Graphs with Contributions to Fundamental Groups

Linfan MAO

Chinese Academy of Mathematics and System Science, Beijing 100190, P.R.China Beijing Institute of Architectural Engineering, Beijing 100044, P.R.China

E-mail: maolinfan@163.com

Beijing Normal University

June, 2010

Contents

- §1. What is a Combinatorial Space?
- 1.1 Topological space with fundamental groups
- 1.2 Smarandache multi-space with geometry
- 1.3 Combinatorial manifolds with topology
- §2 Classical Seifert-Van Kampen theorem with Applications
- §3. Dimensional Graphs
- 3.1 What is a dimensional graph?
- 3.2 Fundamental groups of dimensional graphs
- §4. Generalized Seifert-Van Kampen Theorem
- 4.1 Topological space attached graphs
- 4.2 Generalized Seifert-Van Kampen theorem
- §5. Fundamental Groups of Space
- 5.1 Determine fundamental groups of combinatorial spaces
- 5.2 Determine fundamental groups of manifolds
- §6. Furthermore Discussions

- §1. What is a Combinatorial Space?
- 1.1 Topological spaces with fundamental groups

Examples of Topological Space:

- Real numbers R. Complex numbers C.
- Euclidean space Rⁿ, Spheres Sⁿ for n ≥ 1;
- (3) Product of spaces, such as S² × Sⁿ⁻² for n ≥ 4.

Definition 1.1 Topological space, Hausdorff space, Open or closed sets, Open neighborhood, Cover, Basis, Compact space, ..., in [1]-[3] following.

- John M.Lee, Introduction to Topological Manifolds, Springer-Verlag New York, Inc., 2000.
- [2] W.S.Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York, etc. (1977).
- Munkres J.R., Topology (2nd edition), Prentice Hall, Inc, 2000.

Definition 1.2 Let S be a topological space and $I = [0,1] \subset \mathbb{R}$. An arc a in S is a continuous mapping $a: I \to S$ with initial point a(0) and end point a(1), and S is called arcwise connected if every two points in S can be joined by an arc in S. An arc $a: I \to S$ is a loop based at p if $a(0) = a(1) = p \in S$. A degenerated loop $e: I \to x \in S$, i.e., mapping each element in I to a point x, usually called a point loop.

Example Let G be a planar 2-connected graph on \mathbb{R}^2 and S is a topological space consisting of points on each $e \in E(G)$. Then S is a arcwise connected space by definition. For a circuit C in G, we choose any point p on C. Then C is a loop \mathbf{e}_p in S based at p, such as those shown in Fig.1.1.

Fig.1.1

Definition 1.3 Let a and b be two arcs in a topological space S with a(1) = b(0). A product mapping $a \cdot b$ of a with b is defined by

$$a \cdot b(t) = \begin{cases} a(2t), & \text{if } 0 \le t \le \frac{1}{2}, \\ b(2t-1), & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

and an inverse mapping $\overline{a} = a(1-t)$ by a.

Definition 1.4 Let S be a topological space and $a, b : I \to S$ two arcs with a(0) = b(0) and a(1) = b(1). If there exists a continuous mapping

$$H:I\times I\to S$$

such that H(t,0) = a(t), H(t,1) = b(t) for $\forall t \in I$, then a and b are said homotopic, denoted by $a \simeq b$ and H a homotopic mapping from a to b.

Fig.1.2

Theorem 1.1 The homotopic \simeq is an equivalent relation, i.e, all arcs homotopic to an arc a is an equivalent arc class, denoted by [a].

Definition 1.5 For a topological space S and $x_0 \in S$, let $\pi_1(S, x_0)$ be a set consisting of equivalent classes of loops based at x_0 . Define an operation \circ in $\pi_1(S, x_0)$ by

$$[a] \circ [b] = [a \cdot b]$$
 and $[a]^{-1} = [a^{-1}].$

Theorem 1.2 $\pi_1(S, x_0)$ is a group.

Example: (1) $\pi_1(\mathbf{R}^n, x_0), x_0 \in \mathbf{R}^n \text{ and } \pi_1(\mathbf{S}^n, y_0), y_0 \in \mathbf{S}^n \text{ is trivial for } n \geq 2;$ (2) $\pi_1(\mathbf{S}, y_0) \cong Z \text{ and } \pi_1(T^2, z_0) \cong Z^2, z_0 \in T^2.$

1.2 Smarandache multi-space with geometry

Definition 1.6 A rule on a set Σ is a mapping

$$\underbrace{\Sigma \times \Sigma \cdots \times \Sigma}_{n} \to \Sigma$$

for some integers n. A mathematical system is a pair $(\Sigma; \mathcal{R})$, where Σ is a set consisting mathematical objects, infinite or finite and \mathcal{R} is a collection of rules on Σ by logic providing all these resultants are still in Σ , i.e., elements in Σ is closed under rules in \mathcal{R} .

Definition 1.7 A rule in a mathematical system $(\Sigma; \mathcal{R})$ is said to be Smarandachely denied if it behaves in at least two different ways within the same set Σ , i.e., validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache system $(\Sigma; \mathcal{R})$ is a mathematical system which has at least one Smarandachely denied rule in \mathcal{R} . Particularly, if all systems in $(\Sigma; \mathcal{R})$ is a geometrical space, such a Smarandache system is called Smarandache geometry.

