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Abstract—In this paper, we study the linear distributed 
asymptotic consensus problem for a network of dynamic agents 
whose communication network is modeled by a randomly switching 
graph. A finite state Markov process dominates each topology 
corresponding to a state of the process. We address both the cases 
where the dynamics of the agents is expressed in continuous and 
discrete time. As long as the consensus matrices are doubly 
stochastic, convergence to average consensus can be shown to be 
achieved in the mean square and almost sure sense. A necessary and 
sufficient condition is the graph resulted from the union of graphs 
corresponding to the states of the Markov process contains a 
spanning tree. 
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I.  INTRODUCTION  

IN the last decade, the  need to exploit renewable energy 

resources  have  been  provided  an  impetus,  by  many governing  
bodies  through  favorable  policy  making  and investment. One 
of the renewable energy sources which has grown  significantly  

over  the  last  few  decades  and  is  still growing in leaps and 
bounds is wind energy [1], [2]. Fig.1 shows that the wind turbine 
capacity worldwide has grown exponentially from 1996 to 2011 

with the global cumulative  
wind capacity reaching 250,000MW by the end of 2011 [3]. 
 
 
 
 
 
 
 
 
 

Fig.1: Development of global wind capacity from 1996 to 
2011 [3]. 
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This rapid growth has not only been stimulated by financial 

support from various governments, but also from private 

investors. As wind turbines increase in size and power, the 

control mechanisms associated with them become more 

complex.  
Control systems help drive down operating costs and 

improve performance. In order to achieve very accurate 

predictions of loading conditions, its effect on system 

dynamics and performance, high order mathematical models 

are required. Higher order models, in turn, result in controller 

designs being computationally intensive and oftentimes time-

consuming due to numerical complexities. One of the ways to 

streamline controller design is to investigate methods which 

would facilitate model order reduction while retaining all the 

inherent system dynamics. A Wind Energy Conversion 

System (WECS) is an example of a physical system, with slow 

and fast dynamics arising from mechanical and electrical 

interactions respectively. Furthermore, there can be slow and 

fast subsystems within the mechanical interactions of a 

WECS. Such systems which evolve on different time scales 

are called singularly perturbed or time scale systems. The 

applications of singular perturbation and time scale theory 

spans diverse fields of engineering such as aerospace, 

electrical, chemical and biological systems [4], [5].  
Conventional modeling methods reported in literature 

neglect the fast dynamics, for WECS models characterized 

with time scale behavior. There are numerous such instances 

where this approach is adopted. Rawn et. al. [6] consider a 

two mass model of a WECS and equate the fast dynamics to 

zero under the assumption that the faster states of the system 

are stable and settle to steady-state values. A similar 

assumption to obtain quasi steady state solutions, by 

neglecting the fast dynamics is seen in [7]. On the same lines 

[8], [9] and [10] neglect the fast states to reduce a higher order 

WECS model. Even though neglecting the fast dynamics 

facilitates ease of controller design, the solutions obtained 

from such a reduced order model do not satisfy all the 

boundary conditions of the original system. Certain systems 

become unstable when its fast dynamics are neglected [11].  
This paper investigates the time scale method to enable 

model order reduction and design of a computationally 
inexpensive controller for WECS, by separating the original 

system into slow and fast subsystems. This method preserves 



 
the system dynamics in the process. Nguyen et. al. in [12], 

[13] investigated the time scale method for WECS where the 

dynamics of the original system was decoupled into a ‘slow’ 

mechanical subsystem and a ‘fast’ electrical subsystem. Here, 

the mechanical interactions within a WECS are analyzed 

which are further separated into slow and fast subsystems 

depending on the moment of inertia of the turbine rotor and 

generator.  
This paper is organized as follows: Section II presents the 

dynamic model of a WECS. Section III discusses the time 

scale method for a deterministic WECS in which the full order 

model is decoupled into reduced order slow and fast 

subsystems. Section IV deals with the design of a Linear 

Quadratic Regulator (LQR) for the reduced order subsystems. 

The LQR control is also applied to the nonlinear WECS 

model. In Section V, a Linear Quadratic Gaussian (LQG) 

control is designed for a stochastic WECS using the time scale 

approach. Section VI presents the simulation results for the 

full order and reduced order optimal control and a comparison 

between them is provided. 
 

