0), denoted by X1
⊕
X2.

Theorem 1.6 [10] Let (Xi, ∗i, 0i), (i ∈ I) be an indexed family of BCK-

algebras and let
∏
i∈I
Xi be the set of all mappings f : I −→ ∪i∈IXi, where
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f(i) ∈ Xi for all i ∈ I. For f, g ∈
∏
i∈I
Xi, we define f ∗ g by (f ∗

g)(i) = f(i) ∗ g(i) for every i ∈ I, and by 0 we mean 0(i) = 0i, ∀i ∈ I.

Then (
∏
i∈I
Xi, ∗, 0) is a BCK-algebra, which is called the direct product of

Xi(i ∈ I).

Definition 1.7 [10] Let (X, ∗, 0) be a BCK-algebra and S be a non-

empty subset of X. Then S is called to be a subalgebra of X if, for any

x, y ∈ S, x ∗ y ∈ S, i.e., S is closed under the binary operation ∗ of X.

Definition 1.8 [10] A non-empty subset I of a BCK-algebra X is called

an ideal of X if for all x, y ∈ X:

(i) 0 ∈ I

(ii) x ∗ y ∈ I and y ∈ I imply that x ∈ I.

Definition 1.9 [10] Let X be a non-empty set with a binary operation

“ ∗ ” and a constant “0”. Then (X, ∗, 0) is called a BCI-algebra if it

satisfies the following conditions:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
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(ii) (x ∗ (x ∗ y)) ∗ y = 0,

(iii) x ∗ x = 0,

(iv) x ∗ y = 0 and y ∗ x = 0 imply x = y,

for all x, y, z ∈ X.

We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0.

If a BCI-algebra X satisfies 0 ∗x = 0 for all x ∈ X, then we say that

X is a BCK-algebra.

A nonempty subset S of X is called a subalgebra of X if x ∗ y ∈ S

for all x, y ∈ S.

We refer the reader to the book [10] for further information regarding

BCK/BCI-algebras.

Definition 1.10 [16] An algebra (X; ∗, 1) of type (2, 0) is called a BE–

algebra if

(BE1) x ∗ x = 1 for all x ∈ X ;

(BE2) x ∗ 1 = 1 for all x ∈ X ;
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(BE3) 1 ∗ x = x for all x ∈ X ;

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X (exchange).

We introduce a relation ”≤” on X by x ≤ y if and only if x ∗ y = 1.

Proposition 1.11 [16] If (X; ∗, 1) is a BE–algebra, then x∗ (y ∗x) = 1,

for any x, y ∈ X.

Definition 1.12 [17] An algebra (X; ∗, 1) of type (2, 0) is called a CI–

algebra if

(CI1) x ∗ x = 1 for all x ∈ X;

(CI2) 1 ∗ x = x for all x ∈ X;

(CI3) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

Definition 1.13 [15] An algebra (X; ∗, 1) of type (2, 0) is called a dual

BCK–algebra if

(BE1) x ∗ x = 1 for all x ∈ X;

(BE2) x ∗ 1 = 1 for all x ∈ X;
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(dBCK1) x ∗ y = y ∗ x = 1 =⇒ x = y;

(dBCK2) (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1;

(dBCK3) x ∗ ((x ∗ y) ∗ y) = 1.

Lemma 1.14 [15] Let (X; ∗, 1) be a dual BCK–algebra and x, y, z ∈ X.

Then:

(a) x ∗ (y ∗ z) = y ∗ (x ∗ z),

(b) 1 ∗ x = x.

Proposition 1.15 [24] Any dual BCK–algebra is a BE–algebra.

Example 1.16 [24] Let X = {1, 2, . . .} and the operation ∗ be defined

as follows:

x ∗ y =


y if x = 1

1 otherwise

then (X; ∗, 1) is a BE–algebra, but it is not a dual BCK–algebra.

Definition 1.17 [8] An algebra (X; ∗, 1) of type (2, 0) is called an im-

plication algebra if for all x, y, z ∈ X the following identities hold:
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(I1) (x ∗ y) ∗ x = x;

(I2) (x ∗ y) ∗ y = (y ∗ x) ∗ x;

(I3) x ∗ (y ∗ z) = y ∗ (x ∗ z).

Proposition 1.18 [8] If (X; ∗, 1) is an implication algebra, then (X; ∗, 1)

is a dual BCK–algebra.

Proposition 1.19 [24] Any implication algebra is a BE–algebra.

Definition 1.20 [16] Let (X, ∗, 1) be a BE–algebra and F be a non-

empty subset of X. Then F is said to be a filter of X if

(F1) 1 ∈ F ;

(F2) x ∗ y ∈ F and x ∈ F imply y ∈ F .

Definition 1.21 [2] A non-empty subset I of X is called an ideal of X

if it satisfies:

(I1) ∀x ∈ X and ∀a ∈ I imply x ∗ a ∈ I , i.e, X ∗ I ⊆ I ;

(I2) ∀x ∈ X , ∀a, b ∈ I imply (a ∗ (b ∗ x)) ∗ x ∈ I.
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Lemma 1.22 [3] A nonempty subset I of X is an ideal of X if and only

if it satisfies

1. 1 ∈ I;

2. (∀x, y ∈ X) (∀y ∈ I) (x ∗ (y ∗ z) ∈ I ⇒ x ∗ z ∈ I).

