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§1. What is a Combinatorial Space?

1.1 Topological spaces with fundamental groups
Examples of Topological Space:

(1) Real numbers R. Complex numbers C.

(2) Euclidean space R", Spheres 8™ for n > 1;

(3) Product of spaces, such as S? x 8" 2 for n > 4.

Definition 1.1 Topological space, Hausdorff space, Open or closed sets, Open
neighborhood, Cover, Basis, Compact space, ..., in [1]-[3] following.

[1] John M.Lee, Introduction to Topological Manifolds, Springer-Verlag New York,
Ine.. 2000,

2] W.S.Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York,
etc.(1977).

[3] Munkres J.R., Topology (2nd edition), Prentice Hall, Inc, 2000.



Definition 1.2 Let S be a topological space and I = [0,1] € R. An arc a in S is
a continuous mapping a : I — S with initial point a(0) and end point a(l), and S
15 called arcwise connected if every two points in S can be joined by an arc in S.
An arc a : I — S 1is a loop based at p if a(0) = a(l) = p € S. A degenerated loop
e: ] — xS, 1.e., mapping each element in I to a point x, usually called a point

loop.

Example Let G be a planar 2-connected graph on R? and S is a topological space
consisting of points on each e € E(G). Then S is a arcwise connected space by
definition. For a circuit C' in G, we choose any point p on C. Then C' 1s a loop e,
in S based at p, such as those shown 1n Fig.1.1.
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Definition 1.3 Let a and b be two arcs in a topological space S with a(1) = b(0).
A product mapping a - b of a with b is defined by

2t if 0<t¢
. b(i) _ { ﬂ.( )‘J ]. _{{

and an inverse mapping a = a(l —t) by a.



Definition 1.4 Let S be a topological space and a,b: [ — S two arcs with a(0) =
b(0) and a(1) = b(1). If there exists a continuous mapping

H:Ix1-—=15

such that H(t,0) = a(t), H(t,1) = b(t) for ¥Vt € I, then a and b are said homotopic,
denoted by a ~ b and H a homotopic mapping from a to b.

a(0)=h(0)
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Theorem 1.1 The homotopic = 1s an equivalent relation, i.e, all arcs homotopic

to an arc a is an equivalent arc class, denoted by |a).

Definition 1.5 For a topological space S and xy € S, let ﬂ'l(S,, :I-'qj) be a set consisting

of equivalent classes of loops based at xq. Define an operation o in w (S, xy) by

[alo [b] = [a-b] and [a]™' = [a 1]

Theorem 1.2 (S, ) is a group.

Example: (1) 7 (R", zy), x5 € R™ and 7 (S™, y), yo € S™ is trivial for n > 2;
(2) m(S,y0) = Z and m (17, z20) = Z*, 20 € T*.



1.2 Smarandache multi-space with geometry

Definition 1.6 A rule on a set X is a mapping

for some integers n. A mathematical system is a pair (X;R), where ¥ is a set
consisting mathematical objects, infinite or finite and 'R is a collection of rules on
Y by logic providing all these resultants are still in X, i.e., elements in 2 1s closed

under rules in K.



Definition 1.7 A rule in a mathematical system (X;R) is said to be Smarandachely
denied if it behaves in at least two different ways within the same set 2, i.e., validated
and tnvalided, or only invalided but in multiple distinct ways.

A Smarandache system (X;R) is a mathematical system which has at least
one Smarandachely denied rule in R. Particularly, if all systems in (X;R) is a

geometrical space, such a Smarandache system is called Smarandache geometry.

[4] F.Smarandache, Paradozrist mathematics, Collected Papers, Vol.Il, 5-28, Uni-
versity of Kishinev Press, 1997.

[5] H.Iseri, Smarandache Manifolds, American Research Press, Rehoboth, NM,
2002.

6] L.F.Mao, Smarandache Multi-Space Theory, Hexis. Phoenix, USA 2006.