II.  WECS DYNAMICS 
 

WECS transforms the kinetic energy of the wind into 

electrical energy. The wind turbine rotor serves as the 

transducer which harvests this wind energy. In this paper, the 

main focus is on the aerodynamics and the drive train 

dynamics of the wind energy system. This research confines 

itself to the time scale behavior within the mechanical 

interactions of the WECS. The schematic of a variable speed 

wind turbine is shown in Fig. 2[14]. 
 
 
 
 
 
 
 
 
 
 

 
Low speed Gear High speed 
shaft side box shaft side  

Fig.2: Schematic of the WECS [14]. 

 
The moments of inertia of the turbine rotor and generator are 

represented by Jr and J g , respectively. The two masses in the 

model are connected by a flexible shaft characterized by stiffness 

Ks and damping coefficient Ds [15]. The flexible shaft is 

considered as a torsion spring connected between the masses. An 

ideal gear box is assumed with a gear ratio N g that relates the 

speed of the turbine rotor to that of the generator. 
 

A.  Aerodynamics 
 

The kinetic energy of the wind stream is converted to 
mechanical energy by the turbine rotor blades which provide 
the aerodynamic torque, 
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where wr is  the  angular velocity of  the  rotor  and Pr is  the 
 

aerodynamic power given by,      
 

P  1   R 
2
 v 

3
 C  ( ), (2)  

  

p  

r 
2       

 

        
  

where  is the air density, R is the blade wing radius, v is the 

wind speed and Cp ( ) is the power coefficient which is a 

function of the tip speed ratio  . It is defined as the ratio of 
the wind speed to the blade tip speed [14], [16], [17], [18], 
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where v is the wind speed, R is the blade wing radius and wr 

is the angular velocity of the rotor. The power coefficient Cp 

( ) is defined as [13],  
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B.  Drive Train Dynamics 

 
The drive train system is approximated by a two-mass 

spring and damper model [7], [14], [19]. This model yields a 

more accurate response of the wind turbine’s dynamic 

behavior during fluctuating wind conditions and results in a 

more accurate prediction of the impact on the power system 

[20], [21].  
The mechanical model is driven by two torques, one from 

the turbine blades Tr and the other from the electromagnetic 

torque Tg exerted by the interacting fields of the generator. 

These torques cause the rotor and the generator to move with 

angular velocities wr and wg respectively. The equations of 

motion for the drive train system are obtained by summing the 
 
torques acting on each of the masses J r and J g [22].   
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where diff r g is the difference between the angular 

displacements of turbine rotor and generator respectively. 
 

C.  Non-linear Model of WECS 
 

The nonlinear state space model of WECS is obtained by 
combining (1-6). Comparing the state-space model to a 



 
nonlinear system representation x  f ( x , u), the state vector 

x , input vector u and output vector y are defined as,  

x  wr 


diff wg T  , 

u  v Tg 
T
  , (7) 

 
y  wg .  

In the WECS model, wind is a natural input to the system and 
since it cannot be controlled, for controller design purposes,  
only one control input ( Tg  ) is considered. Wind turbine data 
 
[14] of a Vestas-v29 225KW wind turbine was used for 
simulations. 
 

D.  Eigenvalues of WECS 
 

To understand system behavior, the nonlinear model (1- 6) 
was linearized about an operating point which was at the 
maximum power conversion efficiency. A wind speed of 

III.  TIME SCALE ANALYSIS OF DETERMINISTIC WECS 
 

A brief description of the time scale method [11] is 
provided in this section. The general form of a linear 
singularly perturbed system is provided in (8), 

x1  A11 x1  A12 x2   B11u, 
(8) 

 x2   A21 x1  A22 x2  B21u,  
where  x1 and x2 are the m- and n- dimensional state vectors, u  
is an r-dimensional control vector, matrices Aij and Bij are of 

appropriate dimensions and ɛ is the small parameter 

representing small time constants, masses, moments of 

inertias, resistances, inductances or capacitances which are 

responsible for increasing the order of the system [11]. 
 