Proposition 1.23 [2] Let I be an ideal of X. If a ∈ I and a ≤ x, then

x ∈ I.

Definition 1.24 [17] Let X be a CI–algebra and x, y ∈ X. Define

A(x, y) by

A(x, y) := {z ∈ X : x ∗ (y ∗ z) = 1}

We call A(x, y) an upper set of x and y.

Definition 1.25 [24] A CI–algebra X is said to be self distributive if

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X

Definition 1.26 [16] A BE–algebra X is said to be self distributive if

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X
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Proposition 1.27 [23] Let X be a self distributive BE–algebra. Then

for all x, y, z ∈ X the following statements hold:

(1) if x ≤ y, then z ∗ x ≤ z ∗ y ;

(2) y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) ;

Definition 1.28 [24] A BE–algebra X is called commutative if (x∗ y)∗

y = (y ∗ x) ∗ x for any x, y ∈ X.

Theorem 1.29 [24] If (X, ∗, 1) is a commutative BE–algebra, then (X, ∗, 1)

is a dual BCK–algebra.

Definition 1.30 [16] An algebra (X; ∗, 1) of type (2, 0) is called a BE–

algebra if

(BE1) x ∗ x = 1 for all x ∈ X ;

(BE2) x ∗ 1 = 1 for all x ∈ X ;

(BE3) 1 ∗ x = x for all x ∈ X ;

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X (exchange).
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We introduce a relation ”≤” on X by x ≤ y if and only if x ∗ y = 1.

Proposition 1.31 [16] If (X; ∗, 1) is a BE–algebra, then x∗ (y ∗x) = 1,

for any x, y ∈ X.

Definition 1.32 [17] An algebra (X; ∗, 1) of type (2, 0) is called a CI–

algebra if

(CI1) x ∗ x = 1 for all x ∈ X;

(CI2) 1 ∗ x = x for all x ∈ X;

(CI3) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

Definition 1.33 [15] An algebra (X; ∗, 1) of type (2, 0) is called a dual

BCK–algebra if

(BE1) x ∗ x = 1 for all x ∈ X;

(BE2) x ∗ 1 = 1 for all x ∈ X;

(dBCK1) x ∗ y = y ∗ x = 1 =⇒ x = y;

(dBCK2) (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1;
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(dBCK3) x ∗ ((x ∗ y) ∗ y) = 1.

Lemma 1.34 [15] Let (X; ∗, 1) be a dual BCK–algebra and x, y, z ∈ X.

Then:

(a) x ∗ (y ∗ z) = y ∗ (x ∗ z),

(b) 1 ∗ x = x.

Proposition 1.35 [24] Any dual BCK–algebra is a BE–algebra.

Example 1.36 [24] Let X = {1, 2, . . .} and the operation ∗ be defined

as follows:

x ∗ y =


y if x = 1

1 otherwise

then (X; ∗, 1) is a BE–algebra, but it is not a dual BCK–algebra.

Definition 1.37 [8] An algebra (X; ∗, 1) of type (2, 0) is called an im-

plication algebra if for all x, y, z ∈ X the following identities hold:

(I1) (x ∗ y) ∗ x = x;

(I2) (x ∗ y) ∗ y = (y ∗ x) ∗ x;
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(I3) x ∗ (y ∗ z) = y ∗ (x ∗ z).

Proposition 1.38 [8] If (X; ∗, 1) is an implication algebra, then (X; ∗, 1)

is a dual BCK–algebra.

Proposition 1.39 [24] Any implication algebra is a BE–algebra.

Definition 1.40 [16] Let (X, ∗, 1) be a BE–algebra and F be a non-

empty subset of X. Then F is said to be a filter of X if

(F1) 1 ∈ F ;

(F2) x ∗ y ∈ F and x ∈ F imply y ∈ F .

Definition 1.41 [2] A non-empty subset I of X is called an ideal of X

if it satisfies:

(I1) ∀x ∈ X and ∀a ∈ I imply x ∗ a ∈ I , i.e, X ∗ I ⊆ I ;

(I2) ∀x ∈ X , ∀a, b ∈ I imply (a ∗ (b ∗ x)) ∗ x ∈ I.

Lemma 1.42 [3] A nonempty subset I of X is an ideal of X if and only

if it satisfies
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1. 1 ∈ I;

2. (∀x, y ∈ X) (∀y ∈ I) (x ∗ (y ∗ z) ∈ I ⇒ x ∗ z ∈ I).

Proposition 1.43 [2] Let I be an ideal of X. If a ∈ I and a ≤ x, then

x ∈ I.

Definition 1.44 [17] Let X be a CI–algebra and x, y ∈ X. Define

A(x, y) by

A(x, y) := {z ∈ X : x ∗ (y ∗ z) = 1}

We call A(x, y) an upper set of x and y.

Definition 1.45 [24] A CI–algebra X is said to be self distributive if

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X

Definition 1.46 [16] A BE–algebra X is said to be self distributive if

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X

Proposition 1.47 [23] Let X be a self distributive BE–algebra. Then

for all x, y, z ∈ X the following statements hold:
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(1) if x ≤ y, then z ∗ x ≤ z ∗ y ;

(2) y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) ;

Definition 1.48 [24] A BE–algebra X is called commutative if (x∗ y)∗

y = (y ∗ x) ∗ x for any x, y ∈ X.