- [4] F.Smarandache, Paradoxist mathematics, Collected Papers, Vol.II, 5-28, University of Kishinev Press, 1997.
- [5] H.Iseri, Smarandache Manifolds, American Research Press, Rehoboth, NM, 2002.
- [6] L.F.Mao, Smarandache Multi-Space Theory, Hexis. Phoenix, USA 2006.

Example: Consider a geometry induced from a Euclidean planar geometry by planar maps. Let a complete graph K_4 be embedded in a Euclidean plane \mathbb{R}^2 , where points 1, 2 are elliptic, 3 is Euclidean but the point 4 is hyperbolic. Then all lines in the field A do not intersect with L, but each line passing through the point 4 will intersect with the line L. Therefore, (M, μ) is a Smarandache geometry by denial the axiom (E5) with these axioms (E5), (L5) and (R5).

Fig.1.3

Definition 1.8 For an integer $m \geq 2$, let $(\Sigma_1; \mathcal{R}_1)$, $(\Sigma_2; \mathcal{R}_2)$, \cdots , $(\Sigma_m; \mathcal{R}_m)$ be m mathematical systems different two by two. A Smarandache multi-space is a pair $(\widetilde{\Sigma}; \widetilde{\mathcal{R}})$ with $\widetilde{\Sigma} = \bigcup_{i=1}^{m} \Sigma_i$ and $\widetilde{\mathcal{R}} = \bigcup_{i=1}^{m} \mathcal{R}_i$.

Definition 1.9 A combinatorial system \mathscr{C}_G is a union of mathematical systems $(\Sigma_1; \mathcal{R}_1), (\Sigma_2; \mathcal{R}_2), \cdots, (\Sigma_m; \mathcal{R}_m)$ for an integer m, i.e., $\mathscr{C}_G = (\bigcup_{i=1}^m \Sigma_i; \bigcup_{i=1}^m \mathcal{R}_i)$ with an underlying connected graph structure G, where

$$V(G) = \{ \Sigma_1, \Sigma_2, \dots, \Sigma_m \},$$

$$E(G) = \{ (\Sigma_i, \Sigma_j) \mid \Sigma_i \cap \Sigma_j \neq \emptyset, 1 \leq i, j \leq m \}.$$

- CC Conjecture (2005, MAO) A mathematical science can be reconstructed from or made by combinatorialization.
- (i) There is a combinatorial structure and finite rules for a classical mathematical system, which means one can make combinatorialization for all classical mathematical subjects.
- (ii) One can generalize a classical mathematical system by this combinatorial notion such that it is a particular case in this generalization.
- (iii) One can make one combination of different branches in mathematics and find new results after then.
- (iv) One can understand our WORLD by this combinatorial notion, establish combinatorial models for it and then find its behavior, and so on.
 - [7] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
 - [8] L.F.Mao, Combinatorial speculation and combinatorial conjecture for mathematics, International J.Math. Combin., Vol.1(2007), 1-19.

1.3 Combinatorial manifolds with topology

An n-dimensional manifold is a second countable Hausdorff space such that each point has an open neighborhood homomorphic to a Euclidean space \mathbb{R}^n of dimension n, abbreviated to n-manifold.

Loosely speaking, a combinatorial manifold is a combination of finite manifolds, such as those shown in Fig.1.4.

Fig.1.4

Definition 1.10 A combinatorial Euclidean space is a combinatorial system C_G of Euclidean spaces \mathbb{R}^{n_1} , \mathbb{R}^{n_2} , \cdots , \mathbb{R}^{n_m} underlying a connected graph G defined by

$$V(G) = \{\mathbf{R}^{n_1}, \mathbf{R}^{n_2}, \cdots, \mathbf{R}^{n_m}\},\$$

$$E(G) = \{ (\mathbf{R}^{n_i}, \mathbf{R}^{n_j}) \mid \mathbf{R}^{n_i} \cap \mathbf{R}^{n_j} \neq \emptyset, 1 \le i, j \le m \},$$

denoted by $\mathscr{E}_G(n_1, \dots, n_m)$ and abbreviated to $\mathscr{E}_G(r)$ if $n_1 = \dots = n_m = r$, which enables us to view an Euclidean space \mathbf{R}^n for $n \geq 4$.

Definition 1.11 A combinatorial fan-space $\widetilde{\mathbf{R}}(n_1, \dots, n_m)$ is the combinatorial Euclidean space $\mathscr{E}_{K_m}(n_1, \dots, n_m)$ of \mathbf{R}^{n_1} , \mathbf{R}^{n_2} , \dots , \mathbf{R}^{n_m} such that

$$\mathbf{R}^{n_i} \bigcap \mathbf{R}^{n_j} = \bigcap_{k=1}^m \mathbf{R}^{n_k}.$$

for any integers $i, j, 1 \le i \ne j \le m$.

