Selected text from: Chaos, Solitons & Fractals, vol. 17, issue 5, pp. 811-818, 2003.

(Some sections and references not included)

Derivation of the Fine Structure Constant from Fractional Electrodynamics

Ervin Goldfain

Photonics CoE, Welch Allyn Inc., Skaneateles Falls, NY 13153, USA

Abstract

Both classical and quantum electrodynamics assume that random fluctuations are absent from the steady-state
evolution of the underlying physical system. Qur work goes beyond this approximation and accounts for the continuous
exposure to stochastic fluctuations. It is known that the asymptotic limit of quantum field dynamics, dominated by
large and persistent perturbations, may be described as an anomalous diffusion process. We use fractional calculus as an
appropriate tool to handle this highly non-trivial regime. It is shown that the fine structure constant can be recovered
from the fractional evolution equation of the density matrix under standard normalization conditions.



2. Transition from conventional to fractional dynamics

The effect of generic fluctuations may be conveniently modeled using the concept of density matrix. As known from
quantum statistical mechanics, the density matrix measures the probability distribution for transitions between various
locations in either coordinate or momentum space. Assuming throughout natural units (4 = ¢ = 1), the density matrix
in coordinate space obeys the following evolution equation [7]

Op(r,r';t)

—Hp(r,r';¢ 1
» p(r,r's1) (1)

where H represents the Hamiltonian operator. If fluctuations generate a ““white noise’ distribution at ¢ = 0, (1) becomes
subject to the initial condition

p(r,r;0) = po (2)
and satisfies normalization to a positive constant C
f{}(r: v;i)dr=C (3)
R

over the spatial domain r € {R}.

By analogy with the standard treatment of Brownian motion [8], Hamiltonian H is a linear addition of a deter-
ministic component (Hy), created by applied external potentials, and a stochastic component produced by steady-state
fluctuations (Hy).

Let us consider the interaction of a static electron with an isotropic Coulomb potential V' (r) = e(k)” /47 created by a
neighboring point charge. The deterministic Hamiltonian is given by

Hd:—LVE—E(k) (4)

2m 4nr

in which m is the electron mass and the fine structure constant x(k) = e(k)”/4n determines the coupling strength at the
sliding momentum scale & = 1/r [9].
The stochastic energy may be modeled as stationary noise which vanishes upon ensemble average

(Ho(r,£))ens = 0 (5)
and whose autocorrelation has the general factorized form [10]
(Hi(r,)H(r', 1)) = ot = )w(r —7') (6)
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In (6) the time correlation function ¢(r — ¢') is arbitrary and parameter A determines the linear scale of fluctuations.
To further simplify the approach and without loss of generality, we proceed with the following assumptions:

(a) the potential part of the energy is asymptotically higher than its kinetic counterpart. This is a legitimate hypothesis
in the strong coupling limit of short distances.

(b) r' is kept fixed and coincident with the origin of the reference frame (r' = 0).

(c) if L denotes the linear extent of {R}, i.e. [R] = L?, the limits of the spatial domain are set by 4 and L. The strong
fluctuation regime of short distances is characterized by A = L, therefore L represents the lower limit of the spatial
domain and A its upper limit,

(d) the electron space time path driven by stochastic fluctuations is considered a CTRW. The closest analog of position
fluctuations may be represented by the so-called Feynman’s Chessboard Model (FCM), in which deviations from



the nominal location are restricted to “forward™ and “‘backward™ moves of random amplitude along the radial po-
sition vector [27]. Unlike FCM, the CTRW model assumes non-uniform time intervals between consecutive spatial
jumps.

The evolution equation may be brought to a non-dimensional form with the following substitutions
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It is known that, to properly account for the short-distance behavior of QED, a vacuum polarization correction needs
to be added to the classical Coulomb potential [11,12]. This contribution is known as the Uehling term. The complete
potential energy, including the Uehling term and expressed in non-dimensional form, reads [13]
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Here e, represents the electric charge at the reference momentum scale, related to the “running” electric charge e(k”) via
[14]
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After taking the ensemble average of the overall energy and accounting for (5) we arrive at !
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which is solved by
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For finite time intervals satisfying the constraint
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the argument of the exponential function may be dropped and (12) reduces to
P’ 1") = polL (14)
The normalization required by (3) yields
= 15
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and the first two moments for the ensemble distribution of *, computed using (14), amount to
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It is seen that, according to assumption (c¢), both moments diverge in the strong fluctuation limit of short distances. As
known from the stochastic theory of CTRW’s, the divergence of either one of the two moments signals the transition to

! To simplify notation, we omit for the remainder of the paper the index referring to ensemble averaging.



fractional dynamics [15]. This regime is defined by a typical loss of characteristic scale (as A4 > L) and requires frac-
tional calculus to properly describe its time evolution [16,17].

The object of the next section is to analyze the impact of fractional dynamics on density matrix and its temporal
behavior. °

3. Fractional evolution equation

The natural generalization of (11) in the framework of fractional calculus is
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in which D! stands for the fractional differential operator with respect to time and v € [0, 1] is the differentiation order
[18]. Eq. (18) subject to (2) models a fractional Cauchy problem [19] whose closed-form solution is

el v
P = (D[ 1551 - b1 | (19)
where F,(z) represents the Mittag-Leffler function [15,19]
x
E, (z) = S (20)
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Repeating the argument previously made, we further simplify expansion (19) by restricting the analysis to time intervals
satisfying (13). This condition enables one to write (19) in a linearized form, that is:
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The normalization constraint (3) with the natural choice
pl =C (22)

yields explicitly
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in which o is the low-energy fine structure constant (o = e /4m).