Theorem 1.49 [24] If (X, ∗, 1) is a commutative BE–algebra, then (X, ∗, 1)

is a dual BCK–algebra.
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2 Smarandache Weak BE-algebras

Note that every BE–algebra is a CI–algebra, but the converse is not true.

A CI–algebra which is not a BE–algebra is called a proper CI–algebra.

Definition 2.1 A Smarandache weak BE–algebra X is said to be a BE–

algebra X in which there exists a proper subset Q of X such that

(S1) 1 ∈ Q and |Q| ≥ 2;

(S2) Q is a CI–algebra under the operation of X.

Example 2.2 Let X := {1, a, b, c} be a set with the following table.

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 1

c 1 1 1 1

Then (X, ∗, 1) is a BE–algebra. If Q is one of the sets {1, a}, {1, b},

{1, c}, {1, a, b} or {1, a, c}, then Q is a CI–algebra. So X is a Smaran-
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dache weak BE–algebra.

Example 2.3 Let X := {1, a, b, c} be a set with the following table.

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 a

c 1 1 1 1

Then it is a BE–algebra, but Q = {1, b, c} is not a CI-algebras and X

is not a Smarandache weak BE-algebras.

Definition 2.4 A nonempty subset F of a BE–algebra X is called a

Smarandache filter of X related to Q (or briefly, Q–Smarandache filter

of X) if it satisfies:

(SF1) 1 ∈ F ;

(SF2) (∀y ∈ Q)(∀x ∈ F )(x ∗ y ∈ F ⇒ y ∈ F ).

Example 2.5 In Example 3.2, if Q = {1, a}, then F = {1, b} is a Q-

Smarandache filter of X, but F = {1, a} is not a Smarandache filter of
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X.

Note. If F is a Smarandache filter of a BE–algebra X related to

every CI–algebra contained in X, we simply say that F is a Smarandache

filter of X.

Proposition 2.6 If {Fλ : λ ∈ ∆} is an indexed set of Q–Smarandache

filters of a BE–algebra X, where ∆ 6= Ø, then F = ∩{Fλ : λ ∈ Λ} is a

Q–Smarandache filter of X.

Proposition 2.7 Any filter F of a BE–algebra X is a Q–Smarandache

filter of X.

Note. By the following example we show that the converse of above

proposition is not correct in general.
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Example 2.8 Let X := {1, a, b, c} be a set with the following table.

∗ 1 a b c

1 1 a b c

a 1 1 b c

b 1 a 1 c

c c c c 1

Then X is a BE–algebra and Q = {1, b} is a CI–algebra which is properly

contained in BE–algebra X and F = {1, b} is a Q–Smarandache filter of

X but it is not a filter of X because b ∗ a ∈ F and b ∈ F , but a /∈ F .

Proposition 2.9 If F is a Q–Smarandache filter F of a self distributive

BE–algebra X, then (∀x, y, z ∈ Q)(z∗(y∗x) ∈ F, z∗y ∈ F ⇒ z∗x ∈ F ).

Proof. Since z ∗ (y ∗ x) = (z ∗ y) ∗ (z ∗ x) ∈ F and z ∗ y ∈ F , by (SF2)

we have z ∗ x ∈ F .

Proposition 2.10 If F is a Q–Smarandache filter of a self distributive

BE–algebra X, then (∀x, y ∈ Q)(y ∗ (y ∗ x) ∈ F ⇒ y ∗ x ∈ F ).
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Proof. Assume that y ∗ (y ∗ x) ∈ F for all x, y ∈ Q since y ∗ y = 1 ∈ F ,

by (SF1) and Proposition 3.9 we have y ∗ x ∈ F .

Proposition 2.11 Let F be a Q–Smarandache filter of a BE-algebra X.

Then:

(1) F 6= Ø.

(2) If x ∈ F , x ≤ y, y ∈ Q, then y ∈ F .

(3) If X is a self distributive CI–algebra and x, y ∈ F , then x ∗ y ∈ F .

Proof. (1) Since F is a Q–Smarandache filter of X, therefore by (SF1)

we have 1 ∈ F . Hence F 6= ∅.

(2) Let x ∈ F , x ≤ y and y ∈ Q. Then x∗y = 1 ∈ F , therefore by (SF2)

we get that y ∈ F .

(3) We have y ∗ (x ∗ (x ∗ y)) = x ∗ (y ∗ (x ∗ y)) = x ∗ (x ∗ 1) = x ∗ 1 = 1,

and hence y ∗ (x ∗ (x ∗ y)) ∈ F . Since y ∈ F , by (SF2) x ∗ (x ∗ y) ∈ F .

It follows from Proposition 3.10 x ∗ y ∈ F .

Proposition 2.12 If F is a Q–Smarandache filter of a BE–algebra X
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and if Q satisfies X ∗Q ⊆ Q, then (∀x, y ∈ F )(∀z ∈ Q)(x∗ (y ∗ z) = 1⇒

z ∈ F )

Proof. Assume that X ∗Q ⊆ Q. Let F be a Q–Smarandache filter of X.

Suppose that x ∗ (y ∗ z) = 1 where x, y ∈ F and z ∈ Q. Then y ∗ z ∈ Q

by the hypothesis and x ∗ (y ∗ z) ∈ F we have y ∗ z ∈ F . By (SF2),

z ∈ F . This completes the proof.