Fig.1.5

Definition 1.12 For a given integer sequence $0 < n_1 < n_2 < \cdots < n_m$, $m \ge 1$, a combinatorial manifold \widetilde{M} is a Hausdorff space such that for any point $p \in \widetilde{M}$, there is a local chart (U_p, φ_p) of p, i.e., an open neighborhood U_p of p in \widetilde{M} and a homoeomorphism $\varphi_p : U_p \to \widetilde{\mathbf{R}}(n_1(p), n_2(p), \cdots, n_{s(p)}(p))$, a combinatorial fan-space with

$$\{n_1(p), n_2(p), \cdots, n_{s(p)}(p)\} \subseteq \{n_1, n_2, \cdots, n_m\},\$$

$$\bigcup_{p \in \widetilde{M}} \{n_1(p), n_2(p), \cdots, n_{s(p)}(p)\} = \{n_1, n_2, \cdots, n_m\},\$$

denoted by $\widetilde{M}(n_1, n_2, \dots, n_m)$ or \widetilde{M} on the context and

$$\widetilde{\mathcal{A}} = \{(U_p, \varphi_p) | p \in \widetilde{M}(n_1, n_2, \cdots, n_m))\}$$

an atlas on $\widetilde{M}(n_1, n_2, \cdots, n_m)$.

A combinatorial manifold \widetilde{M} is finite if it is just combined by finite manifolds with an underlying combinatorial structure G without one manifold contained in the union of others.

Question:

Can we find the fundamental groups of finitely combinatorial manifolds?

§2 Classical Seifert-Van Kampen Theorem with Applications

Theorem 2.1(Seifert and Van-Kampen) Let $X = U \cup V$ with U, V open subsets and let $X, U, V, U \cap V$ be non-empty arcwise-connected with $x_0 \in U \cap V$ and H a group. If there are homomorphisms

$$\phi_1: \pi_1(U, x_0) \to H \text{ and } \phi_2: \pi_1(V, x_0) \to H$$

and

with $\phi_1 \cdot i_1 = \phi_2 \cdot i_2$, where $i_1 : \pi_1(U \cap V, x_0) \to \pi_1(U, x_0)$, $i_2 : \pi_1(U \cap V, x_0) \to \pi_1(V, x_0)$, $j_1 : \pi_1(U, x_0) \to \pi_1(X, x_0)$ and $j_2 : \pi_1(V, x_0) \to \pi_1(X, x_0)$ are homomorphisms induced by inclusion mappings, then there exists a unique homomorphism $\Phi : \pi_1(X, x_0) \to H$ such that $\Phi \cdot j_1 = \phi_1$ and $\Phi \cdot j_2 = \phi_2$.

Theorem 2.2(Seifert and Van-Kampen theorem, classical version) Let spaces X, U, V and x_0 be in Theorem 2.1. If

$$j: \pi_1(U, x_0) * \pi_1(V, x_0) \to \pi_1(X, x_0)$$

is an extension homomorphism of j_1 and j_2 , then j is an epimorphism with kernel Kerj generated by $i_1^{-1}(g)i_2(g)$, $g \in \pi_1(U \cap V, x_0)$, i.e.,

$$\pi_1(X, x_0) \cong \frac{\pi_1(U, x_0) * \pi_1(V, x_0)}{\langle i_1^{-1}(g) \cdot i_2(g) | g \in \pi_1(U \cap V, x_0) \rangle^N}.$$

Corollary 2.1 Let spaces X, U, V and x_0 be in Theorem 2.1. If $U \cap V$ is simply connected, then

$$\pi_1(X) = \pi_1(U, x_0) * \pi_1(V, x_0).$$

Application: Let $B_n = \bigcup_{i=1}^n S_i^1$ be a bouquet shown in Fig.2.1 with $v_i \in S_i^1$, $W_i = S_i^1 - \{v_i\}$ for $1 \le i \le n$ and

$$U = S_1^1 \bigcup W_2 \bigcup \cdots \bigcup W_n \text{ and } V = W_1 \bigcup S_2^1 \bigcup \cdots \bigcup S_n^1.$$

Fig.2.1

Then $U \cap V = S_{1.n}$, an arcwise-connected star. Whence,

$$\pi_1(B_n, O) = \pi_1(U, O) * \pi_1(V, O) \cong \pi_1(B_{n-1}, O) * \langle S_1^1 \rangle.$$

By induction, we easily get that

$$\pi_1(B_n, O) = \langle S_i^1, 1 \le i \le n \rangle.$$

§3. Dimensional Graphs

3.1 What is a dimensional graph?

A topological graph $\mathcal{T}[G]$ of a graph G is a 1-dimensional graph in a topological space.

Definition 3.1 A topological graph $\mathcal{T}[G]$ is a pair (X, X^0) of a Hausdorff space Xwith its a subset X^0 such that

- X⁰ is discrete, closed subspaces of X;
- (2) X − X⁰ is a disjoint union of open subsets e₁, e₂, · · · , e_m, each of which is homeomorphic to an open interval (0, 1);
- (3) the boundary \(\overline{e}_i e_i\) of \(e_i\) consists of one or two points. If \(\overline{e}_i e_i\) consists of two points, then \((\overline{e}_i, e_i\)) is homeomorphic to the pair \(([0, 1], (0, 1)); if \(\overline{e}_i e_i\) consists of one point, then \((\overline{e}_i, e_i\)) is homeomorphic to the pair \((S^1, S^1 \{1\});\)
 - (4) a subset $A \subset \mathcal{F}[G]$ is open if and only if $A \cap \overline{e}_i$ is open for $1 \leq i \leq m$.