Example: Consider a geometry induced from a Euclidean planar geometry by
planar maps. Let a complete graph K; be embedded in a Euclidean plane R?,
where points 1,2 are elliptic, 3 1s Euchidean but the point 4 1s hyperbolic. Then all
lines 1in the field A do not intersect with L, but each line passing through the point

4 will intersect with the line L. Therefore, (M, ) 1s a Smarandache geometry by
denial the axiom (E5) with these axioms (E5), (L5) and (R5).




Definition 1.8 For an integer m = 2, let (X1:Rq), (X9;Rs), -+, (Xp; Ryn) be m

mathematical systems different two by two. A Smarandache multi-space is a pair

(Z;R) with ¥ = U Y and R = U R.
i=1 i=1

Definition 1.9 A combinatorial system 6o is a union of mathematical systems

(X1;R1),(X2; Ra), -+ -, (Zm:; Rm) for an integer m, i.e., o = (U 2i; URi) with

i=1 i=1
an underlying connected graph structure G, where

V(G) ={%1, 59, -+, En},
E(G)={(%:.,%;) | %N # 0,1 <45 <m}.



CC Conjecture(2005, MAO) A mathematical science can be reconstructed from

or made by combinatorialization.

() There i1s a combinatorial structure and finite rules for a classical math-
ematical system, which means one can make combinatorialization for all classical
mathematical subjects.

(22) Ome can generalizes a classical mathematical system by this combinatorial
notion such that 1t 1s a particular case in this generalization.

(227) One can make one combination of different branches in mathematics and
find new results after then.

(7v) One can understand our WORLD by this combinatorial notion, establish

combinatorial models for it and then find its behavior, and so on.

(7] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geome-
tries, American Research Press, 2005.

8] L.F.Mao, Combinatorial speculation and combinatorial conjecture for mathe-

matics, International J.Math. Combin., Vol.1(2007), 1-19.



1.3 Combinatorial manifolds with topology

An n-dimensional manifold 1s a second countable Hausdorff space such that each
point has an open neighborhood homomorphic to a Euclidean space R™ of dimension
n, abbreviated to n-manifold.

Loosely speaking. a combinatorial manifold 1s a combination of finite manifolds,

such as those shown mm Fig.1.4.

Fig.1.4



Definition 1.10 A combinatorial Euclidean space is a combinatorial system 6o of

FEuclidean spaces R™, R™, ---, R™ underlying a connected graph G defined by
V(G)={R™ R"™, --- R"},
E(G)={ (R™ R"Y) [ R"R™ #0.1 <4 j < m},

denoted by &c(ny,---.nm) and abbreviated to &g(r) if ny = --- = nym = r. which

enables us to view an Fuclidean space R™ for n = 4.



Definition 1.11 A combinatorial fan-space ﬁ{ﬂ.l, e Ty ) 18 the combinatorial Fu-
clidean space &, (ny.---,ny,) of R™, R™, ... R™ such that

M
R™(R™ = [ R™.
k=1
for any integers 4,5, 1 <1i # j < m.
p-brane

Fig.1.5



Definition 1.12 For a given integer sequence 0 < ny < no < -+ < Ny, M = 1,
a combinatorial manifold M is a Hausdorff space such that for any point p € ﬂ
there is a local chart (U, ¢,) of p, i.e., an open neighborhood U, of p in M and a
homoeomorphism o, : U, — ﬁ(ﬂl[pL na(p), -+, Ny (p)), a combinatorial fan-space

with

{ni(p),na(p), -, nep)(P)} € {n1,n9, -+, M},

Ux_{ﬂl(ﬁ')? na(p), - s sy (P)} = {n1,n2,- -+, 0},
PEM

denoted by ﬁ(nl, N9, ,Ny) OT M on the context and

—

A={(U,,¢,)lp € M(ny,ng,---,np))}

an atlas on Eﬂ?(ﬂ]:ﬂg? Ce M ).
A combinatorial manifold M is finite if it is just combined by finite manifolds
with an underlying combinatorial structure G without one manifold contained in the

union of others.