A.  Decomposition of System Dynamics 
 

A two-stage linear transformation [11] , given 

by x s  x1  Mx f ,  
11m/s was chosen for linearization. The eigenvalues obtained 
were: -0.090002, -7.0573 + 36.892i and -7.0573 - 36.892i. By 

 
x f    x 2   Lx1 , 

(9) 

 
comparing the eigenvalues, it is evident that the real 

eigenvalue (-0.090002) is much smaller than the real part of 

the complex eigenvalues (-7.0573 ± 36.892i). Systems 

characterized by widely separated groups of eigenvalues 

exhibit time scale phenomena [11]. Thus the presence of one 

slowly varying state and two fast states can be inferred. This 

separation in the ‘speed’ of the mechanical variables makes 

WECS a prime candidate for Time Scale Analysis [11].  
The slow dynamics in the system is attributed to the large 

inertia of the turbine rotor, while the fast dynamics to the 

relatively small inertia of the generator and poorly damped 

drive train dynamics. Since the nonlinear model is dependent 

on wind speed, linearization is carried out at various wind 

speeds and the eigenvalues at every wind speed indicated time 

scale behavior. Table 1 lists the eigenvalues corresponding to 

various wind speed values. 

 
Table 1: Eigenvalues of WECS at different wind 

speed conditions.  

Wind Input Eigenvalues 
  

 -7.0597 +36.8919i 
v =14 m/s -7.0597 -36.8919i 

 -0.1619 
  

 -7.0604 +36.8918i 
v =16 m/s -7.0604 -36.8918i 

 -0.1832 
  

 -7.0609 +36.8917i 
v =18 m/s -7.0609 -36.8917i 

 -0.1983 
  

 -7.0613 +36.8916i 
v =20 m/s -7.0613 -36.8916i 

 -0.2106 
  

 -7.0617 +36.8915i 
v =22 m/s -7.0617 -36.8915i 

 -0.2218 

 
is applied on the system in (8) to decouple it into independent 
slow and fast subsystems,  

xs (t)  As xs (t)  Bs u(t), 
(10)  

x f  (t)  Af x f  (t)  Bf u(t),  
where, 
 

As   A1   A2 L,  
A f    A4   LA2 , 

(11)  
Bs   B1   MLB1   MB2 , 

 
B f    B2   LB1 .  

The subscripts ‘s’ and ‘f’ denote slow and fast states 

respectively. The matrices A1 to A4 and B1 to B2 are obtained 
from the equations in (8) as,  

A1   A11 , A2  A12 , B1   B11 , 
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The variables L( n  m ) and M( m  n ) are solutions of the 
nonlinear Lyapunov-type equations,  

LA1   A3   LA2 L  A4 L  0,  

 A1  A2 L M  M  A4  LA2   A2  0. 
(13)

 It is 

evident from (10) that the state variables xs and x f can be 
 
solved independently of each other. The L and M matrices are 
iteratively calculated using the high accuracy Newton method 
[23]. Newton’s algorithm converges quadratically in the  
neighborhood of the sought solution, at the rate of O( 

2i ) 

where i = 1, 2... imax. 
 

B.  Application of Time Scale Method to WECS 
 

The nonlinear WECS model (1-6) was transformed into a 

linear singularly perturbed form as shown in (8). The small 

parameter was identified first, through a series of operations; 

such as scaling of differential equations and time scale trans-

formations. The time scale method was then applied to the 



WECS model, which was linearized about an operating point 
(as discussed in Section II-D). The small parameter identified, 
was the ratio of the moment of inertia of the generator to the 
moment of inertia of the turbine rotor [24].  

A 3
rd

 order WECS model is reduced to two separate 1
st

 

order and 2
nd

 order models. The reduced order slow and fast 
subsystems obtained are: 
 

 wr  0.0633 0 0     wr  -0.0013 
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To ensure that the decomposed systems retain the slow and 

fast dynamics, the eigenvalues of the original system and the 

decomposed system were compared. Table 2 lists the 

eigenvalues of full order and reduced order systems. The 

results confirm that the time scale method decouples the 

system dynamics perfectly (the values obtained were same to 

up to six decimal places). 