Theorem 3.1([2]) Any tree is contractible.

Theorem 3.2([2]) Let T_{span} be a spanning tree in the topological graph $\mathscr{T}[G]$, $\{e_{\lambda} : \lambda \in \Lambda\}$ the set of edges of $\mathscr{T}[G]$ not in T_{span} and $\alpha_{\lambda} = A_{\lambda}e_{\lambda}B_{\lambda} \in \pi(\mathscr{T}[G], v_0)$ a loop associated with $e_{\lambda} = a_{\lambda}b_{\lambda}$ for $\forall \lambda \in \Lambda$, where $v_0 \in \mathscr{T}[G]$ and A_{λ} , B_{λ} are unique paths from v_0 to a_{λ} or from b_{λ} to v_0 in T_{span} . Then

$$\pi(\mathscr{T}[G], v_0) = \langle \alpha_{\lambda} | \lambda \in \Lambda \rangle.$$

Definition 3.2 An n-dimensional graph $\widetilde{M}^n[G]$ is a combinatorial Euclidean space $\mathscr{E}_G(n)$ of \mathbf{R}^n_{μ} , $\mu \in \Lambda$ underlying a combinatorial structure G such that

- (1) V(G) is discrete consisting of B^n , i.e., $\forall v \in V(G)$ is an open ball B_v^n ;
- (2) $\widetilde{M}^n[G] \setminus V(\widetilde{M}^n[G])$ is a disjoint union of open subsets e_1, e_2, \dots, e_m , each of which is homeomorphic to an open ball B^n ;
- (3) the boundary $\overline{e}_i e_i$ of e_i consists of one or two B^n and each pair (\overline{e}_i, e_i) is homeomorphic to the pair (\overline{B}^n, B^n) ;
 - (4) a subset $A \subset \widetilde{M}^n[G]$ is open if and only if $A \cap \overline{e_i}$ is open for $1 \leq i \leq m$.

Fig.2.2

3.2 Fundamental groups of dimensional graphs

Theorem 3.3 For any integer $n \geq 1$, $\mathscr{T}_0[G]$ is a deformation retract of $\widetilde{M}^n[G]$.

Sketch of Proof If n=1, then $\widetilde{M}^n[G]=\mathscr{T}_0[G]$ is itself a topological graph. So we assume $n\geq 2$.

For $n \geq 2$, let $f(\overline{x}, t) = (1 - t)\overline{x} + t\overline{x}_0$ be a mapping $f : \widetilde{M}^n[G] \times I \to \widetilde{M}^n[G]$ for $\forall \overline{x} \in \widetilde{M}^n[G]_1, t \in I$, where $\overline{x}_0 = O_v$ if $\overline{x} \in B_v^n$, and $\overline{x}_0 = p(\overline{x})$ if $\overline{x} \in e_i$, where $p : uv \to e_{uv}$ a projection for $1 \leq i \leq m$, such as those shown in Fig.2.3.

Fig.2.3

Then f is such a deformation retract.

§4. Generalized Seifert-Van Kampen Theorem

4.1 Topological space attached graphs

Definition 4.1 A topological space X attached with a graph G is a space $X \odot G$ such that

$$X \cap G \neq \emptyset, \quad G \not\subset X$$

and there are semi-edges $e^+ \in (X \cap G) \setminus G$, $e^+ \in G \setminus X$.

An example for $X \odot G$ can be found in Fig.4.1.

 $X \odot G$

Fig.4.1

Theorem 4.1 Let X be arc-connected space, G a graph and H the subgraph $X \cap G$ in $X \odot G$. Then for $x_0 \in X \cap G$,

$$\pi_1(X \odot G, x_0) \cong \frac{\pi_1(X, x_0) * \pi_1(G, x_0)}{\left\langle i_1^{-1}(\alpha_{e_\lambda}) i_2(\alpha_{e_\lambda}) | e_\lambda \in E(H) \setminus T_{span} \right\rangle^N},$$

where $i_1: \pi_1(H, x_0) \to X$, $i_2: \pi_1(H, x_0) \to G$ are homomorphisms induced by inclusion mappings, T_{span} is a spanning tree in H, $\alpha_{\lambda} = A_{\lambda}e_{\lambda}B_{\lambda}$ is a loop associated with an edge $e_{\lambda} = a_{\lambda}b_{\lambda} \in H \setminus T_{span}$, $x_0 \in G$ and A_{λ} , B_{λ} are unique paths from x_0 to a_{λ} or from b_{λ} to x_0 in T_{span} .

