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Abstract: This is the first partial draft of a papender development to further elaborate the
author’s thesis presented in several earlier-puidid papers, that baryons including protons and
neutrons are Yang-Mills magnetic monopoles, an@é$pond to queries and comments received
with respect to these earlier papers. This pap#y develops the non-linear aspects of Yang-
Mills gauge theory and applies these to the inversed to populate the Yang-Mills magnetic
monopolies with quarks and turn them into baryond give rise to QCD. We also show how the
perturbations in these inverses, which arise frammon-linear theory, create a pseudo-mass
term which is responsible for the short-range @ tluclear interaction, notwithstanding the
zero-mass gluon gauge fields.
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I. Introduction

In a recent paper [1], the author presented theighat the non-vanishing magnetic
monopoles of Yang-Mills theory are in fact synonyrmowith baryons. That is, magnetic
monopoles, long-pursued since the time of JamegskChMaxwell have, in Yang-Mills
incarnation, always been hiding in plain sight asybns, and most importantly, as the protons
and neutrons which rest at the center of the nateniverse.

Since the release of that paper, the author has ineeommunication with a number of
people who have offered helpful comment and crdignd asked for clarification of certain key
points of development. At the same time, the ndafpaper did at points allude to some “deeper
analysis” which was consciously not detailed in, [ib] order to achieve as much brevity as
possible in a paper that was already 69 pageso, Aih the benefit of more than half a year of
reflection on this original paper, as well as tlenfadence that the author has gained in the
physical correctness of this thesis through thesegbent prediction to parts per 1 16 AMU
accuracy of the empirical binding energies forefift (15) distinct nuclear isotopes naméty,
®H, *He, *He, °Li, 'Li, 'Be, ®Be, 1B, °Be, '®Be, 'B, 'C, **C and'N as well as the neutron
minus proton mass difference as detailed in sewarasequent papers [2], [3] [4], [5], [6], it
became apparent to the author that some of thenatignaterial in [1] could be developed more
simply, directly, and broadly.

Consequently, this paper revisits the main devetagnm [1] of the thesis that baryons
including protons and neutrons are magnetic morespaimplifies the development where that
is possible, expands on matters that were alludedut not fully presented at the time, and
answers pertinent questions posed to the authoth®rs who are attempting to understand the
theoretical basis of this theory. In contrasthite &uthor’'s other recent papers mentioned above
in which the goal was to confirm this thesis withgrical predictions or retrodictions, this paper
will not attempt to expand this already significas@t of empirical points of contact between
theory and experiment. Rather, this paper is adational paper, dealing with the very deepest
theoretical physics issues which underlie the theébat baryons are Yang-Mills magnetic
monopoles, and in many ways, showing — as thisrfsmpte suggests — how Yang-Mills gauge
theory is indeed the theoretical foundation of maclphysics. Included in this paper is a
discussion of a number of issues pertaining tostitealled “Yang-Mills mass gap” [7] problem,
most notably, the question of how and why quarksobe confined, and how to generate a
short-range nuclear force from a gauge field obghiwhich are presumed to be massless. And,
in many ways, while the first paper [1] neglectedne of the non-linear features of Yang-Mills
because the author had concluded that those featatdd be neglected in the zero-perturbation
limit which the author was reviewing in [1], thigyper neglects nothing. The development in
this paper is intended to and does fully incorpoiaatd developll of the non-linear features of
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Yang-Mills theory which distinguish such theorie®m Abelian theories such as classical
electrodynamics and its quantized formulation QED.

Out of all the comments received by the authoresithe publication of [1], perhaps the
most important and fundamental comment comes fromelaknown author and teacher about
gravitational and relativity theory:

“One thing that appears doubtful to me is the way handle the QCD gauge
fields, replacing them by the fermion source cusdérom which they originate. It
seems to me that your procedure involves a whaesaletion of all the
nonlinearities in these gauge fields, which wouéra unacceptable, because
these nonlinearities are essential for generatirggtsange forces from a zero-
mass gauge field. How you expect to get shortedngces from your approach
is a mystery to me.”

The commenter is 100% on target to be concernedtab@ctly this issue. It is a first
tier issue, and it concerned the author for oveese/ears. Indeed, this single issue was most
responsible for it taking the author close to seyears from the time he first hypothesized in
April 2005 that baryons are magnetic monopolesil tim¢ time that he could present a fully-
developed theory on the subject in December 20lghvyh] was completed.

The crux of the author’'s own self-critique durirmat period of time was the following:
On the one hand, we were using the nonlinearitte¥ang-Mills to show the existence of

magnetic monopoles that do not vanish from cominihe equationF*" =90“G" —9"G*
relating the vector potentialG* to the field density F#* with the equation
P =9 F* +0#*F" +0"F% relating the field density=** to magnetic source charg&s" .
Recall that magnetic source® vanish identicallyP®” =0, in Abelian gauge theory, most
notably QED, by combining=*" =0*G" —90"G* with P* =9 F* +0*F" +90"F?. On the
other hand, when it came to Maxwell's electric seucharge equatiod” =9, F*, the simplest

way to populate the Yang-Mills magnetic monopoleaghvguarks was to entirely delete the
nonlinearities of Yang Mills, as the above commenctarectly points out. To the author, doing
so seemed to be mathematically inconsistent, atabkt over seven years to understand how to
overcome this inconsistency.

To restate in different language: the author was¢padvantage of the nonlinearity of
Yang-Mills theory to create non-zero chromo-magnetonopoles, and then seeking to ignore
this very same non-linearity when it came to theonfo-electric charges which the author
wanted to use to populate these magnetic monopuitbs quarks to turn them into baryons
including protons and neutrons.. This inconsistelmathered the author greatly, and really kept
his research stuck in the same place for almosirsgears.

In May 2012, the author finally bit the bullet adidl a complete calculation involving the
electric charge equation with all the nonlineasitiand then inverted that equation to express the
gauge fields in terms of the fermion source cusdradm which they originate. Happily, it was
discovered that all the extra terms that were dioed into the electric charge equation
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J#=0,F" by these non-linearities have the form of a pestion -v =(9,6"+G9,)+ G @

identical in form to that which is used in quantahectrodynamics, with the only difference
being that the gauge fields were now Yang-Mill gadiglds. In other words, the nonlinearities
that the author wanted to ignore, when they shownufhe chromo-electric charge equation
J# =0, F", are simply a perturbation. So that would jussifiyply looking at everything in the
zero perturbatior’V — O limit. This in turn allowed the author to feelmtortable using the
same inverted equatio®” = —J“/(k" k — n?) between sources and gauge fields that one would

use in a simple linear theory like QED.

Stated differently, the author discovered that whesed in the magnetic monopole
equation P* =97 F* +0“F" +0"F% the nonlinearities of Yang-Mills create non-vaiigh
monopoles; and when used in the electric chargetegu J“ =0 _F* the nonlinearities
introduce a new term-v =(9°G, +G,9°)+G°G, that is no more and no less than a

perturbation. The former non-vanishing magneticapmles the author very much wanted, and
the latter appearance of a perturbation gave tkigoathe ability to neglect terms that he very
much wanted to neglect but heretofore could ndtfyuseglecting.

All of this “deeper analysis” was alluded to betwg2.8] and [2.10] of [1]. But to have
discussed this entire seven-year journey and althef calculations that led to being fully
comfortable using [2.9] in [2.5] of [1] would haeelded many additional pages, and would have
diluted the overall development. So the authoexetl that full exposition of this analysis at the
time of preparing [1], but will now present thisadysis, completely, in sections Il through VI of
the present paper.

Once the author realized that the non-linearitids Yang-Mills simply produce
perturbationsV in the electric charge equatiait’ =d, F*“’, and then decided to neglected the

perturbations, that of course had other conseqsermat these the author was willing to
accept. The primary consequence was that if orenregarding these magnetic monopoles as
protons and neutrons, then one would be throwingyaavtremendous amount of the interaction
and noise that occurs inside the protons and mesitndnich is undoubtedly responsible in some
fashion for giving these nucleons their observedsea and energies. So the author knew that
when he finally calculated the energies of thesag¥ilills magnetic monopoles without the
perturbations, he could not expect to get the @emtiass of a proton or neutron, but would instead
get other, much lower energies, and so would havintd a way to make sense of what these
lower energies actually represented, physicallfisTis discussed to a fair degree following
[11.12] of [1].

As the author now understands, energies that resthlitthe perturbations (and also the
“Higgs vacuum”) turned off, correspond maiclear binding energiesas opposed to full masses
of the proton and neutron. But this all originaiedfinally understanding that the nonlinear
terms that the author wanted to neglect in thetmtecharge equation” =d, F* were
perturbation terms thabuld be neglected as long as he was willing to modi$yumderstanding
of the proton and neutron energies that would coweof this. In section II through VI to
follow, we shall now present in detail, the “deepealysis” referred to just after [2.9] of [1].