Question:

Can we find the fundamental groups of finitely
combinatorial manifolds?



§2 Classical Seifert-Van Kampen Theorem with Applications

Theorem 2.1(Seifert and Van-Kampen) Let X = U UV with U, V open subsets
and let X, U, V, U NV be non-empty arcwise-connected with xo € UNV and H a

group. If there are homomorphisms

¢y m(U,zp) — H and ¢y : m(V,20) — H

and
1 1
m (U‘J ID)
P

T (U— NV, Tﬂ) —M (X, 'ID) """ —H

| I
m(V, 2g)

19 @2

with ¢ - 1y = @9 - iy, where iy : T (U NV, 2q) — m (U, xq), 19 : m (U NV, 2g9) —
m(V,xp), j1 : m (U, z0) — m(X,z0) and jo : m(V,20) — 71 (X, z0) are homomor-
phisms induced by inclusion mappings, then there exists a unique homomorphism

®: m(X,20) — H such that ® - j1 = ¢1 and ® - jo = ¢9.



Theorem 2.2(Seifert and Van-Kampen theorem, classical version) Let spaces X, U,V

and xo be in Theorem 2.1. If

j . ?T1(Lr= ID) * m(V, ID) — ?rl(XTiI?g)

is an extension homomorphism of j, and jy, then 7 is an epimorphism with kernel

Kerj generated by 1&1_1[:g;ir)i.if,;r(g;r)T gem(UnNV,x), i.e.,

Wl(U Tn) « mi(V, zo)
(i7" (g gem(UNV,z))"

m (X'- IU) =

Corollary 2.1 Let spaces X, U,V and xg be in Theorem 2.1. If U MV s simply

connected, then

m1(X) = 71 (U, zg) * 71 (V, 7).



Application: Let B, = [JS! be a bouquet shown in Fig.2.1 with v; € S},
i=1
W; =S! —{v;} for 1 <i < n and

v=stUmalJ - (JwWn and v = Jsil ] -|JSL

Fig.2.1

Then UV = S, an arcwise-connected star. Whence,

T1(By, 0) = m(U,0) + m(V,0) = 7((B,_1,0) = (S} .

By mnduction, we easily get that

m1(Bn,0) = (S}, 1 <i<n).



§3. Dimensional Graphs

3.1 What is a dimensional graph?

A topological graph F[G] of a graph G 1s a l-dimensional graph in a topological

space.

Definition 3.1 A topological graph F[G] is a pair (X, X") of a Hausdorff space X
with its a subset XU such that

(1) XY is discrete, closed subspaces of X ;

(2) X — X" is a disjoint union of open subsets e1,ea,-- -, em, each of which is
homeomorphic to an open interval (0. 1);

(3) the boundary €; — e; of e; consists of one or two points. If €; —e; consists of
two points, then (€;,e;) is homeomorphic to the pair ([0,1],(0,1)); if € — e; consists
of one point, then (&;,e;) is homeomorphic to the pair (S', 8" — {1});

(4) a subset A C FT|G] is open if and only if ANE; is open for 1 <i < m.



Theorem 3.1([2]) Any tree is contractible.

Theorem 3.2([2]) Let Typayn be a spanning tree in the topological graph TG, {e, :
A € A} the set of edges of T |G| not in Typan and oy = AyerBy € 7(T[G],w) a
loop associated with ey = ayby for YA € A, where vg € 7G| and Ay, By are unique

paths from vy to ay or from by to vy in Tspan. Then

(7 [G],v0) = (an|A € A) .