Theorem 2.13 Let Q1 and Q2 are CI–algebras which are properly con-

tained in a BE–algebra X and Q1 ⊆ Q2. Then every Q2–Smarandache

filter is a Q1–Smarandache filter of X.

Note. By the following example we show that the converse of above

theorem is not correct in general.

Example 2.14 In Example 3.8, Q1 = {1, b}, Q2 = {1, b, c} are CI–

algebras which are properly contained in X. It is easily checked that F =

{1, b} is a Q1–Smarandache filter of X and is not a Q2–Smarandache

filter of X, since c ∗ a = c ∈ F , but a /∈ F .
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Proposition 2.15 Let X be a self distributive BE–algebra and F be

a Q–Smarandache filter of X. Then Fa = {x : a ∗ x ∈ F} is a Q–

Smarandache filter, for any a ∈ X.

Proof. Since a ∗ a = 1 ∈ F , a ∈ Fa and so Ø 6= Fa. Assume x ∗ y ∈ Fa

and x ∈ Fa. Then a ∗ (x ∗ y) ∈ F and a ∗x ∈ F . By self distributivity we

have (a ∗ x) ∗ (a ∗ y) ∈ F and a ∗ x ∈ F . Thus a ∗ y ∈ F and so y ∈ Fa.

Therefore Fa is a Q–Smarandache filter of X.

Definition 2.16 Let X be a BE–algebra and x, y ∈ X, Q ⊂ X be a

CI–algebra. Define

A(x, y) := {z ∈ Q : x ∗ (y ∗ z) = 1}

We call A(x, y) a Q–Smarandache upper set of x and y.

Note. It is easy to see that 1, x, y ∈ A(x, y). The set A(x, y), where

x, y ∈ Q, need not be a Q–Smarandache filter of X in general. In Exam-

ple 3.2, it is easy to check that A(1, a) = {a}, which means that A(1, a)

is not a Q–Smarandache filter of X.
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Proposition 2.17 Let X be a self distributive BE–algebra. Then the Q–

Smarandache upper set A(x, y) is a Q–Smarandache filter of X, where

x, y ∈ Q.

Proof. Since x∗1 = 1, for all x ∈ Q, 1 ∈ A(x, y). Let a∗b ∈ A(x, y) and

a ∈ A(x, y), where b ∈ Q. Then 1 = x ∗ (y ∗ (a ∗ b)) and 1 = x ∗ (y ∗ a).

It follows from the definition of the self distributivity

1 = x ∗ (y ∗ (a ∗ b)) = x ∗ ((y ∗ a) ∗ (y ∗ b)) = (x ∗ (y ∗ a)) ∗ (x ∗ (y ∗ b)) =

1 ∗ (x ∗ (y ∗ b)) = x ∗ (y ∗ b)

Therefore b ∈ A(x, y). This proves that A(x, y) is a Q–Smarandache

filter of X.

Theorem 2.18 If F is a non-empty subset of a BE–algebra X, then

F is a Q–Smarandache filter of X if and only if A(x, y) ⊆ F , for all

x, y ∈ F .

Proof. Assume that F is a Q–Smarandache filter of X and x, y ∈ F . If

z ∈ A(x, y), then x ∗ (y ∗ z) = 1 ∈ F . Then by Proposition 3.12, z ∈ F .
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Hence A(x, y) ⊆ F .

Conversely, suppose that A(x, y) ⊆ F for all x, y ∈ F . Since x ∗ (y ∗ 1) =

x∗1 = 1, 1 ∈ A(x, y) ⊆ F . Assume a∗b, a ∈ F . Since (a∗b)∗ (a∗b) = 1,

we have b ∈ A(a ∗ b, a) ⊆ F . Hence F is a Q–Smarandache filter of X.

Theorem 2.19 If F is a Q–Smarandache filter of a BE–algebra X, then

F = ∪x,y∈FA(x, y).

Proof. Let F be a Q–Smarandache filter of X and z ∈ F . Since z ∗ (1 ∗

z) = z ∗ z = 1, we have z ∈ A(z, 1). Hence

F ⊆ ∪z∈FA(z, 1) ⊆ ∪x,y∈FA(x, y)

If z ∈ ∪x,y∈FA(x, y), then there exist a, b ∈ F such that z ∈ A(a, b). It

follows from Theorem 3.18 that z ∈ F . This means that ∪x,y∈FA(x, y) ⊆

F .

Theorem 2.20 If F is a Q–Smarandache filter of BE–algebra X, then

F = ∪x∈FA(x, 1).
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Proof. Let F be a Q–Smarandache filter of X and z ∈ F . Since z ∗ (1 ∗

z) = z ∗ z = 1, we have z ∈ A(z, 1). Hence

F ⊆ ∪z∈FA(z, 1)

If z ∈ ∪x∈FA(x, 1), then there exists a ∈ F such that z ∈ A(a, 1), which

means that a∗z = a∗ (1∗z) = 1 ∈ F . Since F is a Q–Smarandache filter

of X and a ∈ F , we have z ∈ F . This means that ∪x∈FA(x, 1) ⊆ F .