4
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II. A Review of Classical and Quantum Electrodynamics

II.1 Magnetic Monopole Densities

Because this paper will be largely focused omfathe non-linearities that come about in
Yang-Mills (non-Abelian) gauge theories, most ndtaDuantum Chromodynamics (QCD), it is
helpful as a point of comparison to first reviewsdical and quantum electrodynamics (QED),
which are entirely linear (Abelian) gauge theoriedVe start classically, with Maxwell's

equations for the electric charge densltyand the magnetic charge densR{" , respectively:

JV :a‘uF,UV' (2.1)
P = F* +d*F" +9"F%* . (2.2)

With only these two equations, there is nothingaolitiequires the magnetic charge den§ify’
to become zero. It is only after introducing anedén (commuting) vector potenti&*, and
relating this to the field strength tensef” according to the relationship:

F* =9rGY —9"G* =a* G, (2.3)

that the magnetic charge density vanishie$) =0. Because this result is central to much of
the discussion here, it is important to review dyatow this zeroing of the magnetic monopole
charge density comes about.

The first step is to substitute (2.3) into (2\&hich yields:

Pa,uv :aJF,uv +a,uFl/0' +av Fa,u
=07 (0"G" -9"G*)+0#(0"G" -0°G')+9" (0° @' -0 @). (2.4)
=[07,0|G" +|9#,0" | G" +[9",0 | &

So, if the partial spacetime derivatives are conimgutvith one another[@”,d“] =0, then (2.4)

is clearly equal to zero, by identity. But whajppans when the derivatives do not commute,
i.e., when[@”,a“] #07? This is an important question, because in tineeclispacetime which is

responsible for gravitation, derivatives do not come. Indeed, the Riemann curvature tensor
R?__, which may bealefinedvia the relationship

auv

0,.0,]G,=F,,G, (2.5)

auv

for any non-vanishing vecto6”, is in fact a direct measure of the degree to Wwhilwese
derivatives are non-commuting. This can be expfieixpanded to show the Christoffel symbols

via the expressiom, G" =0,G”" +I", ,G” for the covariant (;) derivative of a vector fieldut
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one of the important geometric identities satisfigdthe Riemann tensor, is the first Bianchi
identity R"* + R*" + R*"” =0, with a cycling of indexes identical to that whichtains in the

magnetic monopole field equation (2.2). So ifasi “what happens to magnetic monopoles in
curved spacetime?” the answer is obtained by dubsg (2.5) together with the first Bianchi
identity into (2.4) to yield:

o =[07,09]6 [0 0% & [ 0] &' (7 ¥+ ) 620 @9

This is a very important result, because it telts that the vanishing of magnetic
monopoles in Maxwell’s theory (and to be discusiser, the confinement of quarks in QCD,

see Section 1 of [1]) is brought about not only tia trivial relationship[a”,a“] =0 for the
commuting of derivatives in flat spacetime, butrevwe curved spacetime, by the very nature of
the spacetime geometry itself. That is, the nasterce of magnetic monopoles in Maxwell’s

electrodynamics is a direct consequence of spaeetjgometry, such thaP” =0 is a
geometrically-rooted relationship. In the languagfe “differential forms,” the combined

relationships (2.4), (2.6) foP”" =0 are expressed compactly &= dF = ddG=0, and are
discussed in geometric terms by saying that “therex derivative of an exterior derivative is
zero,” dd =0, see, e.g., [8] §4.6.

Differential forms also provide a very helpful way take volume and surface integrals
while easily applying Gauss’ / Stokes theorem, Whiheorem we write generally for any

differential form X, as ﬂ dX =<.fg X . Specifically, to express in integral form thesence of

magnetic monopole densities specified in (2.4)%)(2one writesP = dF = ddG=0 as: (wedge
productst in 5 F*dx, Odx = P dx dx are considered to already have been summed)

JifP=[]jaF =[] ddG={p F=dp P~ dg dx=¢p de-0. @7)

One may extract Maxwell’'s magnetic charge equaitomtegral form,gfj)é[dj%:o, from the
space-space bivector components oﬁi F#*dx,dx =0. While magnetic fields may flow across
some surfaces, there is nevanatflux of a magnetic field through argfosedtwo dimensional

surface. Faraday’s inductive Ia@é[di = —H OE{ ot Eb):A is extracted from the time-spack 0

bivector components. While magnetic fields aremfteferred to as dipole fields, it is probably
better to think of them amterminalfields, i.e., as fields for which the field linesver end at any
terminal locale.

I1.2 Electric Charge Densities and their Inversion

We now turn to the electric charge equation (2.8ubstituting the Abelian (2.3) into
(2.1) and engaging in some well-known gymnastidh tie spacetime indexes yields:
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J'=0,F" =0,(0"G" -0"G")=0,0" G -9,0" G =0,0° G -0"9" G

(2.8)
=g"9,0°G, -9"0"G, =( g9,0° -0"9") G,

First, we introduce a “Proca massfi for the gauge field, by hand, in the usual wayngis

8,0° - 0,0° +m* to rewrite (2.8) as:

2 :(g’” (0,07 + mz)—aﬂaV) G,. (2.9)

The Proca mass serves three purposes. Firsticuntstances where onerist concerned with
gauge symmetry and renormalizability and simply tsaon know the effect of masa on the
field equation (2.8), this tells us what that effed| be. Second, for circumstances where @ne
concerned with preserving gauge symmetry, and wiantse able to generate masses from a
Lagrangian with gauge symmetry via spontaneous stnyrbreaking, the Proca mass
operates as a “red flag” to tell us which massesvamet to be able to introduce not by hand, but
by symmetry breaking. In other words, terms witbdd masses eventually need to be replaced
with mass terms hidden in the gauge symmetry, imemmmplete theories. Third, the
configuration space operator in (2.8) has no iryenghich requires gauge fixing, see, e.g., [9],
chapter IIl.4, while (2.9) with the Proca massasily invertible as we shall now see.

What is of interest here about the form of (2.9)hist it allows us to readily derive the
inverserelationshipG, =1,,J" wherel , is a second rank inverse tensor. Becalfsén (2.9)

is equal to the entire configuration space operg(t‘_'fr(aga" + mz)—a"a“ operating onG, , we
can separately specify (define) the invesseh that

.| 9 (9,0° +m?)-049" [= &%, (2.10)

We further surmise given (2.10), th}, = Ag,, + Bd,0, will specify the general form of the
inverse, withA andB being unknowns. Substituting into (2.10) we aftai

[Ag,, +B9,9,][ ¢ (0,07 + nf)-0*0" | =¥, (2.11)

Now we need to solve (2.11) fBrandB. The solution is well known, but because we wided
to solve similar, more difficult inverses later les do the full exercise.

Usually, this calculation is done in momentum spabat here, we will stay in
configuration space at the outset. First, we edpard applyg,, 9" = 6*, to obtain:

As*, (0,07 + 1) - Ag,0“0" + B,0, " (0,07 + )~ B,3,0"0" =", . (2.12)
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We see that to eliminat&”

v

we must setAzl/(aga" + mz). We do so. With some
rearranging and raising or lowering indexes to et#oe remainingg,,, , we next obtain:

B9, 0" (9,07 +nt) - B9,0,00" =8+, /(9,0° + ni). (2.13)

Next, we work in flat spacetimeR’ =0, so that via (2.5), the derivatives now commute,

auv
[aﬂ,aV] =0. Commuting the derivatives at will and furthedweing including factoring out the
0,0/ finally yields B= (1/ mz) /(aga” + m?) . Finally, substituting A and B into
l,, =Ag,, + Bd,0, allows us to obtain the inverse:

gl/l' + avaZT _gl/l' +kV7k[
_ m n? (2.14)

l,, = = .
70,07 +m kK - ni

In the final expression, we have used the substitld” - ik” to finally convert over into the
more-commonly used momentum space inverse.

. . _ v o
Given this inverse, we may now ugg =1 ,J" to write:

9.9, k K
,uv+# _g,uv+ /rzr:zﬂ/ _g,uv+ !;TI;/
G,=1,3" = = N ¥, (2.15)
S 0,07 +m p, @ - nf pf- m+4

In the final expression, we apply thie prescription for the on-shell poles kfk” — nf =0.
Settingm=0 in the above shows clearly why the masslessigunation space operator in (2.8)
has no inversek k, / nf - o asm - 0. However, noting that the conservation of theteie

current density is expressed asJ” =0, or k,J” =0 in momentum space ([9] at 1.5(4)), the
above reduces with some final index gymnastich¢overy simplified:

— 1 J,U — 1
kiK-m~ =~ kK- m+é

Ho—

O—

= J-. 2.16
0,0° +m’ (2.16)

If we set the Proca mase=0 and also denoting, k’ = ¢f, this become&* =-J#/ ( o+ ig).