 
Table 2: Comparison of full order and reduced order 

eigenvalues  
Full Order Eigenvalues 

  

 eig(A) = -0.063321 
A -2.1103 + 37.714i 

 -2.1103 – 37.714i 
  

Reduced Order Eigenvalues 
 

As eig( As ) = -0.063321  

(Slow-subsystem)  

  
 

Af eig( Af )= -2.1103+37.714i 
 

(Fast-subsystem)  -2.1103– 37.714i 
 

 
IV.  OPTIMAL CONTROL OF DETERMINISTIC WECS USING  

TIME SCALE ANALYSIS 
 

In general, an optimal controller provides the best possible 

performance with respect to a given performance index or cost 

function. When the performance index is quadratic, and the 

optimization is over an infinite horizon, the resulting optimal 

control law obtained by minimizing the cost function is called 

Linear Quadratic Regulator (LQR). Since optimal control laws 

guarantee infinite gain margins, minimum phase margins of 

60 and stability of closed loop systems, this theory finds 

numerous engineering applications [25], [26], [27]. In a 

WECS, when the wind turbine blades are subjected to 

disturbances, for example, a gust of wind, it causes a 

perturbation to the states of the system. The objective of a 

LQR is to bring the perturbed states to zero. It is assumed that 

all the states are measurable and the control signal is 

unconstrained for design purposes. The performance index is 

chosen to minimize the error between the perturbed state and 

the desired state (which is zero) for an infinite time period. 
 

Commonly, the standard LQR design for a full order WECS 
does not separate the slow and fast dynamics. This section 

discusses LQR design for a reduced order WECS. Here, 
control laws are implemented for the slow and fast subsystems 
separately.  

The slow subsystem xs which was defined in (10), has a 

performance index,  

J s   
 1  xs 

T
 ( t)Qs xs (t)  us 

T
 (t) Rs us (t)  dt. (14)  
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where  Qs and Rs are the  weighting  matrices  for  the  slow 
 

subsystem. The control signal u 
*
 (t ) for the slow subsystem is 
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calculated as:          
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Similarly for the fast subsystem, the LQR control is calculated 
as, 

u 
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where Pf   is the solution of the fast algebraic Riccati equation, 

P A 
f 
 A 

T
 P  Q 

f 
 P B R 1 B T P   0. (18) 

 

f ff ff f f f  
  

A block diagram describing LQR control design for the 

reduced order WECS is presented in Fig. 3. The feedback 

control is now a composite control u 
*
 (t ) i.e. sum of slow  

control u s
*
 (t ) and fast control u 

*
f (t ). 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.3: LQR control design for reduced order linear WECS. 

 
The control action of the LQR was further investigated, where 

the composite control was studied for the original nonlinear 

WECS model. (Previously discussed scheme was 

implemented on the linear WECS model). The control scheme 

is depicted in Fig. 4. The states of the nonlinear WECS were 

simulated at nominal conditions of wind speed and control 
 
input (generator torque, Tg ). At the point of linearization, the 
 
nominal states x(t) were perturbed by a small amount  x(t) and 

performance of the designed composite control was observed. 

 

Ps As   As 
T
 Ps   Qs   Ps Bs Rs 

1
 Bs 

T
 Ps   0. 

 where K s is the regulator gain of the slow subsystem and 

the solution of the slow algebraic Riccati (16), 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4: Reduced order LQR control design for 
nonlinear WECS. 

 
V.  OPTIMAL CONTROL OF STOCHASTIC WECS USING TIME  

SCALE APPROACH 
 

In most cases of a variable speed wind turbine, it may not 

be possible to measure all the states of the system due to cost 

or feasibility constraints. Measurements that are available are 

bound to be corrupted by a certain level of noise. Also, 

fluctuations on the turbine blades, causes the states to be 

perturbed. To minimize such perturbations, a suitable 

controller has to be designed. In such situations, a Kalman 

filter is employed to get an accurate estimate of all the states 

of the system, which are then used to design a controller. The 

combined filter and regulator constitute a Linear Quadratic 

Gaussian (LQG) control. It is designed for controlling systems 

corrupted by additive white Gaussian noise, having 

incomplete state information and undergoing control subject to 

quadratic costs.  
In this section, a time scale approach for solving the LQG 

control problem of a singularly perturbed, continuous-time, 

stochastic WECS system is presented. This approach is based 

on a closed loop decomposition technique of the optimal 

filters and regulators. Firstly, an optimal Kalman filter is 

designed for a full order stochastic WECS, followed by its 

time scale decomposition. Then, by utilizing the dual 

relationship between Kalman filters and regulators, individual 

slow and fast regulators are designed. These combined filters 

and regulators constitute the reduced order Linear Quadratic 

Gaussian (LQG) control. 
 