Definition 2.21 A nonempty subset I of a BE–algebra X is called a

Smarandache ideal of X related to Q (or briefly, a Q–Smarandache ideal

of X) if it satisfies:

(SI1) x ∈ Q and a ∈ I imply x ∗ a ∈ I, i.e., Q ∗ I ⊆ I

(SI2) (∀x ∈ Q)(∀a, b ∈ I) imply (a ∗ (b ∗ x)) ∗ x ∈ I.

Example 2.22 In Example 3.2, Q = {1, a} is a CI–algebra of X and

I = {1, a, b} is a Smarandache ideal of Q, but J = {1, c} is not a Q–

Smarandache ideal of X because c, 1 ∈ J and a ∈ Q, but (c∗ (1∗a))∗a =

(c ∗ a) ∗ a = 1 ∗ a = a /∈ J .
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Lemma 2.23 Let X be a CI–algebra. Then

(1) Every Q–Smarandache ideal I of X contains 1;

(2) If I is a Q–Smarandache ideal of X, then (a ∗x) ∗x ∈ I for all a ∈ I

and x ∈ Q.

Proof. (1) Let Ø 6= I be a Q–Smarandache ideal of X. For x ∈ I,

1 = x ∗ x ∈ I ∗ I ⊆ Q ∗ I ⊆ I. Thus 1 ∈ I.

(2) Let b := 1 in (SI2). Then (a ∗ (1 ∗ x)) ∗ x ∈ I. Hence (a ∗ x) ∗ x ∈ I.

Lemma 2.24 A nonempty subset I of a BE–algebra X is a Q–Smarandache

ideal of X if and only if it satisfies

1. 1 ∈ I;

2. (∀x, z ∈ Q) (∀y ∈ I) (x ∗ (y ∗ z) ∈ I ⇒ x ∗ z ∈ I).

Theorem 2.25 Let Q1 and Q2 are CI–algebras which are properly con-

tained in a BE-algebra X and Q1 ⊆ Q2. Then every Q2–Smarandache

ideal of X is a Q1–Smarandache ideal.
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3 Smarandache Strong CI-Algebras

Note that every BE–algebra is a CI–algebra, but the converse is not true.

A CI–algebra which is not a BE–algebra is called a proper CI–algebra.

Definition 3.1 A Smarandache Strong CI–algebra X is defined to be a CI–

algebra X in which there exists a proper subset Q of X such that

(S1) 1 ∈ Q and |Q| ≥ 2;

(S2) Q is a BE–algebra under the operation of X.

Example 3.2 Let X := {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d

1 1 a b c d

a 1 1 b b d

b 1 a 1 a d

c 1 1 1 1 d

d d d d d 1
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then (X; ∗, 1) is a CI–algebra but is not a BE–algebra. If Q := {1, a, b, c},

then Q is a BE–algebra. So X is a Q-Smarandache CI–algebra.

Example 3.3 Let X := {1, a, b} be a set with the following table.

∗ 1 a b

1 1 a b

a a 1 b

b b b 1

then (X; ∗, 1) is a CI–algebra but is not a Smarandache CI–algebra.

Definition 3.4 A nonempty subset F of CI–algebra X is called a Smaran-

dache filter of X related to Q (or briefly, Q–Smarandache filter of X) if

it satisfies:

(SF1) 1 ∈ F ;

(SF2) (∀y ∈ Q)(∀x ∈ F )(x ∗ y ∈ F ⇒ y ∈ F ).

Example 3.5 In Example 3.2, {1, a} and {1, b} are Smarandache filter

of X.
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Note. If F is a Smarandache filter of CI–algebra X related to every

BE–algebra contained in X, we simply say that F is a Smarandache

filter of X.

Proposition 3.6 If {Fλ : λ ∈ ∆} is an indexed set of Q–Smarandache

filters of X, where ∆ 6= Ø, then F = ∩{Fλ : λ ∈ Λ} is a Q–Smarandache

filter of X.

Proposition 3.7 Any Filter F of CI–algebra X is a Q–Smarandache

filter of X.

Note. By the following example we show that the converse of above

proposition is not correct in general.
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Example 3.8 Let X := {1, a, b, c} be a set with the following table.

∗ 1 a b c

1 1 a b c

a 1 1 b c

b 1 a 1 c

c c c c 1

Then X is a CI–algebra and Q = {1, a} is BE–algebra which is properly

contained in CI–algebra X and F = {1, b, c} is a Q–Smarandache filter

of X but it is not a filter of X because c ∗ a = c ∈ F and c ∈ F , but

a /∈ F .

Proposition 3.9 If F is a Q–Smarandache filter F of self distributive

CI–algebra X, then (∀x, y, z ∈ Q)(z ∗ (y ∗x) ∈ F, z ∗y ∈ F ⇒ z ∗x ∈ F ).

Proof. Since z ∗ (y ∗ x) = (z ∗ y) ∗ (z ∗ x) ∈ F and z ∗ y ∈ F , then by

(SF2) we have z ∗ x ∈ F .

Proposition 3.10 If F is a Q–Smarandache filter F of self distributive

CI–algebra X, then (∀x, y ∈ Q)(y ∗ (y ∗ x) ∈ F ⇒ y ∗ x ∈ F ).
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Proof. Assume that y ∗ (y ∗ x) ∈ F for all x, y ∈ Q since y ∗ y = 1 ∈ F ,

by (SF1) and Proposition 3.9 we have y ∗ x ∈ F .