Finally, in Dirac theory, the electric sourdé density in turn may be expressed in terms
of fermion wavefunctiongy. The Dirac equation tells us thé’my”aﬂ—m)z// =0. For the

adjoint spinory =y 'y° the field equation iéaﬂﬁy" +my =0. Adding yieldsd, (@y"t/l) =0
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as is well known. And because the conserved cuigeexpressed by J“ =0 as already

employed above, we identify the current densitthwit’ =gy*y . So if we want to express the

gauge fieldG” in (2.16) in terms of the fermion (e.g., electr@ources themselves, we may
further rewrite (2.16) as:

Wy e 2.17)

1 —
He = — . '
© VY kK-m kK- m+4

9,07 +m
This relationship — and analogues to this relatigns- plays a central role in developing the

thesis that Yang-Mills magnetic monopoles are basydecause we use gauge fields
expressed in inverse form in the manner of (2.b/)populate” the Yang-Mills magnetic
monopoles with quarks and thereby turn them intgdozs.

Now let’s briefly look at the integral form of tHeld equation (2.8) using the language
of differential forms. Whereas the magnetic morepequation isP =dF = ddG=0, the
electric charge equation ®J =d* F=d dA, wherelJ is a current density three-form. The

duality * operator is employed on the fieldss“ =% £“'F, , hence*F =* F*dx dx, and
also on the sources J*? =¢"]J , hence *J=J"dx dx dx, where £ is the

antisymmetric Levi-Civita tensor (summing wedgedurcts as in (2.7)). Thus, in integral form,
Maxwell’'s electric charge equation reads (cont(ast)):

[[fra=[fa- F=]ffar ar=dfy F={p P ay dx=gf d. (2.18)

In integral form, Maxwell’s electric charge equati(ﬁ EfdA= Q is obtained from the space-

space bivector components, while Ampere’s kﬁ\fﬂﬂ = ] +,uO£Oﬂ%—ItEmA with Maxwell’s
S

displacement current which established the ligleesippropagation of electromagnetic signals, is
extracted from the time-space bivector componehtiseoabove. The non-vanishing chafye

the charge equation is what does bring into beahegtric monopoles in which thens a net
electric flux crossinglosedtwo-dimensional surfaces. In contrast to aterimmagnetic fields,
the electric fields do terminate at the source ghag.g., electron.

II.3 Quantum Electrodynamics (QED)

So far we have focused on classical electrodyrami@e now turn to QED. Starting
with the Lagrangian density for a field ¢ with a source density, one produces the quantum

field theory forg,J by obtaining the transition amplitutW(J) from the path integral:

Z = [ Dgexp((i /1) [ d*xe(9)) = [ Dpex(i 1) S(g))=¢ exfiw( J). (2.19)
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In the limit where the actiors(¢) :I d* x¢ (@) > 7, one may evaluate the path integral with the
stationary phase (or steepest descent) approximatias to determine the extremumSifqo).
(It is understood thaqrd“x,@(go) Is an integral from-o to +o0 over all four spacetime

coordinatesx”.) This leads to the Euler-Lagrange equatione,(eq., [9] at 1.3(8)-(9))

o[ 9L |92 . (2.20)
00°¢|) o

So, if we know the classical equation for a figg]dand wish to obtain its quantum
counterpart, we first find th& needed to make (2.20) to reproduce the classaldl équation.
For example, we find that Maxwell's classical fielguationJ” =9 ,F** of (2.1) for the electric

charge densityd* may be reproduced via (2.20) by the Lagrangiarsithen
8, =-3F"F,-J"G,. (2.21)

So the “only” thing we need to do is use (2.21J2rL9) to obtainW (J). But this is not always
an “easy” thing to do, and for some theories, sashYang-Mills, it has to date proven
impossible to obtain an exact, strictly analytiezluation ofW(J) in (2.19). That is the

reason for such things as perturbation and lagfazege theory, see, e.g., section VII.1 of [9]. But
for QED an analytical calculation is possible, aasl a template for later more difficult
calculations involving Yang-Mills theory, we shadlview this (known) calculation in detail.

In general, one solves (2.19) to dedLWéJ) from a given Lagrangian densit,@(¢),

using what Zee [9] in Appendix A refers to as tlkeritral identity of quantum field theory” (we
have reversed the sign fdrbecause we are using the electrodynamic convemiovhich the
units of charge (electrons) are negative whereasuges a positive charge sign convention):

j Dgexp(-4 9K p-V (¢)- IMp) =¢ ex{V(3 15J)) expt JOK*0J), (2.22)
with the quadratic terms ig in (2.19), (2.22) converted overW(J) via the Gaussian integral:
[dxexp(=3 A%~ I =(-27/ A" exq{ § /24 (2.23)
Basically, one starts with (2.22), takes the Lagram density£(¢) of the theory under

consideration, applies whatever tricks or resowloefss one can muster to put at least part of the
Lagrangian in the general quadratic forg @K [p+ J [p from (2.22) which then maps over to

-1 AX* + Jx in (2.23), and takes all the remaining terms amis$ them intoV(¢). For QED, as
we shall seey (¢) =0 because this is a linear theory, which makes thamgnparatively simple.

10
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First, we use the compact form* = 90“G"! of the Abelian field strength (2.3) to write
(2.21) as:

£, =-1d*G"9,,G, - JG,. (2.24)

This means that the action fgr= A is specified by:

S(g)=]dx,(G)=] d f-i0" G0, G- 9 g). (2.25)

This does already contain the terdrigp - J“ A, of (2.22), but does not yet contain the term
-2 @K [p. The “resourcefulness” that we apply to obtaifigK L, is to integrate by parts.

First, we use the product rule written @§(ab) =0" ab+ 46” Q with a=G’, b=9, G

(1]
to obtain a”(G“a[yG‘,]) =0“G'9,,G, +G0"q,G . It is simple to then construct the
antisymmetric expression from the upper (contradjiindexes:
0¥ (G"9,,G,)=d“G"9,G, + ¢'0q,G . (2.26)

We isolated“G"9,,G,, above and use it in (2.25) to write:

S(G)=] @ e(6)=[ ¢ {10 o8, 6- 9
:.[d“X(_%aﬂ(Gva[va])Jr?lt G0, G- ¥ §)
= [d*x(-30" (G0, G )+ G9"0, G -3 G0, G- 1 G)

( ) (2.27)
= [atx{-10"(©9,6))+ G 90,0 -0") G- ¥ g)

Above, the final line is arrived at from the thirde by simple index gymnastics, and we do one
flat spacetime derivative commutati@ﬂ” ,0“} =0 by assumingR’,,, =0, again see (2.5). As

in (2.9), we introduce a Proca mass “by hand” Wtiregd 07 - 4,07 +m?, so this becomes:
s(G)=[ o -20"( @3, G)+3 G ¢ (0.,0°+ A)-0"0") & 9 A, (2.28)

We see tha%Gﬂ(g”" (aga” + mz)—a”aV) G is now a term of the form1 ¢[K [p that
fits (2.22), with -K = g* (606" + mZ)—aﬂaV and =G. The term —ﬂd“m[ﬂ(eﬂawq})

which remains can be removed by imposifﬁji(x”:oo):G’()@:—oo):O as boundary

11



J. R. Yablon
FIRST PARTIAL DRAFT

=) _

o]

conditions upon the gauge potential, so tt@t‘[| =0 for each of the coordinates

X" =(t,x,y, 2. Thus, withd*x= d¥’ dX dX d%, we may calculate that:
4 a a
[d0"(G9,G) =] d xg 5 (G @)
0 0 d .,
=[x dx d¥ dR ¢ 50 @ G)+[ d dx deg 5 (G, P

+jd><°d>&d>8 dx gziz( @, 9)+j dx dx dx &x“éi( &, .,

(2.29)

0 G (t=+w0) 1 GY (x=+w)

jdxldxzdig‘a q( ¢l e J jd><°dx2d>€ ¢9,, q( ¢l i J

2 G (y=+o0) Y (z=+e)

+[dedédR ¢, c;]( o w)) [ o dx e, g{ ‘EV(F_«,J

=0
Now, with (2.29), (2.28) reduces to:

= d“>(% G( ¢ (0,0°+ mM)-0"0") G- g;) (2.30)

This is finally quadratic irG,. So we place this into path integral (2.19) with 1 as:

Z = [ DG, expi d“x(% G, (g (0,0°+ nf)-240") G- ¥ g.)s@exp( W ). (2.31)
Comparing (2.22) with/ =0 while

In (2.22), we seV =0 and scaleK — —-iK henceK™ - iK™, andJ - iJ, to write:

[ Dpexpi (39K Gp-J ) =€ expri (20 x™) (2.32)

Comparing (2.31) we see correspondendes. J“, ¢ - G*, K - g“”(606”+mz)—6”6”.