Definition 3.2 An n-dimensional graph ﬁ“[@] is a combinatorial Euclidean space
&a(n) of Rf“ i e N underlying a combinatorial structure G such that

(1) V(@) is discrete consisting of B", i.e., Vv € V(G) is an open ball BI';

(2) ﬁ“[G] \ V(fﬁ“[@]) is a disjoint union of open subsets ey, eq, -, €,,, each
of which is homeomorphic to an open ball B™;

(3) the boundary €; — e; of e; consists of one or two B™ and each pair (€;,¢e;) is
homeomorphic to the pair (B, B™);

(4) a subset A C fﬁ“[G’] is open if and only if ANE; is open for 1 < i < m.

i 1Ty

- —- - e
v

Fig.2.2



3.2 Fundamental groups of dimensional graphs
Theorem 3.3 For any integer n > 1, F|G] is a deformation retract of M" G].

Sketch of Proof If n =1, then M G] = F|G] is itself a topological graph. So
we assume n > 2.

For n = 2, letf(z,t) = (1 — t)T + tTp be a mapping f : ﬁ“[G] x I — ﬁ“[G]
for v € ;-':L:f“[G]l,t e I, where 79 = O, if T € BY, and Ty = p(T) if T € e;, where

P Uuv — €y a projection for 1 < ¢ < m, such as those shown in Fig.2.3.

T 3
B! U

Fig.2.3

Then f 1s such a deformation retract. []



§4. Generalized Seifert-Van Kampen Theorem

4.1 Topological space attached graphs

Definition 4.1 A topological space X attached with a graph G is a space X - G
such that

X(G#0, G¢X
and there are semi-edges e™ € (X [G)\ G, et € G\ X.

An example for X ) G can be found in Fig.4.1.

X G

X oG

Fig.4.1



Theorem 4.1 Let X be arc-connected space, G a graph and H the subgraph X NG
in X ©G. Then forrxg e X NG,

(X, zo) * m1 (G, z0) )
('Ill_l(ae;‘)iﬁ{ﬂelﬂ ey € E(H:} \_Tspan)yn‘.

where i, : m(H,xy) — X, iy : m(H,xq) — G are homomorphisms induced by

m (X (=) G, In} =

inclusion mappings, Typ,, is a spanning tree in H, ay = Aye, B, is a loop associated
with an edge ey = ayby € H \ Tepan, To € G and Ay, By are unique paths from zy to

ay or from by to xq in Tepan.

Sketch of Proof Let U = X and V = . Applying the Seifert-Van Kampen

theorem, we get that

?rl(X rg) * m (G, x0)
(i7M(9)ia(9)] g € M(X NG, xg))’

Applving Theorem 3.2, We finally get tlle following conclusion,

m(X 0 G xp) =

(X, 70) * (G, 20)

m (X oG, Iﬂ) = N
<i1_1(ﬂ!E)\}iQ{CEEA)| =5 = E(H} \ Tspan)y




Corollary 4.1 Let X be arc-connected space, G a graph. If X NG in X © G is a

tree, then

T (X O G, x9) 2 m (X, 20) * (G, 70).

Particularly, if G is graphs shown in Fig.2.2 following

Fig.4.2
and X NG = Ky, Then

m (X BE,“ID) = (X, xp) * (Li]1 <i <m),

where L; is the loop of parallel edges (xg, x;) in BL for1 <i<m— 1 and

'JT]{X (=) Sg.w Iﬂ) = M (X $|:|:}.



Theorem 4.2 Let 2., = G be a topological space consisting of m arcwise-connected
spaces X1, Xo, -+, Xon, Xi N X; = 0 for 1 < i,j < m attached with a graph G,
V(G) ={xo,x1, - 211}, m < I such that X; NG = {z;} for 0 <i <1—1. Then

(2 0 Goxg) = (Hﬂl(X:TID))*Wl(GuID)

i=1
= (H Wl(Xt':Tij) « m (G, x0),
i=1

where X = X;|J(zo, z;) with X; N (zo,x;) = {xi} for (zo,z:) € E(G), integers

1 <i<m.