Proposition 3.11 Let F be a Q–Smarandache filter of X. Then:

(1) F 6= Ø.

(2) If x ∈ F , x ≤ y, y ∈ Q, then y ∈ F .

(3) If X is self distributive BE–algebra and x, y ∈ F , then x ∗ y ∈ F .

Proof. (1) Since F is a Q–Smarandache filter of X, therefore by (SF1)

we have 1 ∈ F , then F 6= ∅.

(2) Let x ∈ F , x ≤ y and y ∈ Q. Then x∗y = 1 ∈ F , therefore by (SF2)

we get that y ∈ F .

(3) We have y ∗ (x ∗ (x ∗ y)) = x ∗ (y ∗ (x ∗ y)) = x ∗ (x ∗ 1) = x ∗ 1 = 1,

thus y ∗ (x ∗ (x ∗ y)) ∈ F , also y ∈ F , then by (SF2) x ∗ (x ∗ y) ∈ F ,

therefore by Proposition 3.10, x ∗ y ∈ F .

Proposition 3.12 If F is a Q–Smarandache filter of CI–algebra X, and

Q satisfies X ∗Q ⊆ Q, then (∀x, y ∈ F )(∀z ∈ Q)(x∗(y∗z) = 1⇒ z ∈ F )
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Proof. Assume that X ∗Q ⊆ Q and F be a Q–Smarandache filter of X.

Suppose that x ∗ (y ∗ z) = 1, for all x, y ∈ F and z ∈ Q, then y ∗ z ∈ Q

by hypothesis and x ∗ (y ∗ z) ∈ F we have y ∗ z ∈ F . By (SF2) since

y ∈ F , it follows that z ∈ F . This completes the proof.

Theorem 3.13 Let Q1 and Q2 are BE –algebras which are properly

contained in CI–algebra X and Q1 ⊆ Q2. Then every Q2–Smarandache

filter is a Q1–Smarandache filter.

Note. By the following example we show that the converse of above

theorem is not correct in general.

Example 3.14 In Example 3.8, Q1 = {1, a}, Q2 = {1, a.b} are BE–

algebra which are properly contained in X. It is easily checked that F =

{1, b, c} is a Q1–Smarandache filter of X and is not a Q2–Smarandache

filter of X, since c ∗ a = c ∈ F , but a /∈ F .

Proposition 3.15 Let X be a self distributive Smarandache CI–algebra

and F be a Q–Smarandache filter of X. Then Fa = {x : a ∗ x ∈ F} is a

Q–Smarandache filter, for any a ∈ X.
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Proof. Since a ∗ a = 1 ∈ F , then a ∈ Fa and so Ø 6= Fa. Assume

x ∗ y ∈ Fa and x ∈ Fa, then a ∗ (x ∗ y) ∈ F and a ∗ x ∈ F . By self

distributivity we have (a ∗ x) ∗ (a ∗ y) ∈ F and a ∗ x ∈ F . Thus a ∗ y ∈ F

and so y ∈ Fa. Therefore Fa is a Q–Smarandache filter of X.

Definition 3.16 Let X be a CI–algebra and x, y ∈ X, Q ⊂ X be a

BE–algebra. Define

A(x, y) := {z ∈ Q : x ∗ (y ∗ z) = 1}

We call A(x, y) a Q–Smarandache upper set of x and y.

Note. It is easy to see that 1, x, y ∈ A(x, y). The set A(x, y), where

x, y ∈ Q, need not be a Q–Smarandache filter of X in general. In Exam-

ple 3.2, it is easy to check that A(1, d) = {d}, which means that A(1, a)

is not a Q–Smarandache filter of X.

Proposition 3.17 Let X be a self distributive Smarandache CI–algebra.

Then Q–Smarandache upper set A(x, y) is a Q–Smarandache filter of X,

where x, y ∈ Q.
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Proof. Since x∗1 = 1 for all x ∈ Q, then 1 ∈ A(x, y). Let a∗b ∈ A(x, y)

and a ∈ A(x, y), where b ∈ Q. Then 1 = x∗(y∗(a∗b)) and 1 = x∗(y∗a).

It follows from the definition of self distributivity have

1 = x ∗ (y ∗ (a ∗ b)) = x ∗ ((y ∗ a) ∗ (y ∗ b)) = (x ∗ (y ∗ a)) ∗ (x ∗ (y ∗ b)) =

1 ∗ (x ∗ (y ∗ b)) = x ∗ (y ∗ b)

Therefore b ∈ A(x, y). This proves that A(x, y) is a Q–Smarandache

filter of X.

Theorem 3.18 If F is a non-empty subset of a CI–algebra X, then F

is a Q–Smarandache filter of X if and only if A(x, y) ⊆ F , which A(x, y)

is a Q–Smarandache upper set.

proof. Assume that F is a Q–Smarandache filter of X and x, y ∈ F . If

z ∈ A(x, y), then x ∗ (y ∗ z) = 1 ∈ F . Then by Proposition 3.12, z ∈ F .

Hence A(x, y) ⊆ F .