Additionally, K - g’”(aga"+mz)—a”a“ is identical in form to the configuration space

operator that appeared in (2.9) and that we ingdart€2.10) through (2.14). Thus, from (2.14),
we already know that:

aVaT kT
gVT + 2 _g rr]z
= (2.33)
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Therefore, using all of the foregoing corresponégsnt (2.32), and making certain all the
spacetime indexes are properly represented andimtdading the conjugate source density

J* (k) we obtain:

kK
-q, +
_[DGexpi(%Gﬂ(g"” (606"+ nf)—d"a”) G- J q):@exp —% i3 ( @H I( k|.(2.34)

Comparing (2.34) to (2.31) and migratir:[gj“x - Id“ k/(277)4 from (2.31) as a result of the
Fourier transform into momentum space, allows ysc¢k off the amplitude by setting:

z :jD¢expijd4x(% G, (g (0,0°+ ni)-0"0") G- ¥ 9)

K
~g,, * r!;]'j . (2.35)
JI/
2n) " k7 -t

s@exp(iW (J)) =@ ex —% i_[(d4k

which means that:

4 9w~ 3 4 )
W= [ ¥ it Y873l G ¥ g s A% 30

In the final expression, we again emplkyd” =0 as in (2.16) to impose the conservation of the

electric source charge density, and have also atlaedis term. This should be compared to
1.5(5) in [9], to which it is identical. This exggsion of course, tells us that like electric cbarg
repel.

In (2.36), the term

k
I T r/;]ljl
7T'W zllw =l m (237)

is the propagator for vector bosons exchanged legtviee two source currents. In a linear
theory such as QED in which the path integral carsblved exactly using an action such as

(2.30) which is quadratic in the fields with no hég-order terms, e.g¢?, ¢, etc., we find
comparing (2.15) that the inverse is the same asptbpagator,7z,, =il ,, up to a constant

factor. This is not in general true, however, &otheory such as Yang-Mills theory which
contains higher-order field terms, as we shallisesctions IV and V.
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II.4 Does the Concurrence between Configuration Space Operators for the
Field Equation and the Path Integral Continue to Apply in Yang-Mills Theory?

Momentarily, we will begin to examine Yang-Milledory, which does contain higher
order gauge field terms, specificall®, G*. The development in this section will serve as a
foundation for the more complicated consideratiassch arise once these non-linearities are

introduced. But the single most important poinb&kept in mind from all of the development
in this section is the following:

We do not expect that the Yang-Mills inverses viaél the same as the Yang-Mills
propagators up to a constant factor, that is, wendbexpect thatz,, #il . in Yang-Mills

theory. But, there is another very important corence that we have seen which may apply,
and as we shall establish, which does apply to Yillg theory just as it does to
electrodynamics. That concurrence is established y b comparing

JY :(g‘” (aaaﬂ + mz)—a“av) G, which is the field equation (2.9), to

S(A)=]d A3 G( ¢'(2,0°+ )-0“9") B~ 8 @, which is the electrodynamic action
(2.30) arrived at following integration-by-partsaths fed into the path integral. It is clear thmat
both (2.9) and (2.30), one comes acr@§(606”+mz)—6”6“, which is theexact same

configuration space operator

Given this observation, we now raise the followopgestion: In Yang-Mills theory, are
we to also expect that the configuration spaceaipein the classical field equation for chromo-
electric charges will be equal to the configuratspace operator in the action that is fed into the
path integral to quantize Yang-Mills theory? Tlgsnot a trivial question, and in fact, in the
process of answering this question, we are ledamtamber of potentially-fruitful directions. In
the discussion to follow, we shall establish tha¢ tanswer to the question iges, these
configuration space operators are the same, everiang-Mills This, in turn, will reveal that
for the chromo-electric charge equation which s #malog to (2.1), the impact of Yang-Mills
theory is to add a perturbative term of the form=(9°G, +G,3?)+G°G, which when set to zero

allows us in turn to use a simple inverse of thenf¢2.17) to populate the Yang-Mills magnetic
monopoles with quark wavefunctions, and thereby these magnetic monopoles into baryons.
Subsequent to spontaneous symmetry breaking toresrtspological stability, see section 6
through 8 of [1], these baryons become identifieth wrotons and neutrons which in this zero-
perturbation approximation yield — not the entiretpn and neutron masses themselves — but
rather, extremely accurate retrodictions for thelearbinding energiesleveloper by the author

in [2], [4], [5], [6]. In this light, the nucleabinding energies themselves are sending us very
clear signals about what is going on inside of finetons and neutrons, when all of the
perturbative and vacuum effects are neglected. irPyget another way: while perturbations and
the vacuum do affect the overall neutron and protasses and the dynamiosidethe proton
and neutron, they have absolutely no effect (astléa parts in 70AMU or higher) on the
binding energies, and on tkéferencebetween the neutron and proton masses, all ofhwdie
strictly externalmanifestations of the physics of protons and n&stro
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III. Classical Yang-Mills Theory, and Why its Magnetic Monopoles Look
Very Much Like Credible Baryon Candidates

III.1 The Profound Importance of Non-Commuting Objects in Physics

In many ways, many of the key developments whiztuored in 28 century physics can
be summarized by the simple fact that many physibpcts which in the 19century were
assumed to be commuting objects came to be recyamnon-commuting Consider some
examples: In the fgcentury, one assumed that position commuted widimantum, i.e., that

[x, px] =0. Then, in the ZDcentury, Heisenberg taught that in fact they docoonmute, i.e.,
that[x, px] = if, and that the very same angular momentum congtaligcovered by Planck in

1901 was the measure of the degree to thr@] # 0. The consequences of this non-

commutativity are profound, and extend to the utadety principle which represents a Fourier
transform between position and momentum in whiehntinimal uncertainty spread applies to
Gaussian distributions. As another example, atjhdgiemann in the 1860s had already
considered parallel transport for pure geometrgstein applied this to the physics of
gravitation, which in many ways can be summarizg{b) already used several times here,

namely,[a;ﬂ,a;V]Ga =R’ ,,G,: Incurved spacetime, derivatives do not commarte, the

auv o
Riemann tensor is the measure of the degree tdwthey do not commute. As another
example, we learned in the"26entury to use commutators to understand whichtifies are

conserved and observable, and which are not. Touexample[L,H]# 0 and[S, H|#0

state that orbital angular momentinand intrinsic spirs do not separately commute with the
HamiltonianH, and so are not conserved or observable. Bulkearaed, their sum

[(L +9), H] =0 doescommute with the Hamiltonian, which also infornssthat the total of spin
plus orbital angular momentum is a conserved olakdev As a final example, Dirac, in the
process of trying to develop a non-trivial lineapeession for the spacetime metric interval
ds’ =n,, dX' dX found cause to develop the gamma-matrix opergtdrsvhich also do not

commute,cg*’ = i—z[y",y"] . This bilinear operator is central to understagdhe polarization
and magnetization of fermions with spin %.

While it took Planck’s using a quantized enerdgtienship E = nhf in 1901 to fit

together the separate curves of Wien and Rayleeghslfollowed by Einstein’s 1905
explanation of the photoelectric effect in termdigiit quanta leading eventually to Heisenberg’'s

1925-1927 formulation of the commutator relat[om px] = ih and uncertainty to kick the
quantum revolution into high gear, the mathemafiwahdations of much of 30century physics

had already been presciently laid by William Row#amilton in 1843. It was then, almost 70
years prior to Planck’s discovery, that Hamiltoediiis penknife to carve the quaternion

relationshipi® = j* =k > =ijk = -1 into the Brougham Bridge in Dublin Ireland. Quatens
were designed to extend into the three space diomenef the observed physical universe, the

imaginary numbei?® = -1 which had gained acceptance through the work tfrEand Gauss.
These quaternions an®@n-commutingiumbers, and they were specifically designed to
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compactly summarize the effects of rotations ie¢hspace dimensions, and the fact that
rotations do not commute. The modern represemntati these quaternions is embodied in the

2x2 Pauli spin matrices; =0’ =0} =-iogo0,=1, which are Hermitian, which have the
commutation relationshiﬁai o ] =2ig, o, , and which were also developed circa 1925. So,

these[ai Noy ] # 0 are clearly non-commuting. These matrices also specify the Yang-Mills

gauge group SU(2), which is the simplest non-Almegjieoup. By the way, if one wishes to take
some of the mystery or consternation out of axial l&ft-right chiral relationships involving®,

it is useful to think of Dirac’s )’ y'y?y®/°>=1 as simply a generalization of Hamiltorijk = -1
guaternion relationship into spacetime physics.