Sketch of Proof The proof 1s by induction on m with Theorem 4.1 and the

Seifert-Van Kampen theorem. ]



Corollary 4.2 Let G be the graph Bf; or a star Sfl. Then

m

m1(Zm @ BY zg) (I:m()(;,xg)) « (BT, z0)

i=1

= (]::?rl(Xh:{.‘z-_ﬂ) # (Lill <7< m),

i=1

where L; is the loop of parallel edges (xg, x;) in B,}; for integers 1 < 1 < m and
T
(2, & ST 29) = H m (X}, xp).
i=1

Corollary 4.3 Let X = 2., (= G be a topological space with a simply-connected

space X; for any integer i, 1 < ¢ < m and x5 € X N G. Then we know that

(X, ) = m (G, p).



4.2 Generalized Seifert-Van Kampen theorem

Theorem 4.3 Let X = U UV, UV C X be open subsets and X, U, V arcuise-
connected and let Cy, Cy, -+, C}, be arcwise-connected components in U NV for an
integerm > 1, x;_ 4 € C;, b(xg,x;1) CV anarc: I — X withb(0) = x0,b(1) = x;_4
and b(zg, ;_1)NU = {zg, z; 1}, CF = Ci|Jb(xp, 7;_1) for any integeri, 1 <i < m,

H a group and there are homomorphisms

¢y : TflfUU b(xo, Ti-1),70) — H. &5 :m(V,20) = H

such that
. p
= m1 (U U b(zxo, zi—1,T0)) |
Ji1
E P
m(CF, xg) —— mi(X,z0)  ---------- -~ H
Fi2
: - mi(V),x —
i m1(V), zo) s
with @) - i3 = ¢ - i, where iy : m(CF xg) — m (U U b(zg, 1), 70), 2 :

ﬁrl{Cf._Ig} — m(V,xp) and 3;1 : m(UUb(x0, Ti—1,70)) — 71(X, x0), 752 : m(V,20)) —
m (X, x0) are homomorphisms induced by inclusion mappings, then there erists a
unique homomorphism © : w (X, z9) — H such that ® - j;; = &} and ® - 3,5 = &)

for integers 1 < 1 < m.



Sketch of Proof Define U¥ = U | J{ b(xq, z;) | 1 < ¢ < m—1}. Then we get that
X =UFuV,UEV ¢ X are still opened with an arcwise-connected intersection
UENV =2, ® ST where ST is a graph formed by arcs b(zg, z; 1), 1 <i < m.

Notice that 27, @ SmT = [njl CF and CENCF = {xp}. Therefore, we get that

(2 @ S 20) = @ mi(CF L mp).

This fact enables us knowing that there is a unique m-tuple (hy, ho,---, hy). b €
m(CF,x; 1), 1 <i < m such that

for V.7 € m(2,, © ST x) and inclusion maps
it i (P @ SE, 20) — m(U”, 7p),
iy : T (Zm © Sy, 20) — T (V. 20),
_j'f" . TI':[(UE,;I.'[.) —* ?Tl{X._ Iﬂ)._.
g2+ m(V,z0) — m(X, z0)

e B i uE _ s :E o 3>, o
With 27| (GF 20) = 15 12 |ny (CF g) = 25 I |myUub(o mi_y,x0)) = Ji1 80 35|z (v.mg) = Jiz
for integers 1 <1 < m.



Define ¢f and ¢4 by
oP(F) = [[ 61 i (h)), 05(F) =[] éhina(he)).
i=1 i=1

Then the following diagram

il m(U", x0) #
bt
(UF AVizg) —m1(Xo0) - om H
hﬂ 4|

i m1(V, z0) pr

is commutative. Applying Theorem 2.1, we get the conclusion.