Conversely, suppose that A(x, y) ⊆ F for all x, y ∈ F . Since x ∗ (y ∗ 1) =

x∗1 = 1, 1 ∈ A(x, y) ⊆ F . Assume a∗b, a ∈ F . Since (a∗b)∗ (a∗b) = 1,

we have b ∈ A(a ∗ b, a) ⊆ F . Hence F is a Q–Smarandache filter of X.
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Theorem 3.19 If F is a Q–Smarandache filter of a CI–algebra X, then

F = ∪x,y∈FA(x, y).

Proof. Let F be a Q–Smarandache filter of X and z ∈ F . Since z ∗ (1 ∗

z) = z ∗ z = 1, we have z ∈ A(z, 1). Hence

F ⊆ ∪z∈FA(z, 1) ⊆ ∪x,y∈FA(x, y)

If z ∈ ∪x,y∈FA(x, y), then there exist a, b ∈ F such that z ∈ A(a, b). It

follows from Theorem 3.18, that z ∈ F . this means that ∪x,y∈FA(x, y) ⊆

F .

Theorem 3.20 If F is a Q–Smarandache filter of CI–algebra X, then

F = ∪x∈FA(x, 1).

Proof. Let F be a Q–Smarandache filter of X and z ∈ F . Since z ∗ (1 ∗

z) = z ∗ z = 1, we have z ∈ A(z, 1). Hence

F ⊆ ∪z∈FA(z, 1)
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If z ∈ ∪x∈FA(x, 1), then there exists a ∈ F such that z ∈ A(a, 1), which

means that a ∗ z = a ∗ (1 ∗ z) = 1 ∈ F . Since F is Q–Smarandache filter

of X and a ∈ F , we have z ∈ F . This means that ∪x∈FA(x, 1) ⊆ F .

Definition 3.21 A nonempty subset I of Smarandache CI–algebra X is

called a Smarandache ideal of X related to Q (or briefly, Q–Smarandache

ideal of X) if it satisfies:

(SI1) ∀x ∈ Q and ∀a ∈ I imply x ∗ a ∈ I, i.e., Q ∗ I ⊆ I

(SI2) (∀x ∈ Q)(∀a, b ∈ I) imply (a ∗ (b ∗ x)) ∗ x ∈ I.

Example 3.22 In Example 3.2, Q = {1, a, b} is a BE–algebra of X

and I = {1, a} is a Smarandache ideal of Q, but J = {1, c} is not a Q–

Smarandache ideal of X because c, 1 ∈ J and a ∈ Q, but (c∗ (1∗a))∗a =

(c ∗ a) ∗ a = 1 ∗ a = a /∈ J .

Lemma 3.23 Let X be a CI–algebra. Then

(1) Every Q–Smarandache ideal I of X contains 1;
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(2) If I is a Q–Smarandache ideal of X, then (a ∗x) ∗x ∈ I for all a ∈ I

and x ∈ Q.

Proof. (1) Let Ø 6= I is a Q–Smarandache ideal of X. For x ∈ I,

1 = x ∗ x ∈ I ∗ I ⊆ Q ∗ I ⊆ I. Thus 1 ∈ I.

(2) Let b := 1 in (SI2). Then (a ∗ (1 ∗ x)) ∗ x ∈ I. Hence (a ∗ x) ∗ x ∈ I.

Lemma 3.24 A nonempty subset I of Q–Smarandache of X is a Q–

Smarandache ideal of X if and only if it satisfies

1. 1 ∈ I;

2. (∀x, y ∈ Q) (∀y ∈ I) (x ∗ (y ∗ z) ∈ I ⇒ x ∗ z ∈ I).

Theorem 3.25 Let Q1 and Q2 are BE–algebras which are properly con-

tained in X and Q1 ⊆ Q2. Then every Q2–Smarandache ideal of X is a

Q1–Smarandache ideal.

Definition 3.26 If X is a Q–Smarandache CI–algebra, X is said to be

a Q–Smarandache commutative if Q is a commutative BE–algebra, i.e,

for all x, y ∈ Q, (x ∗ y) ∗ y = (y ∗ x) ∗ x.
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Example 3.27 Let X := {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d

1 1 a b c d

a 1 1 a a d

b 1 1 1 a d

c 1 1 a 1 d

d d d d d 1

then (X; ∗, 1) is CI–algebra, but Q := {1, a, b, c} ⊆ X is a commutative

BE–algebra, so X is a Q–Smarandache commutative BE–algebra.

Proposition 3.28 If X is a Q–Smarandache commutative CI–algebra,

then for all x, y ∈ Q, x ∗ y = 1 and y ∗ x = 1 imply x = y.

Proof. Let x, y ∈ Q and suppose that x ∗ y = y ∗ x = 1. Then

x = 1 ∗ x = (y ∗ x) ∗ x = (x ∗ y) ∗ y = 1 ∗ y = y.

Theorem 3.29 An algebra X is a Q–Smarandache commutative CI–

algebra if and only if the following identities hold: for any x, y, z ∈ Q
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(1) (y ∗ 1) ∗ x = x;

(2) (y ∗ x) ∗ (z ∗ x) = (x ∗ y) ∗ (z ∗ y);

(3) x ∗ (y ∗ z) = y ∗ (x ∗ z).

Proof. Necessity. It suffices to prove (2). By (BE4) and commutativity

we have (z ∗x)∗(y∗x) = y∗((z ∗x)∗x) = y∗((x∗z)∗z) = (x∗z)∗(y∗z).