Yang-Mills gauge theories, developed in 1954, nesthematically upon a generalization
of what Hamilton first conceived in Dublin in 184&)d what Pauli developed in 2x2 matrix
form in 1925, into SU(N) matrices of any NxN dim@mslity. Normalized such that

Tr(/l‘/li ) =10, the N*-1 generatorst';i =1,2,3.IN” - - of any Yang-Mills gauge group
SU(N) maintain the commutator relations@p,/ij ] =ify A, where f, are the group structure
relationships. This generalizes the Pauli relaiom which become%ai No ] =ig, g, once we
normalize toTr(a‘aj ) =10 . Each generator is an NxN matrix and so can beenri

A e AB=1,2,3..N, but in general it is simpler to suppress thésg indexes and simply
keep in mind at all times that these indexes amiaily there.

Physically, an SU(N) gauge theory extending Maxwalectrodynamics into non-
Abelian domains is developed from these generatmted in the Hamiltonian quaternions in the

following way: first, one posits a set 6f* -1 vector potentials (gauge field§*;
i =1,2,3.N*- 1 Next, one sums these with the generators to @fiy, = 1' ,,G* which with
A, B indexes implicit is normally written a8* = A'G'#. This is an NxN matrix of spacetime 4-

vectors. Similarly, one forms a set Nf -1 field strength tensor§'* , each of which is a
bivector with a “chromo-electric” fiel&; and a chromo-magnetic fieR]. We then use these to

form F/ = A, .F'* which is an NxN Yang-Mills matrix of 4x4 antisyminie second rank
tensors (bivectors). Finallip very important contrast to (2.3\e specify the NxN field
strength matrixF*” in terms of the NxN gauge field matri@” as:

FW:aﬂGV—a"Gﬂ—i[Gﬂ,GV]:aWG”— i[Gf’,GV] (3.1)

Once again, we see a commutator, this lir@é, GV] # 0, which we take to be non-vanishing.

Everything that differentiates Yang-Mills gaugedtyefrom an Abelian gauge theory such as
QED, originates solely and exclusively from the faat these gauge field / vector potential

matrices do not commute, i.e., from the fact {l(a’f, G“] #0. Yang-Mills theories, simply put,

are gauge theories in which the vector potentatiss A'G* do not self-commut%G”, GV] #£0.
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During the 28 century, when non-commuting objects became praftylimportant to
the development of physics from canonical commaitatid gravitation to Dirac theory to

conservation laws and observables, the non-commgﬁh’, G”] # 0 of Yang-Mills theory

deserve a prominent place of importance whichilisesblving and will continue to evolve until
such time as Yang-Mills theory is fully understandall aspects. One of those aspects, is that
baryons themselves are the magnetic monopolesmf-¥alls gauge theory, which means that
Yang-Mills theory underlies any viable theory ofctear matter and hence, of the materiality of
the material universe.

III.2 Non-Linear, Non-Commuting Gauge Fields, and Gauge Theory on Steroids

There are several different, fully equivalent waysvhich one can think about Yang-
Mills gauge theories, and depending on circumstathesway that one chooses can make a big
difference in whether a calculation or conceptwion is reasonably clean and simple, or messy
and obtuse.The first way to think about Yang-Mills is that(8f1), as a theory in which the
gauge fields do not commut&he word “Abelian” is a synonym for “commutinghd so as a
non-Abelian gauge theory, Yang-Mills theories anepdy theories of non-commuting gauge
field. As we shall review momentarily, this leadsy directly to non-vanishing magnetic
monopole source charges.

But first it is worth being reminded how to expamat (3.1) usingF** = A'F'#",
G*=A'G* and[ 4,4, |=ify A . We find while renaming summed indexes as neéutd

AF® =9#AG" -0 A G#~i[1G* 4 G" ]
='0"G" -N9"G* ~i[ A, N |G*G" (3.2)
=A9*GY -Aa"GH + 94 & #@Y

The A' is then factored out from all terms, leaving, aft®re renaming, the perhaps more-
familiar expression:

Fi 294G -9"G# + kG GY =0 & + F G & (3.3)
If we now use (3.3) to form a Lagrangian densitynd& the pure field terms in (2.21), we obtain

the also familiar:

@ :_%FWEW :_%(a[ﬂGm + fik GjlleV)(a[ﬂGfV] + f|m Q# qw) (3.4)
—_1 '
4

a[/-’GiV]a G _% ﬁjka[#GV] G]y Cév _711 fjk Im G# GV G,u Qv

[u=v]

The first term,-40%“G"'9,,G,, , a “harmonic oscillator” term, is quadratic in thyauge fields,
and is fully analogous and indeed identical in faonthe QED term-49“G"9,,G, in (2.24)
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prior to the integration by parts. But the remainterms-1 f,,0“G"'G, ,G, and

-1 f%f, GG G,G,  the “perturbation” terms, represent vertices wlitee and four

interacting gauge fields. This is unprecedenteQ&D, and makes Yang-Millsreon-linear
theory. So the seconday to think about Yang-Mills theory is that of4(3.in which the gauge
fields do_not act like photons and forego interaicti one another like ships passing in the night.
Rather, the Yang-Mills gauge fields fully interagth one another as well as with their fermion
(current) sources.Unfortunately, doing exact calculations with (3gtdifficult, and in general
we will find it unhelpful to split (3.4) into harnmic and perturbative parts as is done in
perturbative gauge theory, or to spoil the Lorentariance as in lattice gauge theory. Another
approach is needed.

A third way to think about Yang-Mills gauge theasyto expand the commutator in (3.1)
and then reconsolidate using gauge covariant der@saD” =0 —iG*, as such:

FW:aNGV—aVGﬂ—iGNGuiGVGﬂ:(aﬂ—iG’)G—(aV— iGV) @=DC-DC&= DI &35)

We compareF* = DI“G" above to the Abelian field strengt*” =0“G" and see that the

only difference is that the ordinary derivative is ss@d byd” — D* =90* —iG*. This is
actually a very pedagogically-useful observati@uonsider that gauge theory first originates
when one has a field equation or a Lagrangian &wadarg or fermiony field which includes

atermo @ or 0 4 . One then subjects the field to fbeal gauge (phase) transformation
- €*¥gory - €2y and insists that the field equation or Lagrang@mnain invariant.

What does one do to ensure that invariance? Mekeeplacemend” - D* =0* -iG*. So
now, one changed, ¢ -~ D, @ andd ¢ - D, with the consequence thator ¢/ now

acquires an interaction with the gauge fi€d.

So if we start with an Abelian gauge theory suslQ&D for whichF*” =9'“G", we can
easily turn it into a non-Abelian gauge theory bglacingd” —» D¥ =9* —-iG* so that
F* =D“G". As a consequence, the gauge fiéld acquires an interaction with the gauge
field G*, i.e., the gauge field now starts to interact tinearly with itself! This says the same
thing as (3.4), with the exception that in the faf{3.5), the pure gauge term in the Lagrangian
is the much cleaner (the %z rather than ¥4 owesetmt(vl‘/}j ) =14" normalization):

£=-1TrF"F, =-1iTID*G" DG, . (3.6)

Given that (3.4) and (3.6) staggactly the same physjaésshould be clear that (3.6) is a much
easier expression to work with than (3.Zhis is a third way to think about Yang-Mills thess:

A non-Abelian gauge theory is simply an Abelianggatiheory for which gauge theory has been
applied to gauge theory. Or, perhaps with a birencolor (pun intended), Yang-Mills gauge
theory is_gauge theory on steroid&s we shall soon see, the question posed antth@fesection
Il, whether in Yang-Mills theory we to should exp#te configuration space operator in the
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field equation to be equal to the configurationcgpaperator in the action that is fed into the path
integral, boils down to a question of just how sigal Yang-Mills theory really is.

We shall find that when it comes to tRé"” =90 F*Y +9*F" +0"F% of (2.2) for
magnetic monopole sources, it is most helpful ewlang-Mills theory in the form of (3.1), as
a theory on which the gauge field does not selfioome, that is, to think about the “non-

Abelian” view of Yang-Mills theory. But, when ibmes to thel” =d F* of (2.1) for electric

charge sources, the more convenient view is thé.6J, in which we view Yang-Mills as gauge
theory on steroids.