Theorem 4.4 Let X, U, V, C'I-E ., b(xg, ;1) be arcwise-connected spaces for any
integer i, 1 <i < m as in Theorem 3.1, U¥ = U |J{ b(zg.z;) | 1 <i <m —1} and
Bl a graph formed by arcs a(zp, z;1), b(zg,7i1), | <i < m, where a(zg, ;1) C U
is an arc : I — X with a(0) = zg,a(l) = z;,_y and a(xg,z;—1) NV = {zg, z;_1}.
Then

m (U, xo) * m1(V, z0) * m(BL, z0)

m N
(@) i) g € fl m(CF.20) )

i=1
where i : m(U¥ NV, z0) — m(U¥,x0) and i5 : m(U¥ NV, z0) — m(V,x0) are

homomorphisms mduced by inclusion mappings.

m {X Iﬂ] =




Sketch of Proof By the proof of Theorem 4.3 we have known that there are
homomorphisms @1 and @2 such that @E -i‘lg = {DQE EQ Applyving Theorem 2.2, we

get that

Wl(UE Tn) ¥ 1(Vu In) _
((iF)~1(F) - i (F)]F € m(UF NV, x0))"
Notice that UF N VE = 2,, = ST and

m (X, o) =

?Tl(UE= In) = ’.I’IFI(U-T ’I.‘U:l # T (B?; In).
We finally get that
ﬂ'1({»r= I[]) T (V, ID) * ’Il'ﬂZB%T :I.‘q])

m N~
((iﬁ)—l{g) i#(g)] g € TT m(CF,20) >

i=1

T (X, zg) =




Theorem 4.5 Let X, U, V, C,.Cs.---,C,y, be arcwise-connected spaces, b(xg. z;_1)
arcs for any integer i, 1 < i < m as in Theorem 3.1, U¥ = U|J{ b(zg,z;_1) | 1 <

i <m} and BL a graph formed by arcs a(xg, z;_1), b(zg.zi_1). 1 <i < m. Then
m1 (U, xp) * mi (V. 20) * mi( By, 7o)
m N?
(@)@ &)l g € [l m(CF.0) )

where it : m(UF NV, x5) — m(U¥,x9) and i5 : m(UF NV, 25) — m(V.x9) are

homomorphisms induced by inclusion mappings.

m {X I‘D} =

Corollary 4.4 Let X =U UV, UV C X be open subsets and X, U, V and UNV

arcwise-connected. Then

?Tl(U zg) * 1 (V, x0)
{11 -ia(g)| g e m(U NV, Iq]j,l)h |

where i : m (U NV, zq) — m (U, ID} and iy : m (U NV, xg) — m(V,xg) are homo-

m {X Iﬂ]

morphisms induced by inclusion mappings.



Corollary 4.5 Let X. U, V., C;. a(xg, x;), blxg. x;) for integers i, 1 <i < m be as
i Theorem 3.1. If each C; is simply-connected, then

m (X, z0) 2 my (U, zg) * m(V, 20) * m (B, zp).

Corollary 4.6 Let X. U, V., C;. a(xq, x;), blxg. x;) for integers i, 1 <i < m be as
i Theorem 3.1. If V' is simply-connected, then

m(U. zo) = m1 (B, z0)

m N
(6871 &)l g € I m(CF.z0) )
where it : T (UF NV, x5) — m(U¥,x9) and i5 : m(U* NV, z9) — w1 (V. xq) are

homomorphisms induced by inclusion mappings.

m {X Iﬂ] =




§5. Fundamental Groups of Spaces

5.1 Determine fundamental groups of combinatorial spaces

Definition 5.1 Let M be a combinatorial manifold underlying a graph G[f':f] An

edge-induced graph G9[M] is defined by
V(GOIM]) = {xar, ae, 21, 22, - - -, 2urnany | for ¥(M, M) € E(GIM])},
E(GO[M]) = {(zar, 2ar0), (2ar, 22), (2ap, )| 1 < i < (M, M)},

where (M, M") is called the edge-index of (M, M') with p(M, M') + 1 equal to the

number of arcwise-connected components in M M M’.