Sketch of Proof Let U=X and V=G. Applying the Seifert-Van Kampen theorem, we get that

$$\pi_1(X \odot G, x_0) \cong \frac{\pi_1(X, x_0) * \pi_1(G, x_0)}{\langle i_1^{-1}(g) i_2(g) | g \in \pi_1(X \cap G, x_0) \rangle},$$

Applying Theorem 3.2, We finally get the following conclusion,

$$\pi_1(X \odot G, x_0) \cong \frac{\pi_1(X, x_0) * \pi_1(G, x_0)}{\left\langle i_1^{-1}(\alpha_{e_\lambda}) i_2(\alpha_{e_\lambda}) | e_\lambda \in E(H) \setminus T_{span} \right\rangle^N}$$

Corollary 4.1 Let X be arc-connected space, G a graph. If $X \cap G$ in $X \odot G$ is a tree, then

$$\pi_1(X \odot G, x_0) \cong \pi_1(X, x_0) * \pi_1(G, x_0).$$

Particularly, if G is graphs shown in Fig.2.2 following

Fig.4.2

and $X \cap G = K_{1,m}$, Then

$$\pi_1(X \odot B_m^T, x_0) \cong \pi_1(X, x_0) * \langle L_i | 1 \leq i \leq m \rangle,$$

where L_i is the loop of parallel edges (x_0, x_i) in B_m^T for $1 \le i \le m-1$ and

$$\pi_1(X \odot S_m^T, x_0) \cong \pi_1(X, x_0).$$

Theorem 4.2 Let $\mathscr{X}_m \odot G$ be a topological space consisting of m arcwise-connected spaces $X_1, X_2, \dots, X_m, X_i \cap X_j = \emptyset$ for $1 \leq i, j \leq m$ attached with a graph G, $V(G) = \{x_0, x_1, \dots, x_{l-1}\}, m \leq l \text{ such that } X_i \cap G = \{x_i\} \text{ for } 0 \leq i \leq l-1.$ Then

$$\pi_1(\mathscr{X}_m \odot G, x_0) \cong \left(\prod_{i=1}^m \pi_1(X_i^*, x_0)\right) * \pi_1(G, x_0)$$
$$\cong \left(\prod_{i=1}^m \pi_1(X_i, x_i)\right) * \pi_1(G, x_0),$$

where $X_i^* = X_i \bigcup (x_0, x_i)$ with $X_i \cap (x_0, x_i) = \{x_i\}$ for $(x_0, x_i) \in E(G)$, integers $1 \le i \le m$.

Sketch of Proof The proof is by induction on m with Theorem 4.1 and the Seifert-Van Kampen theorem.

Corollary 4.2 Let G be the graph B_m^T or a star S_m^T . Then

$$\pi_1(\mathscr{X}_m \odot B_m^T, x_0) \cong \left(\prod_{i=1}^m \pi_1(X_i^*, x_0)\right) * \pi_1(B_m^T, x_0)$$

$$\cong \left(\prod_{i=1}^m \pi_1(X_i, x_{i-1})\right) * \langle L_i | 1 \le i \le m \rangle,$$

where L_i is the loop of parallel edges (x_0, x_i) in B_m^T for integers $1 \le i \le m$ and

$$\pi_1(\mathscr{X}_m \odot S_m^T, x_0) \cong \prod_{i=1}^m \pi_1(X_i^*, x_0).$$

Corollary 4.3 Let $X = \mathscr{X}_m \odot G$ be a topological space with a simply-connected space X_i for any integer $i, 1 \leq i \leq m$ and $x_0 \in X \cap G$. Then we know that

$$\pi_1(X, x_0) \cong \pi_1(G, x_0).$$

4.2 Generalized Seifert-Van Kampen theorem

Theorem 4.3 Let $X = U \cup V$, $U, V \subset X$ be open subsets and X, U, V arcwise-connected and let C_1, C_2, \dots, C_m be arcwise-connected components in $U \cap V$ for an integer $m \geq 1$, $x_{i-1} \in C_i$, $b(x_0, x_{i-1}) \subset V$ an arc : $I \to X$ with $b(0) = x_0, b(1) = x_{i-1}$ and $b(x_0, x_{i-1}) \cap U = \{x_0, x_{i-1}\}$, $C_i^E = C_i \bigcup b(x_0, x_{i-1})$ for any integer i, $1 \leq i \leq m$, H a group and there are homomorphisms

$$\phi_1^i: \pi_1(U \bigcup b(x_0, x_{i-1}), x_0) \to H, \quad \phi_2^i: \pi_1(V, x_0) \to H$$

such that

with $\phi_1^i \cdot i_{i1} = \phi_2^i \cdot i_{i2}$, where $i_{i1} : \pi_1(C_i^E, x_0) \to \pi_1(U \cup b(x_0, x_{i-1}), x_0)$, $i_{i2} : \pi_1(C_i^E, x_0) \to \pi_1(V, x_0)$ and $j_{i1} : \pi_1(U \cup b(x_0, x_{i-1}, x_0)) \to \pi_1(X, x_0)$, $j_{i2} : \pi_1(V, x_0)) \to \pi_1(X, x_0)$ are homomorphisms induced by inclusion mappings, then there exists a unique homomorphism $\Phi : \pi_1(X, x_0) \to H$ such that $\Phi \cdot j_{i1} = \phi_1^i$ and $\Phi \cdot j_{i2} = \phi_2^i$ for integers $1 \le i \le m$.