II1.3 Magnetic Monopole Sources in Yang-Mills Gauge Theory

With the foregoing, let's get right down to bussseand use the “non-commuting” field
strength of (3.1) in (2.2). With the help onceiag# |0.,.0, |G, =R, G, from (2.5), see

also (2.6), together with the first Bianchi ideptRR " + R + R**” =0, we obtain:

P = 97 X + QHFY + " FH
=07 (a¥c" -i[c*, 6" ])+o# (0" c? - [ @, & ])+o* (37 - [ &, &)
=[07,0%]G" +[9¥,0" |G" +[0",0° |G"- 0’| G",G |- b*| G, G |- 0| G, G |.(3.7)
=(R*+R™+ R") G- 9] &, G]-9*[G",G"|-i0"[G",G]
=0-i(97[6*,6" [+0*[¢",¢7 |+o'[ &, @]

Here, the tern( R"* + R + R‘”") G once again vanishes as in QED with the able assist

of the spacetime geometry itself. As developeskiction I1.1, this is why there are no magnetic
monopoles in QED. But, solely and directly assuleof the fact thaEG”,G”J # 0, due to the

remaining terms-i (6” [G”,G”] +0# [GV : G"] +0" [ G, G“]) # 0, these magnetic monopoles

are non-vanishing.So if one believes in Yang-Mills gauge theorye enust also believe that the
magnetic monopoles (3.7) exist somewhere, in sams, fin the physical universe. What form
they exist in is an open question. Whether theyt@pologically unstable objects that can only
be observed for a small fraction of a second ilgh Bnergy accelerator; whether they can be
made stable via spontaneous symmetry breakingrangi@ing in plain sight as baryons and

most notably as protons and neutrons (which thiecaugiontends is the case); or whether they are
something else, is an open question at this pduat.the non-commuting nature of the Yang-
Mills gauge fields compels us to take these moregp(8.7) seriously and ask: what are they, and
where and how can we find them?

The above gets even more interesting when coreglderdifferential forms language.
The relationship (3.1) now takes on the compaatent fF = dG-iG>. As a result, (3.7) is
written compactly af = dF = d(dG—iGz) =-idG?, Where(R,V"” + R + R”V") G is
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responsible fordd =0, “the exterior derivative of an exterior derivagiis zero.” So now, in
integral form, the Yang-Mills magnetic monopole atijon, in contrast to (2.7), is

Jifp=[]joF=][[a(dC-iG)=-{] oG ={j F=]p dC&- §j G=-d) G . (3:8)

Let us especially focus on the first and next-&i-Expressions which we expand to write as (the
final reduction to—3i<ﬁ§[G” ,G“} dx, dx involves a renaming of indexes together with
recognizing thatdx, dx, dy emerges from the wedge prodat, [ dx, [ dy which is
antisymmetric under the interchange of any two @fjadx,, ):

J17P={I[ P o, a
JI[(R™+ R+ 8) G dy g o [[J(o°] & G- & -0 & G) gx g3
=fpdc-iff > =0-3iff[ c*,G' ] dy, dx

So we see thansidethe monopole volumef[[(R** + R* + R?) G dx dx d» describes the

coupling of individual theN® -1 gauge fieldsG"” of G' =A'G" to the spacetime geometry,
and that this coupling vi® "* + R + R =0 conspires to result irﬂ} dG =0, which is also
deduced by comparing the final two expression8i8)( So the geometry couples to the gauge
fields in a manner that prevents the gauge figls flowing in and out across closed surfaces

enclosing the monopole for exactly the same reaf@mighere are no magnetic monopoles at all
in Abelian gauge theory.

And finally, making (3.7) even more interesting, @etailed in section 1 of [1], if we
perform a local transformatiofr - F'=F —-dG on the field strengtlir, which in expanded
form is written asF* - F*'=F* -9"G*, then we find from (3.8) as a direct result of

g[ngG:o, that:

[liP=gbF - pF =qp(F-dc)=qp F . (3.10)

This means that the flow of the field strengjijﬁF = —ic‘f:JSG2 across a two dimensional surface

is invariant under the local gauge-like transforiorat-* - F*'=F* —9"G*! .

Now, as much as the MIT Bag Model reviewed in,.,e[$§0] section 18 has certain
inelegant features such as @ hocintroduction of backpressures to force confineméms
model very correctly makes one very important pthatt deserves utmost attention beyond the
specifics of any particular model of confinemeotus carefully on what flows and importantly
does not flow across any closed two-dimensionalasar This is why the integral form of
Maxwell’'s equations is so vital to any sensiblecdssion of confinement. The confinement of

gauge fields (which in SU(3) QCD are representedth®y eight gluons ofG" =A'G” with
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i=1,2,3...¢) is symbolically specified by#Gluonsz (. Similarly, the confinement of
individual quarks (which are represented by the 3Wirac wavefunctiony,; A=1,2,3 with
three color eigenstatd® G, B) is specified symbolically byﬁﬁ Quarks= (. Different theories

may have different ways to achieve these two symlmoinfinements, but in the end, one should
pay close attention to the two-dimensional closadase integrals and carefully examine what
does and does not flow across these closed surfé&mpsations (3.8) through (3.10) contain a lot

of information about what does and does not flovose the close«ﬁ surface of a Yang-Mills

magnetic monopole, so as taught by the MIT Bag Mode should study these equations
carefully to see if these magnetic monopoles ekhany attributes of confined gluons and
guarks, or interactions via mesons.

A first point is made b;j'”(R,“"” + R + R‘”") G dx dx d>which leads toﬁ} dG=0

in (3.9) and which are the exact same expressionghwyield the absence of magnetic
monopoles entirely, from Abelian electrodynamicgyview (2.6) and (2.7). The term

_[”(er + R + R”V") G dx dx ¢» which is the term that contains amlividual gauge field

G' =A'G", zeros out as a direct result of its coupling tigto the Riemannian geometry in the
configuration of the first Bianchi identity, and ap Gauss’ / Stokes’ integration yields

<ﬁ>dG =0. So the question, in the context of the MIT bagdel, is whether this term is to be

interpreted as telling us that gauge fields (gluonSU(3) QCD) are confined, which means that
there is never aet flow of gauge fields across amyosedsurface surrounding a Yang-Mills
magnetic monopole. As is the case with electrooyos, Yang-Mills magnetic fields (and
gluons in QCD) can and do flow, in net, throumpensurfaces, but because magnetic fields are
aterminal fields, an outward flux over one portma closed surface is always cancelled by an
inward flux across another portion of the closedfamie. This is strengthened by the fact

displayed in (3.10) thatcﬁ')F_,@F’:@F is invariant under the transformation

F - F' =F-dG, ie., F* o F*'=F# -9"G* which renders the gauge fields (gluons in
QCD) not observableavith respect to net flux through the closed swefathis would mean as
argued in section 1 of [1] that gauge fields arenfined in Yang-Mills theory for the exact same
geometric reasons that magnetic monopoles do nsit &xall in Abelian gauge theory.

A second point is made by the fact tffP*”dx, dx, dx=-3{f[ &, &] dx dxin (3.9)
is really the telling us the crux of whdbesnet flow across closed surfaces of a Yang-Mills
magnetic monopole. The only thing that flows drese-3 [G”,GV] entities, whatever they turn

out to represent. If thesesi [G”,GV] do not turn out to represent individual quarks, then what

(3.9) would be telling us, in the sense of the NBAIg model, is that neither individual gluons nor
individual quarks net flow across the closed swfad a Yang-Mills magnetic monopole,

#Gluonsz ( and #Quarksz (. But what we also know is that baryons interaat meson

exchange, and that mesons have a color wavefunetitime form RR+GG +BB. S0 mesons
shouldbe permitted to flow in and out of baryons, trgtwe should also hav@i Mesonsz (.
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So if we can show that3ifp[G#,G" |dx,dx represents meson flow, then these magnetic

monopoles would forbid net quark and gluon flow$ permit net meson flow, and we would
have some very strong formal reasons for identgfyifang-Mills magnetic monopoles with
baryons. Additionally, the factor of “3” which al€merges here, although it comes for the three
additive terms in the middle line of (3.9), alsgrsfies the number of colors of quark in QCD,
the number of quarks in a baryon, and the numbderohs in the meson color wavefunction

RR+GG + BB. So this “3” is a very strong hint — on top oétfact thatP?" itself has three
spacetime indexes and contains three additive terthsit there is some very definitive “three-
ness” associated with these Yang-Mills magnetic opotes. This could save us having to
simply postulatethree quarks per baryon as is presently done iD @@ insteadequire us to
have three quarks per baryon upon which we therosmpQCD as an Exclusion Principle,
thereby answering the unanswered question as tdyatypns contain three quarks and not some
other number. These symmetry relationships are wdthtthe author in April 2005 to begin
taking seriously, the thesis that these non-vangsinnagnetic monopoles originating from the
non-commuting gauge fields of Yang-Mills gauge tiyaoight be baryons.