A. Design of Optimal Kalman Filter for a Full-Order 
WECS 
 

Consider a linear, singularly perturbed, stochastic WECS 
system with a control input u,  

x1  A1 x1  A2 x2  B1u  G1 w1 ,  

 x2   A3 x1  A4 x2  B2 u  G2 w1 , (19) 

y  C1 x1  C2 x2  w2 ,   
and a performance index  J given by, 
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J  lim   z 
T
 Qz  u 

T
 Ru  dt  , 

(20) 
 

    

t f        
 

 t f  t     
 

    0     
  

where z is the controlled output; Q ≥ 0, R ≥ 0 are the 

weighting matrices, x1 and x2 are the state vectors,  
 x1  wr ,   

x   w T , 
2  diff g 

   
y is the system measurement which measures the generator 

speed wg , A1 to A4 , B1 to B2 , G1 to G2 and C1 to C2 are 

constant matrices with appropriate dimensions, w1 and w2 are 

the system Gaussian noise and measurement Gaussian noise 

respectively, with intensities W1  0 and W2  0 respectively. 
 

The optimal Kalman filter for the singularly perturbed 
WECS in (19) is obtained as:  

xˆ1  A1 xˆ1  A2 xˆ2  B1u  F1,  

 xˆ2   A3 xˆ1  A4 xˆ2  B2 u  F2, (21)  
  y  C1 xˆ1  C2 xˆ2 ,  

where xˆ denotes the state estimates, is called the innovation 

process, F1 and F2 are the optimal Kalman filter gains [23], 
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Matrices P , P  and P    in (22) are solutions to the  filter 
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algebraic Riccati equation (ARE),         
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B. Reduced Order LQG Control Design using Time Scale 
Approach 

 
The method for decomposing the optimal Kalman filter into 

independent, reduced order, slow and fast filters is presented 

in this section. The separate filters are such that both are 

driven by the system measurement instead of the innovation 

process. Decomposition of the optimal Kalman filter is based 

on exact decomposition of the singularly perturbed algebraic 

filter Riccati equation into slow and fast Riccati equations. A 

transformation T2 is applied to the global/full order Kalman 

filter to obtain the decomposed slow and fast filters. Then 

using the duality property that exists between linear optimal 

filters and regulators, the LQG control is formulated [23]. 
 

The non-singular transformation T2 is given as:  

T2   1 F 2 F  PF , (25) 

where PF is  the  solution  of  (23),  1F and 2 F matrices are 
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2 n f . The subscripts ‘ ns ’ and ‘ n f ’ denote the number of slow 
 

and fast states in  the physical system. E1F and E2 F are the 
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and M & N are the solutions of the Chang’s decoupling 
equations: 

  T4 F M T3 F   M T1 F T2 F M   0,    
(28)    

T2 F   N T4 F    MT2 F   T1 F  T2 F M N  0. 
 

 

    
 

The matrices T1F to T4 F are defined as:     
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On applying transformation T2 to the filter’s state variables, 
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the two independent, slow and fast Kalman filters are obtained 
as, 

ˆs   a1 F   a2 F PsF T
 ˆs  Bs u  Fs y, 

(31) 
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 f   b1 F   b2 F PfF T
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The optimal control in terms of the slow and fast Kalman 
filters is given by:  

u 
*
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s K  ˆs  , (35) 
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where the slow and fast regulator gains Ks and K f are defined 

as: 
K 

s 
K   ( R 

1
B

T
 P)T

T
 , 

(36) 
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where P is the solution of the algebraic Riccati equation  
 

PA  A
T
 P  Q  PSP  0. (37) 

  
A block diagram is shown in Fig. 5 which summarizes the 
LQG control with reduced order Kalman filter and regulator. 
The control signal fed back to the WECS system is a 
composite control signal or sum of slow and fast control. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5: LQG control design of WECS with reduced order filter 

and regulator. 
 

VI.  SIMULATION RESULTS 
 

All the controllers were designed in MATLAB
®

 and 

implemented in Simulink
®

. 

where ˆs and ˆ f  are the slow and fast state estimates; PsF and A.  Results of LQR Control for Deterministic WECS    
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 states  to  attain  their  nominal  values.  These  matrices  were  
             

The  algebraic  Riccati  equations  are  solved  by  Newton’s chosen from multiple iterations. A comparison between the 
 

algorithm which is provided in the reference [23]. The other full order and reduced order control of the linear WECS is 
 

matrices in (32) are,            provided in Fig. 6. It can be seen that the controller regulates 
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Fig.6: LQR control – Comparison of the full order system 

and reduced order WECS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.7: Detailed view of the LQR comparison plots near 

the origin. 