Sketch of Proof Define $U^E = U \bigcup \{ b(x_0, x_i) \mid 1 \leq i \leq m-1 \}$. Then we get that $X = U^E \cup V, \ U^E, V \subset X$ are still opened with an arcwise-connected intersection $U^E \cap V = \mathscr{X}_m \odot S_m^T$, where S_m^T is a graph formed by arcs $b(x_0, x_{i-1}), \ 1 \leq i \leq m$.

Notice that $\mathscr{X}_m \odot Sm^T = \bigcup_{i=1}^m C_i^E$ and $C_i^E \cap C_j^E = \{x_0\}$. Therefore, we get that

$$\pi_1(\mathscr{X}_m \odot S_m^T, x_0) = \bigotimes^m \pi_1(C_i^E, x_0).$$

This fact enables us knowing that there is a unique m-tuple $(h_1, h_2, \dots, h_m), h_i \in \pi_1(C_i^E, x_{i-1}), 1 \le i \le m$ such that

$$\mathscr{I} = \prod_{i=1}^{m} h_i$$

for $\forall \mathscr{I} \in \pi_1(\mathscr{X}_m \odot S_m^T, x_0)$ and inclusion maps

$$i_1^E : \pi_1(\mathscr{X}_m \odot S_m^T, x_0) \to \pi_1(U^E, x_0),$$

 $i_2^E : \pi_1(\mathscr{X}_m \odot S_m^T, x_0) \to \pi_1(V, x_0),$
 $j_1^E : \pi_1(U^E, x_0) \to \pi_1(X, x_0),$
 $j_2^E : \pi_1(V, x_0) \to \pi_1(X, x_0)$

with $i_1^E|_{\pi_1(C_i^E,x_0)} = i_{i1}$, $i_2^E|_{\pi_1(C_i^E,x_0)} = i_{i2}$, $j_1^E|_{\pi_1(U \cup b(x_0,x_{i-1},x_0))} = j_{i1}$ and $j_2^E|_{\pi_1(V,x_0)} = j_{i2}$ for integers $1 \le i \le m$.

Define ϕ_1^E and ϕ_2^E by

$$\phi_1^E(\mathscr{I}) = \prod_{i=1}^m \phi_1^i(i_{i1}(h_i)), \quad \phi_2^E(\mathscr{I}) = \prod_{i=1}^m \phi_2^i(i_{i2}(h_i)).$$

Then the following diagram

is commutative. Applying Theorem 2.1, we get the conclusion.

Theorem 4.4 Let X, U, V, C_i^E , $b(x_0, x_{i-1})$ be arcwise-connected spaces for any integer i, $1 \le i \le m$ as in Theorem 3.1, $U^E = U \bigcup \{b(x_0, x_i) \mid 1 \le i \le m-1\}$ and B_m^T a graph formed by $arcs\ a(x_0, x_{i-1}),\ b(x_0, x_{i-1}),\ 1 \le i \le m$, where $a(x_0, x_{i-1}) \subset U$ is an $arc: I \to X$ with $a(0) = x_0, a(1) = x_{i-1}$ and $a(x_0, x_{i-1}) \cap V = \{x_0, x_{i-1}\}$. Then

$$\pi_1(X, x_0) \cong \frac{\pi_1(U, x_0) * \pi_1(V, x_0) * \pi_1(B_m^T, x_0)}{\left\langle (i_1^E)^{-1}(g) \cdot i_2(g) | g \in \prod_{i=1}^m \pi_1(C_i^E, x_0) \right\rangle^N},$$

where $i_1^E : \pi_1(U^E \cap V, x_0) \to \pi_1(U^E, x_0)$ and $i_2^E : \pi_1(U^E \cap V, x_0) \to \pi_1(V, x_0)$ are homomorphisms induced by inclusion mappings.

Sketch of Proof By the proof of Theorem 4.3 we have known that there are homomorphisms ϕ_1^E and ϕ_2^E such that $\phi_1^E \cdot i_1^E = \phi_2^E \cdot i_2^E$. Applying Theorem 2.2, we get that

$$\pi_1(X,x_0) \cong \frac{\pi_1(U^E,x_0) * \pi_1(V,x_0)}{\langle (i_1^E)^{-1}(\mathscr{I}) \cdot i_2^E(\mathscr{I}) | \mathscr{I} \in \pi_1(U^E \cap V,x_0) \rangle^N}.$$

Notice that $U^E \cap V^E = \mathscr{X}_m \odot S_m^T$ and

$$\pi_1(U^E, x_0) \cong \pi_1(U, x_0) * \pi_1(B_m^T, x_0).$$

We finally get that

$$\pi_1(X, x_0) \cong \frac{\pi_1(U, x_0) * \pi_1(V, x_0) * \pi_1(B_m^T, x_0)}{\left\langle (i_1^E)^{-1}(g) \cdot i_2^E(g) | g \in \prod_{i=1}^m \pi_1(C_i^E, x_0) \right\rangle^N}.$$