But so far, beyond this number “3,” there is nathin this present development of any
guarks in the magnetic monopole (3.9). So we needow see if there is some way to
“populate” these magnetic monopoles with quarkshis Tdraws our attention back to (2.17),
which would allow us to replace the gauge field3n7) with the source currents from which
they originate, and then perhaps start to devdlopd source currents into quark currents. But
can we do this? That is the question raised incimament reported in the introduction: “One
thing that appears doubtful to me is the way youdiethe QCD gauge fields, replacing them by
the fermion source currents from which they origgna It seems to me that your procedure
involves a wholesale deletion of all the nonlingasiin these gauge fields. . .” It is this quasti
that blocked the author from further developmenttt@ thesis that baryons are Yang-Mills
magnetic monopoles from a full seven years fromilA2005 until May 2012 before finally
becoming convinced that the magnetic monopolesdcaulfact be formally populated with
qguarks in this way (which as a byproduct combinesWell's two equations into one equation
with a field strengthz =12 which is the same strength as the equatRp=0 for pure

geometry, see Einstein’s final paper [11], page)13%t us now explore the specific problem
which was the source of this “block,” and well & trationale and findings that ultimately
allowed the author to overcome this block.

II1.4 Electric Charge Sources in Yang-Mills Gauge Theory, and a First Pass to
Populate Yang-Mills Magnetic Monopoles with Quarks and Demonstrate Why
these Monopoles Appear to be Baryons

Let us now use the “steroidal” form of the fielttemgth F** = D“G" of (3.5) in
Maxwell’'s charge equation (2.1) to obtain:

3=9,F"=0,0G"=0,(D'G' - D'@)=(d"0, T -0" D) G. (3.11)

22



J. R. Yablon
FIRST PARTIAL DRAFT

Here, we have engaged in exactly the same indexhgstics used in (2.8), and see that (3.11)
and (2.8) have exactly the same form, other thamh ¢8.11) contains two appearances of the

gauge-covariant derivativeD” =0 —iG* together with two appearances of the ordinary

derivative 0“. So (3.11) is on “partial steroids.” We raise tfuestion — to be answered in the
affirmative when we consider doing an integratignparts precedent to developing quantum
Yang-Mills theory — whether the remaining ordinderivatives shoul@lso be gauge covariant,

such thatJ” :(g”” D, D - D”D’) G,, so as to place (3.11) onto “full steroids.” Bt now, let
us stick with (3.11) which the author used at faakie for the development in section 2 of [1]
while mentioning also in section 2 of [1] a perwtibn tensor-V*" :i(a"GV +GV6")+GFG
and a “deeper analysis.” That “deeper analysisi/hat we are in the midst of presenting here.

Given the above, we now usB” =0 -iG#* and also introduce a Proca mass via
9,0° - 0,0° +m* as we did in (2.9), to write (3.11) as

3" =(g"9, (07 -ic7)-0"(0" -iG")) G, =( ¢ (9,07 + ni- 9, G)-00" + 9" G) G. (3.12)

Contrasting to (2.9), we see that the “partial @ti&l” (3.11) introduces the additional terms
i(—g””OJG" +6”GV) G, that were not in (2.9), and that the configuratspace operator to be

inverted is now the more complicategt” (aga” +nt - ia(,G”)—O”a“ +i0“G’. So we expect

that the inverse corresponding to (2.14) will contsome additional terms and that the Yang-
Mills counterparts to the reduced (2.16) and (2wifl)also have additional terms which capture
the non-linear / non-commuting / gauge-steroidéiraof Yang-Mills theory.

Nonetheless, notwithstanding the new Yang-Millsnte in (3.12), let us at this juncture
throw caution to the winds, and simply to expldre basic symmetry features of the magnetic
monopole (3.7) which do not change based on (3/&&us (2.9). Specifically, let us see what

we obtain if despite (3.12), we substitute (2.1¥Yhe form of G¥ = —Zy”z//(kak" - rr?), into

(3.7). The result is as follows, and the developimia the rest of this subsection may be
considered a revised and simplified version ofdéevation in sections 2,3 and 5 of [1]:

pcwv:—i(a"[G”,GV]*'ay[GV’GJ]JraV[GJ’GIJ)
.[a{ by vy }6{ e Wwfn}a{ R Z;B'(&ls)

kk —nmt' kK- kk- ' kk Kk ™ Kk
R S O ) L L kL O il L
k K - nt k K- m k k- rh k k- nt

Then, we note the spin sum relationship which igrofnormalized (but not here) such that
N? =E+m. This spin sunprior to normalizationis:
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2

Zspinsuu = E + m(p+ m) (314)

Also seeing the emergew@ =uu in each of the three terms in (3.13), we takesthia sums of
all three of these terms in (3.13), and use (3r143.13) to write:

paw = i1 N2 aglzy[”(pme)V']l//JrayaVV(P*m)VU]‘/’JraV‘ZVU(P* myty ) (3.15)
k k' —nmf E+ k k- rh kk- Kk
Next, we keep in mind that the fermion propagator
ptrm pt+m _(Ip_m)—l, (316)

po-mt (prm)(p-n)

while also noting the appearance(cp‘+ m)/(K K - n"r) throughout (3.15) which is very similar
in form to (3.16). So, if we can find some ratingee section 3 of [1]) to associate #lewith
p", then we will have introduced propagating fermwavefunctions into the monopole™" .
Observing that th&/(kr K" — nf) represents propagation for a Proca-massive veoson with

threedegrees of freedom and that fermions hane degrees of freedom, we shift one degree of
freedom from the leading/(k k' = nf) over to the fermions by settimg=0 to turn that leading

term into a massless bosons propagator. Thairigaich term in (3.15), we shift:

1 L eMprm)y e 1 e (prm)yy
k-’ kk-m KK pp- m (3.17)

T

and now takeo” to represent the fermion four-momentum. It shdaddclear that both parts of

(3.17) contain a total of six degrees of freeddmeythave just been shifted from a 3+3 to a 2+4
configuration not dissimilarly to how a degree ofddom is shifted from a Higgs scalar to a
massless gauge boson to create massive vectorsdasong the Goldstone mechanism. Thus,
following this shifting of degrees of freedom, (8) becomes:

pow = L N ag@V“‘(P+m)V”l//+ay@W(P+m)Vaj‘/’Jravan(#’* myle | (3.18)
kK" E+m pp-m ppb- pp-

If we now normalize such that?® = ( E+ m) k K, then via (3.16) we can reduce (3.18) to:
o ==i(o° (94 (o-m) a0 (B (o= )" )+ (89" (o= " p0)). (319)
which contains three additive terms each containipgopagating fermion wavefunction.
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Finally, keeping in mind that this is Yang-Millshdgory, so that these fermion
wavefunctions¢ =¢,; A=1,2,3..N actually contain N eigenstates for SU(N), and beea

(3.19) contains three propagating appearanceg af/,; A=1,2,3..N, we select the specific
Yang-Mills gauge group SU(3) with generatods;i=1,2,3...§, the eight gauge bosons in

G* =A'G*, and three fermion eigenstates. Finally, we nahee three eigenstates R=red,
G=green, B=blue for the first (1), second (2) ahutdt (3) terms in (3.19) respectively, and
enforce Fermi-Dirac Exclusion as among the thrggeamnces of the fermion wavefunction in
(3.19) by setting:.