Sufficiency. By (1) we have 1 ∗ x = ((1 ∗ 1) ∗ 1) ∗ x = x. (BE3)

From (1) and (BE3) we conclude 1 = 1 ∗ 1 = ((1 ∗ x) ∗ 1) ∗ (1 ∗ 1) =

(1 ∗ (1 ∗ x) ∗ (1 ∗ (1 ∗ x)) = (1 ∗ x) ∗ (1 ∗ x) = x ∗ x. (BE1)

By (BE1) we have 1 = (x ∗ 1) ∗ (x ∗ 1) = x ∗ 1, hence (BE2) hold. It

suffices to prove commutativity. From (1), (2), (3), we have

(y ∗ x) ∗ x = (y ∗ x) ∗ ((y ∗ 1) ∗ x) = (x ∗ y) ∗ ((y ∗ 1) ∗ y) = (x ∗ y) ∗ y.

Then Q is a commutative BE–algebra.

Definition 3.30 A Smarandache BE–algebra X is defined to be a BE–

algebra X in which there exists a proper subset Q of X such that

(S1) 1 ∈ Q and |Q| ≥ 2;
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(S2) Q is a dual BCK–algebra under the operation of X.

Example 3.31 Let X := {1, a, b, c} be a set with the following table.

∗ 1 a b c

1 1 a b c

a 1 1 a a

b 1 1 1 1

c 1 1 1 1

then (X, ∗, 1) is a BE–algebra, but it is not a dual dual BCK–algebra

because b ∗ c = 1 and c ∗ b = 1 but c 6= b. On the other hand Q :=

{1, a, b, c} ⊂ X is a dual BCK–algebra. Then X is a Q–Smarandache

BE–algebra.

Definition 3.32 A Smarandache dual BCK–algebra X is defined to be

a dual BCK–algebra X in which there exists a proper subset Q of X such

that

(S1) 1 ∈ Q and |Q| ≥ 2;

(S2) Q is an implication algebra under the operation of X.
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Example 3.33 Let X := {1, a, b} be a set with the following table.

∗ 1 a b

1 1 a b

a 1 1 a

b 1 1 1

then (X, ∗, 1) is a dual BCK–algebra but it is not an implication algebra

because (a∗ b)∗a = a∗a = 1 6= a. On the other hand Q := {1, a} ⊂ X is

an implication algebra. Then X is a Q–Smarandache dual BCK–algebra.

Note. A Smarandache strong n-structure on a set S means a struc-

ture {W0} on a set S such that there exists a chain of proper subsets

Pn−1 < Pn−2 < ... < P2 < P1 < S where < means ”included in” whose

corresponding structures verify the inverse chain Wn−1 > Wn−2 > ... >

W2 > W1 > W0 where > signifies strictly stronger (i.e structure satisfying

more axioms)

Definition 3.34 A Smarandache strong 3–structure of CI–algebra X is
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a chain X1 > X2 > X3 > X4 where X1 is a CI–algebra, X2 is a BE–

algebra, X3 is a dual BCK–algebra, X4 is an implication algebra.

Example 3.35 Let X := {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d

1 1 a b c d

a 1 1 a a d

b 1 1 1 a d

c 1 1 1 1 d

d d d d d 1

hen X1 = {1, a, b, c, d} is a CI–algebra, X2 = {1, a, b, c} is a BE–algebra,

X3 = {1, a, b} is a dual BCK–algebra, X4 = {1, a} is an implication

algebra. So, X is a Smarandache strong 3–structure.
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There are three types of Smarandache Algebraic Structures: 

1. A Smarandache Strong Structure on a set S means a structure on S that

has a proper subset P with a stronger structure.

2. A Smarandache Weak Structure on a set S means a structure on S that

has a proper subset P with a weaker structure.

3. A Smarandache Strong-Weak Structure on a set S means a structure on

S that has two proper subsets: P with a stronger structure, and Q with a

weaker structure.

By proper subset of a set S, one understands a subset P of S, different from the 

empty set, from the original set S, and from the idempotent elements if any. 

Having two structures {u} and {v} defined by the same operations, one says 

that structure {u} is stronger than structure {v}, i.e. {u} > {v}, if the operations 

of {u} satisfy more axioms than the operations of {v}. 

Each one of the first two structure types is then generalized from a 2-

level (the sets P ⊂ S and their corresponding strong structure {w1}>{w0}, 

respectively their weak structure {w1}<{w0}) to an n-level (the sets Pn-1 ⊂ Pn-2 ⊂ 

… ⊂ P2 ⊂ P1 ⊂ S and their corresponding strong structure {wn-1} > {wn-2} > …

> {w2} > {w1} > {w0}, or respectively their weak structure {wn-1} < {wn-2} < … < 

{w2} < {w1} < {w0}). Similarly for the third structure type, whose 

generalization is a combination of the previous two structures at the n-level. 

A Smarandache Weak BE-Algebra X is a BE-algebra in which there 

exists a proper subset Q such that 1Q, |Q| ≥ 2, and Q is a CI-algebra. 

And a Smarandache Strong CI-Algebra X is a CI-algebra X in which 

there exists a proper subset Q such that 1Q, |Q| ≥ 2, and Q is a BE-algebra. 

The book elaborates a recollection of the BE/CI-algebras, then introduces 

these last two particular structures and studies their properties. 