Theorem 4.5 Let X, U, V, C_1, C_2, \dots, C_m be arcwise-connected spaces, $b(x_0, x_{i-1})$ arcs for any integer i, $1 \le i \le m$ as in Theorem 3.1, $U^E = U \bigcup \{b(x_0, x_{i-1}) \mid 1 \le i \le m\}$ and B_m^T a graph formed by arcs $a(x_0, x_{i-1})$, $b(x_0, x_{i-1})$, $1 \le i \le m$. Then

$$\pi_1(X, x_0) \cong \frac{\pi_1(U, x_0) * \pi_1(V, x_0) * \pi_1(B_m^T, x_0)}{\left\langle (i_1^E)^{-1}(g) \cdot i_2^E(g) | g \in \prod_{i=1}^m \pi_1(C_i^E, x_0) \right\rangle^N},$$

where $i_1^E : \pi_1(U^E \cap V, x_0) \to \pi_1(U^E, x_0)$ and $i_2^E : \pi_1(U^E \cap V, x_0) \to \pi_1(V, x_0)$ are homomorphisms induced by inclusion mappings.

Corollary 4.4 Let $X = U \cup V$, $U, V \subset X$ be open subsets and X, U, V and $U \cap V$ arcwise-connected. Then

$$\pi_1(X, x_0) \cong \frac{\pi_1(U, x_0) * \pi_1(V, x_0)}{\langle i_1^{-1}(g) \cdot i_2(g) | g \in \pi_1(U \cap V, x_0) \rangle^N},$$

where $i_1 : \pi_1(U \cap V, x_0) \to \pi_1(U, x_0)$ and $i_2 : \pi_1(U \cap V, x_0) \to \pi_1(V, x_0)$ are homomorphisms induced by inclusion mappings.

Corollary 4.5 Let X, U, V, C_i , $a(x_0, x_i)$, $b(x_0, x_i)$ for integers i, $1 \le i \le m$ be as in Theorem 3.1. If each C_i is simply-connected, then

$$\pi_1(X, x_0) \cong \pi_1(U, x_0) * \pi_1(V, x_0) * \pi_1(B_m^T, x_0).$$

Corollary 4.6 Let X, U, V, C_i , $a(x_0, x_i)$, $b(x_0, x_i)$ for integers i, $1 \le i \le m$ be as in Theorem 3.1. If V is simply-connected, then

$$\pi_1(X, x_0) \cong \frac{\pi_1(U, x_0) * \pi_1(B_m^T, x_0)}{\left\langle (i_1^E)^{-1}(g) \cdot i_2^E(g) | g \in \prod_{i=1}^m \pi_1(C_i^E, x_0) \right\rangle^N},$$

where $i_1^E : \pi_1(U^E \cap V, x_0) \to \pi_1(U^E, x_0)$ and $i_2^E : \pi_1(U^E \cap V, x_0) \to \pi_1(V, x_0)$ are homomorphisms induced by inclusion mappings.

§5. Fundamental Groups of Spaces

5.1 Determine fundamental groups of combinatorial spaces

Definition 5.1 Let \widetilde{M} be a combinatorial manifold underlying a graph $G[\widetilde{M}]$. An edge-induced graph $G^{\theta}[\widetilde{M}]$ is defined by

$$V(G^{\theta}[\widetilde{M}]) = \{x_M, x_{M'}, x_1, x_2, \cdots, x_{\mu(M,M')} | for \ \forall (M, M') \in E(G[\widetilde{M}])\},$$

$$E(G^{\theta}[\widetilde{M}]) = \{(x_M, x_{M'}), (x_M, x_i), (x_{M'}, x_i) | 1 \le i \le \mu(M, M')\},$$

where $\mu(M, M')$ is called the edge-index of (M, M') with $\mu(M, M') + 1$ equal to the number of arcwise-connected components in $M \cap M'$.

By definition, $G^{\theta}[\widetilde{M}]$ of a combinatorial manifold \widetilde{M} is gotten by replacing each edge (M, M') in $G[\widetilde{M}]$ by a subgraph $TB_{\mu(M,M')}^T$ shown in Fig.5.1 with $x_M = M$ and $x_{M'} = M'$.

Fig.5.1

Theorem 5.1 Let \widetilde{M} be a finitely combinatorial manifold. Then

$$\pi_1(\widetilde{M}) \cong \frac{\left(\prod\limits_{M \in V(G[\widetilde{M}])} \pi_1(M)\right) * \pi_1(G^{\theta}[\widetilde{M}])}{\left\langle (i_1^E)^{-1}(g) \cdot i_2^E(g) | g \in \prod\limits_{(M_1, M_2) \in E(G[\widetilde{M}])} \pi_1(M_1 \cap M_2) \right\rangle^N},$$

where i_1^E and i_2^E are homomorphisms induced by inclusion mappings i_M : $\pi_1(M \cap M') \to \pi_1(M)$, $i_{M'}$: $\pi_1(M \cap M') \to \pi_1(M')$ such as those shown in the following diagram:

for $\forall (M, M') \in E(G[\widetilde{M}])$.