By definition, G H[ﬁ | of a combinatorial manifold M is gotten by replacing each
edge (M, M') in G[ﬂr] by a subgraph TB;M?M,} shown i Fig.5.1 with =,y = M and

Iparr = i“l,-iﬂ .
L

Lyu(MM')

I



Theorem 5.1 Let M be a finitely combinatorial manifold. Then

( m ﬂl(M)) « m (GO M)
(1))

MeV (G

<(iF)_l(§) iy (g)| g € [1 (M) Mﬂ)>

(My,M2)eE(G[M])

where i¥ and i are homomorphisms induced by inclusion mappings iy : m (M N
M) — (M), iy - m(M M) — 7w (M") such as those shoun in the following

Fa

diagram:

iM _ ?rl'(ﬂif) jM
P Dprar ~
m (MM - (M)
- -1 (M) .
%y I

for ¥(M, M) € E(G[M]).



Sketch of Proof This result is obvious for |G [ﬁ]| — 1. Notice that Gg[ﬁf] =
BE{M,.W} g if V{G[;@J} = {M, M'}. Whence, it 1s an immediately conclusion of
Theorem 4.4 for |G[M]| = 2.

Let U = M\ (M\ M) and V = M. By definition, they are both opened.
Applying Theorem 4.4, we get that

(M — M) % 7 (M) % 71 (BT)

m N
<(i{3}“(g] iB(g) g € TTm(Cy) >

i=1

my {:ﬁ]l =

where C 18 an arcwise-connected component in M M {;ﬁ — M) and

m = > (M, M.
(M, M"eE(G[M])
Applying the induction assumption, we get that

( Il m(MJ) « m(G°[M))

M eV(G[M])

<{?7F]‘1{9]'%'§f9]| g€ 11 i'n(ﬂﬂﬂﬂifz}>

(M1, M2)e E{G[M])



Corollary 5.1([9],[10]) Let M be a finitely combinatorial manifold. If forV(My, My) €
E(GE [E}]} My m Ms is simply connected, then

mfii?f}%( ® m{M}) &) = (GIAT)).

MEeV (GIM])

9] L.F.Mao, Geometrical theory on combinatorial manifolds, JP J. Geometry and
Topology. Vol.7, No.1(2007),65-114.
[10] L.F.Mao, Combinatorial Geometry with Applications to Field Theory, Info-
Quest, USA, 2000.



5.2 Determine fundamental groups of manifolds

If we choose M € V{G[ﬁ]) to be a chart (Uy. @) with ¢, : Uy — R" for A € A
in Theorem 5.1, 1.e., an n-manifold, we get the fundamental group of n-manifold

following.

Theorem 5.2 Let M be a compact n-manifold with charts {(Uy, @y @y : Uy —
R", A€ A)}. Then

m {GE[;‘J]}

m {f‘r” = R
<(?'-F]'“(g} -i5(g)| g € 11 my (U 1 Uy]>
(Un U )E(GIM])

where it and i5 are homomorphisms induced by inclusion mappings iv, : m (U N

U,) — m(Uy), iy, - m (U, NU,) — m(U,), p,v € A.



Corollary 5.2 Let M be a simply connected manifold with charts {(Uy, @y)| @i -
Uy— R", A€ A)}. Then G'E[ﬂ;f] = G[M] is a tree.

Corollary 5.3 Let M be a compact n-manifold with charts {(Uy,@x)| wa : Uy —
R™ Ae A)}. IfU,NU, is simply connected for Vp,v € A, then

71 (M) 2 (G[M]).



86. Furthermore Discussions

If objects considered are smooth, then we can estabhish a differential theory on com-
binatorial manifold, 1.e., combinatorially differential geometry (see [12] for detail),
which can be used to characterizing the behavior of multi-spaces in Universe. More

such applications can be found in references [11]-[13].

[11] L.F.Mao, Curvature equations on combinatorial manifolds with applhcations to
theoretical physics, International J Math. Combin., Vol.1(2008). Vol.1, 1-25.

[12] L.F.Mao, Combinatorial Geometry with Applications to Field Theory, Info-
Quest, USA, 2009.

[13] L.F.Mao, Relativity in combinatorial gravitational fields, Progress in Physics,
Vol.3 (2010), 33-44.
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