 
The simulation results for LQR (with composite control) 

feedback to nonlinear WECS are provided in Fig. 8. The 

nominal solutions of the states are obtained by simulating the 

nonlinear model for wind speed of 11 m/s and generator 

torque of 2132 N-m. A pulse was applied to the wind speed 

input to perturb the nominal states of the system. The results 

indicate that the composite control action regulates the states 

of the nonlinear system to their corresponding nominal values. 

Fig. 8 shows that the system was perturbed at the 10 second 

mark, and the proposed controller brings the states back to the 
 
nominal  values  quickly.  The dynamics of the state  diff  (t)  
(shaft displacement) indicates oscillations on application of 
the pulse, before the state was returned to its nominal value. 
 
For the generator speed state wg (t) , the time taken to bring the 
 
system back to the nominal values is comparatively longer. 
This delay can be overcome by modifying the weighting 
matrices Q and R . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8: States and control of nonlinear WECS 
with composite LQR control. 

 
B.  Results of LQG Control for Stochastic WECS 

 
The  weighting matrices Q and R for the  stochastic system 

 
were chosen in a similar way as for the deterministic case 

(Section VI-A). The process and measurement noise are 

assumed to be independent Gaussian noise with zero mean. 

The process noise, which is applied to the system states, could 

be on account of wind fluctuations on the turbine blades. 

While, measurement noise applied to the output state 

(generator speed) could be due to sudden changes in generator 

load conditions or high harmonic currents resulting from 

power electronics converters [28], [29]. For the simulations, 

the noise sources were chosen as ‘Random Number’ blocks 

from the Simulink
®

 library. In order to see the effects of 

Kalman filter, in the WECS system, the states corrupted with 

noise are compared to their corresponding Kalman estimates. 

The output signal is also compared to its estimate. The results 

are plotted in Fig. 9. It is seen that the Kalman filtering 

reduces the influence of noise on the system states and output 

and provides good estimation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.9: States and output compared to their 

Kalman estimates. 



A comparison of the results between the full order and 

reduced order LQG control is provided in Fig. 10. It is 

observed that LQG control regulates the states of the system to 

zero for both full order and reduced order controllers. A 

detailed view of the results near the origin is provided in 

Fig.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.10: Comparison of full order and reduced order LQG 

control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11: Detailed view of LQG comparison plots. 

 
The closeness of the full order and the reduced order results 

indicate that comparable control can be achieved with the 

reduced order filters and regulators. The detailed view in Fig. 

11 also shows that amplitudes of oscillation of the state 

estimates have been reduced by the implementation of the 

time scale design. 
 

VII.  DISCUSSION 
 

A time scale analysis of the mechanical interactions of 

WECS was performed in this research. The prime objective 
was to develop a computationally less intensive controller 



scheme, which was brought about by the application of the 
time scales method to a higher order wind energy system. The 

method helped bring a 3
rd

 order WECS system and Kalman 

filter down to a 1
st

 order and a 2
nd

 order subsystem facilitating 

simpler optimal control designs. The simulation results for 
both deterministic and stochastic WECS, of a full order and a 
reduced order system, indicates that the performances match 
closely to that of the full order system. The reduced order 
LQR control was applied to a nonlinear WECS. From the 
simulation results it is evident that the proposed method does 
provide a comparable control even with the system perturbed.  
These results shed light on the effectiveness of the proposed 
methodology. 
 

VIII.  CONCLUSION 
 

A time scale technique of the deterministic and stochastic 

WECS was proposed which led to decoupling of a full order 

system into independent slow and fast subsystems. The 

simulation results indicate that the performances of the full 

order system closely match that of the reduced order system. 

This shows that the strengths of this design approach can be 

exploited without loss of system dynamics. The time scale 

approach has important implications, especially when large 

model orders are used to describe a complete wind energy 

system (mechanical and electrical components). For real time 

applications, the decoupling of the full order system would 

bring about a reduction in on-line and off-line computational 

requirements. Also, the slow and fast controllers work in 

parallel and process information independently with their 

corresponding sampling rates (slow with slow sampling rate, 

fast with fast sampling rate). Moreover, a wind energy system 

designed with two controllers, for each of the slow and fast 

subsystems, is more reliable than a system with one controller 

in the event of a controller malfunction. 
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