Sketch of Proof This result is obvious for $|G[\widetilde{M}]| = 1$. Notice that $G^{\theta}[\widetilde{M}] = B_{\mu(M,M')+1}^T$ if $V(G[\widetilde{M}]) = \{M, M'\}$. Whence, it is an immediately conclusion of Theorem 4.4 for $|G[\widetilde{M}]| = 2$.

Let $U = \widetilde{M} \setminus (M \setminus \widetilde{M})$ and V = M. By definition, they are both opened. Applying Theorem 4.4, we get that

$$\pi_1(\widetilde{M}) \cong \frac{\pi_1(\widetilde{M} - M) * \pi_1(M) * \pi_1(B_m^T)}{\left\langle (i_1^E)^{-1}(g) \cdot i_2^E(g) | g \in \prod_{i=1}^m \pi_1(C_i) \right\rangle^N},$$

where C_i is an arcwise-connected component in $M \cap (\widetilde{M} - M)$ and

$$m = \sum_{(M,M')\in E(G[\widetilde{M}])} \mu(M,M').$$

Applying the induction assumption, we get that

$$\pi_1(\widetilde{M}) \cong \frac{\left(\prod\limits_{M \in V(G[\widetilde{M}])} \pi_1(M)\right) * \pi_1(G^{\theta}[\widetilde{M}])}{\left\langle (i_1^E)^{-1}(g) \cdot i_2^E(g) | g \in \prod\limits_{(M_1, M_2) \in E(G[\widetilde{M}])} \pi_1(M_1 \cap M_2) \right\rangle^N}.$$

Corollary 5.1([9],[10]) Let \widetilde{M} be a finitely combinatorial manifold. If for $\forall (M_1, M_2) \in E(G^L[\widetilde{M}])$, $M_1 \cap M_2$ is simply connected, then

$$\pi_1(\widetilde{M}) \cong \left(\bigotimes_{M \in V(G[\widetilde{M}])} \pi_1(M)\right) \bigotimes \pi_1(G[\widetilde{M}]).$$

- [9] L.F.Mao, Geometrical theory on combinatorial manifolds, JP J.Geometry and Topology, Vol.7, No.1(2007),65-114.
- [10] L.F.Mao, Combinatorial Geometry with Applications to Field Theory, Info-Quest, USA, 2009.

5.2 Determine fundamental groups of manifolds

If we choose $M \in V(G[\widetilde{M}])$ to be a chart $(U_{\lambda}, \varphi_{\lambda})$ with $\varphi_{\lambda} : U_{\lambda} \to \mathbb{R}^{n}$ for $\lambda \in \Lambda$ in Theorem 5.1, i.e., an *n*-manifold, we get the fundamental group of *n*-manifold following.

Theorem 5.2 Let M be a compact n-manifold with charts $\{(U_{\lambda}, \varphi_{\lambda}) | \varphi_{\lambda} : U_{\lambda} \rightarrow \mathbb{R}^n, \lambda \in \Lambda)\}$. Then

$$\pi_1(M) \cong \frac{\pi_1(G^{\theta}[M])}{\left\langle (i_1^E)^{-1}(g) \cdot i_2^E(g) | g \in \prod_{(U_{\mu}, U_{\nu}) \in E(G[M])} \pi_1(U_{\mu} \cap U_{\nu}) \right\rangle^N},$$

where i_1^E and i_2^E are homomorphisms induced by inclusion mappings $i_{U_\mu}: \pi_1(U_\mu \cap U_\nu) \to \pi_1(U_\mu), i_{U_\nu}: \pi_1(U_\mu \cap U_\nu) \to \pi_1(U_\nu), \mu, \nu \in \Lambda$.

Corollary 5.2 Let M be a simply connected manifold with charts $\{(U_{\lambda}, \varphi_{\lambda}) | \varphi_{\lambda} : U_{\lambda} \to \mathbb{R}^{n}, \lambda \in \Lambda\}$. Then $G^{\theta}[M] = G[M]$ is a tree.

Corollary 5.3 Let M be a compact n-manifold with charts $\{(U_{\lambda}, \varphi_{\lambda}) | \varphi_{\lambda} : U_{\lambda} \to \mathbb{R}^n, \lambda \in \Lambda\}$. If $U_{\mu} \cap U_{\nu}$ is simply connected for $\forall \mu, \nu \in \Lambda$, then

$$\pi_1(M) \cong \pi_1(G[M]).$$

§6. Furthermore Discussions

If objects considered are smooth, then we can establish a differential theory on combinatorial manifold, i.e., combinatorially differential geometry (see [12] for detail), which can be used to characterizing the behavior of multi-spaces in Universe. More such applications can be found in references [11]-[13].

- [11] L.F.Mao, Curvature equations on combinatorial manifolds with applications to theoretical physics, *International J.Math. Combin.*, Vol.1(2008), Vol.1, 1-25.
- [12] L.F.Mao, Combinatorial Geometry with Applications to Field Theory, Info-Quest, USA, 2009.
- [13] L.F.Mao, Relativity in combinatorial gravitational fields, Progress in Physics, Vol.3 (2010), 33-44.