Although, in principle, one can use (23) as a basis for retrieving «, this proves to be ultimately unfeasible since 4/L is
a large unknown variable and there are no realistic grounds for a suitable choice of parameters #° and v. As the next two
sections show, invoking the asymptotic behavior of QED and linking the onset of fractional dynamics to critical
phenomena, provides a way to overcome this difficulty.

4. The high energy region of QED

The short-distance behavior of QED is characterized by small valued denominators in (10). Since 4/L is an unknown
parameter, it makes sense to formulate (10) in its original form [14], that is
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2 As known, Eq. (1) is valid only in the context of equilibrium statistical mechanics. The screening effect of vacuum polarization [14],
accounted for by the Uehling correction, is to transform the classical Coulomb field into a short-range interaction. This, in turn, allows
use of equilibrium statistical mechanics as a legitimate framework for analysis [26].



Here k is the sliding momentum scale, k., the reference momentum scale and ef] = (k). Let k. represent the mo-
mentum cutoff assigned to the high energy region. We have

It is now convenient to redefine the spatial limits of the region in terms of k. and k.. Instead of considering 1 and A/L
as the lower and upper boundaries, as it was previously done, we are going to substitute them with r’ =
(re/reer) = (ks /k.) and 1, respectively. Stated differently, + is set to play the role of the distance cutoff. Consequently,
for any sliding distance ¥ = r/r

"i] << "?c . (24c)
where rly = rp/rer = 1.

In what follows we posit that (a) the reference distance r. of the high energy region corresponds to the standard
length scale of 10-1° m [2,14] and (b) the distance cutoff r, of the high energy region is set by the upper limit of electron
radius. The second hypothesis is based on recent studies performed at TEVATRON on Drell-Yan processes and re-
ported at 95% confidence level [20]. Thus

Feg =107 m, £ =569x10"" m (25)

In the high energy region of short-time intervals, # can be thought of as having the same order of magnitude as .
Hence we take

£~ (26)
Using these new definitions, normalization (3) along with the choice (22) leads to
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This is the main result of the paper. The next section deals with the relationship between the fractional order v and the
theory of phase transitions from statistical physics.

5. Connection to critical behavior

As known from the theory of second order phase transitions, the loss of characteristic length scale is a universal
feature of systems exhibiting critical behavior [21,22]. This property enables us to draw a natural analogy between the
onset of fractional dynamics outlined in Section 2 and the approach to criticality in statistical physics.

Consider the traditional Ising model consisting of a three-dimensional lattice of spins ¢; having random orientations
and undergoing a continuous change in temperature [9,22]. Away from the transition point (7;), the correlation
function between the ith and the jth spins displays an exponential decay at large distances according to

gy = (o0;) — (0:){a;) ~ exp ( - g) .

where |i — j| — oco. Here £, stands for the correlation length. At the transition point the correlation length diverges as
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In (29) v is the critical exponent of the correlation length whose numerical value for the Ising model is v = 0.626 [9].

Universality of the approach to critical behavior is outlined in the Appendix A. From this standpoint, the long range

order induced by fluctuations and embodied by (16) and(17) is equivalent to the long range order expressed by (29).
Based on this argument * we take

v =0.626 (30)

* It is instructive to highlight here the formal equivalence of FCM with the Ising model, as discussed in [27).



6. Computation of the fine structure constant

We are now in the position to compute «. From (25)(27) and (30) we derive
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We find
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* T 137.043

which is in close agreement with the experimental value of 1/137.036 [3,9].

8. Conclusions

We have outlined a derivation of the fine structure constant based upon the fractional time evolution of stochastic
electrodynamics. The work has focused on the asymptotic limit of QED which is defined by large fluctuations in all
relevant variables. The loss of characteristic scale, typical for anomalous diffusion and “complex behavior”, was linked
to the theory of critical phenomena. The fine structure constant was found to emerge from the fractional evolution
equation of the density matrix, subject to standard normalization conditions.

Appendix A

Under the most general circumstances, space and time are treated as independent variables of the CTRW induced by
fluctuations. In this case the reference length scale (rr) and the reference time scale () are different and we may define

0 = (t/trer).

Constraints (13) and (26) require

at(l — blns")
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This condition is satisfied by sampling a spatial region well outside the cutoff limit, i.e. if r. < r = r,. Based on this
assumption and using (19), the position ensemble average is given by

(") ~ Flard, 0,0 (A4)
where

Ca(1 =) (1 + ) + b0 2

Fla, 72 v,t) =
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It is seen that (A.4) is formally equivalent with (29) upon identifying fluctuations in radial position of the electron with
the Ising spin field:
(") <= & (A.6a)
tef = 0= T — T, (A.6D)

(A.6b) corresponds to probing the deep ultraviolet domain of quantum field theory, i.e. the Planck length region
(trer ~ (Lp/c))-