/A 0 0
l/’(l)E‘/]B:ﬁ /]3=0>: 0 (@ = /]8:_2*\15,;/13:%: Yo (e =" =35 /]3__;>: 0 |-(3.20)
0 0 Ye
This means that:
Wy 0 0 0 0 0 00 O
Yoy o = 0 0 0O} Yoo = 0 Y Of Va3 = 00 0_ (3.21)
0 00 O 0 O0 00 ¢,

Then we use (3.21) to show the explicit 3x3 matharacter ofP™" = PZ" :

o7 l//RV{”l//Rl//RV]l//R 0 0
k k' - nf
o — _; 1 u ‘ZGV[VI//GZGVJ]‘/JG 3.22
Pas lkrkr_mz 0 J KK—I’ﬁ 0 (3.22)
YV Yol oV W
0 0 A

Then, repeating the same steps that brought us(f3di8}) to (3.19), we may turn this into:

07 (&RV[” (PR_mR)_l Vi R) 0 0
P =i 0 a#(aey[v (/pe_me)_lyg]we) 0 (329)
0 0 0 (e (P -ma) " v )

where p., m.; C= R G E now represent the daggered momentpm )’ p, and massn of each

of each of the three fermion eigenstates. Theetraguation TrP*" = PY" is then easily
deduced to be:
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TP =i(07 (e (P =me) V') +0* (el (o= M V0 + 3 (0h (p= mY ™ V0 ) (3:29)

This is now the fully-developed Yang-Mills magnetwnopole, populated with three colored
quarks, and it is formally equivalent to [5.5] ai.[

If we now associate each color wavefunction with sipacetime index in the relatéd
operator in (3.24), i.e,o~R, u~G and v~B, and keeping in mind thaffrP%" is
antisymmetric in all spacetime indexes, we expthss antisymmetry with wedge products as
ocOulOv~ROGOB=H G B+ ¢ B R+ B R Thisis the exact colorless wavefunction

that is expected of a baryon. Indeed, the antisgirioncharacter of the spacetime indexes in a
magnetic monopole should have been a good tipatf tlagnetic monopoles would naturally
make good baryons.

Furthermore, if we apply Gauss’ / Stokes’ theoren(3t24) and also include from (3.9)
the finding thatp TrG* =34 Tr[ G*, G’ ] dx, dx, we find that:

” TrP = #TrF = —i<ﬁ> TrG? = —3i<ﬁ> Tr[G“ ,GV] dx, dx

— -1 — 4 — o .(3.25)
:_i#(wRy[ﬂ(pR_mR) yV]wR-Fwaw(pG_mG) yV]w G+wsl}ﬂ(p B mB) wa B) d% dx

What is the color wavefunction for they [G”,GV] entities? By inspectior_RR+aG +BB. So
qguarks do_not net flow in and out of closed twoatisional surfaces surrounding Yang-Mills
magnetic monopoles, except in the colorless cortibmaf a meson! So (3.25) validates the
suspicion expressed at the end of section Ill.8 tt@ appearance of a “3” in front EG”,G”J

has something to do with there being three colbrpiark inside the magnetic monopole.

So returning to the MIT bag model, we now see tbathe magnetic monopole (3.24)
with surface flux (3.25), 1) the color wavefunctiois that of a baryon, namely

RIGH+dBR+ BRE 2) from (3.9) and (3.10),¢pGluons= ¢; 3) from (3.25),
@Mesonst ( and 4)<ﬁ>Quarks:C except in the colorless combinatid®R + GG + BB of a

meson. Thus, on a formal basis, with the MIT Bagdel telling us to look at what flows across
the surface of any theoretical entity proposed dcabbaryon, and we see that the Yang-Mills
magnetic monopole hgwecisely the required formal symmetries and boupdi@ws required
for a baryon.

Of course, we still need to make these baryonslogpmally stable and see how to use
them to represent protons and neutrons which aentbst important baryons, see section 6
through 8 of [1], and we need to calculate thegrgies to see if they make sense in relation to
empirical data, see sections 11 and 12 of [1]oflrsas topological stability, we simply note that

the trace equation (3.24) is non-vanishing, but thd®*" :Tr(/l‘ABP"’”) =0 if we regard the

gauge group as SU(3pecause all ofi' are traceless. In other words, the left and ragtés of
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(3.24) do not match up because one side is tracalasthe other is not, if we assume the simple
group SU(3). It is on this basis that we introdtite product group SU@U(1)s.L, and then
obtain the monopole (3.24) from spontaneous synymieteaking from larger SU(4) gauge
groups with aB - L (baryon minus lepton number) generator which @elke quantum numbers
required to turn these baryons into proton and roegt and ensure that these magnetic
monopoles are topologically stable. Again, thestits are in sections through 8 of [1], and
need little if any elaboration or modification here

For the moment, the question now becomes thisight lof (3.12), can we, and if so
under what circumstances can we, and with whatemprences can we, substitute (2.17) in the

form G* = -wy“y(k,k” - nt) into (3.7) to arrive at (3.24) and (3.25) whichvéaall the

essential required symmetries of a baryon? Theldpment from (3.13) to (3.25), somewhat-
perfected retrospectively, expresses the auth@serdial thinking about this subject in 2005.
But it took seven more years for the author to bee@omfortably-convinced that replacing the
gauge fields with the fermion source currents fghich they originate, using th&belian(2.17)
which deletes certain non-linear aspects of YanlisMiheory, is indeed a proper replacement.
And, it was not until late-2012 that the author emstand that the consequence of this
replacement is that once these nascent baryonstureex into protons and neutrons, we would
discover that by this replacement, we had delatedut the binding energiesf these nascent
baryons, which theoretical binding energies woulthtout to match up with near parts-per-
million precision in AMU to experimentally-observediclear binding energies. The discussion
following will explain how the author, over timegetame comfortable that this was indeed a
justifiable replacement which effectively combinasth of Maxwell’'s equations into a single
equation with field strengtlz, =12, just as that oR,, =0 for pure spacetime geometry.

IV. The Yang-Mills Lagrangian Density for Chromo-Electric Source
Charges, and its Configuration Space Operators

Using the compacted “gauge theory on steroidsivvig (3.5), (3.6), the Lagrangian
density for Yang-Mills gauge theories with non-\aming chromo-electric source charggsis:

®, =Tr(-1F"F, -23#G,)=Tr(-1D*G"Q,G,-2¥G)=T(-D C D, G-2J ¢

= _% F:EI»/F —2J ﬁBGAB/

(4.1)
BAuv

This is just like the QED density (2.21), otherrtteadoubling of the numeric coefficient because
of the normalizationTr(/li/lj ) =14" and a trace because eachGff, =1,,G*, Ji; = A,z
and F/~ =2, ,F'* are now all NXN matrices for any gauge group SU(&)variants such as

SU(N)xU(1) which as noted at the end of sectiorat# required to impart topological stability
to the magnetic monopoles). Contrast the highlyygacted matrix form (3.6) with the
expanded form Lagrangian density (3.4). As note@&2), sometimes the negative sign in

front of -2J“G,, which represents the convention of a “negativéécteic charge in
electrodynamics, is reversed to establish a pesisign convention for Yang-Mills chromo-
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electric sources. Here, however, we shall mairttagnelectrodynamic convention so that all the
Yang-Mills equations can be directly compared ihraspects to the Abelian electrodynamic
equations. When we use the term “chromo” when lgpgaabout these electric or magnetic
charges, this simply denotes that these chargeit@snsare analogous to those from

electrodynamics, except insofar as there are N1 of them for any group SU(N) via the
relationships J% = A},J* and PZ' =1, ,P*. For SU(3} (or SUBErxU(1l).), these
“chromo” charges coincide with the charges of Q@I

The goal in this next phase of development is émiifly the configuration space operator
or operators which are associated with (4.1), bothpurposes of obtaining an inverse equation

G,=1,J", and for purposes of obtaining an action to usténpath integral to quantize Yang-
Mills field theory. Recall that for electrodynamjcwe used the configuration space operator
g (606" + mz)—aﬂav from the field equation (2.9) to specify the irset , of G, =1,J" in
(2.10), which inverse we then explicitly derived(ith14). And further recall that we used the
Lagrangian density (2.21) to specify an action§2\&hich we then integrated by parts to obtain
the g** (aga” + mz)—aﬂav in the action (2.30). This operator then becaare @f the quadratic

expression%Gﬂ(g”“ (aga” + mz)—a”aV) G - J' G used in the path integral in (2.31) to derive

the QED amplitudeW(J) in (2.36). Recall also, importantly, that these two configioat

space operators were identical to one anoth&his will not be the case for the similarly-derived
Yang-Mills configuration space operators.

Specifically, starting from Lagrangian density (4.lve shall now daexactly the same
calculationsfor Yang-Mills gauge theory which we earlier dim felectrodynamics. But as we
shall see, this will lead ttwo different configuration space operator§Ve will then be tasked
with comparing these two different operators teedeine which one is more suitable to use for
obtaining the inversés, = IWJ” to replace the gauge fields” in the magnetic monopole field
equation with the sources from which they originate we did in (3.13) to develop the “first
draft” baryon of (3.24). In the process, we skalne to understand how it is that by populating
the Yang-Mills magnetic monopole with fermion sa@sgasing the linear inverse (2.17) of QED,
we were in fact simply describing in (3.24), a karywith all perturbations removed, which as
noted at the very end of section lll, is a baryathwall but the binding energies removed. We
will thereafter proceed further to develop a cortgldaryon which nowincludes the
perturbations and non-linearity of Yang-Mills gauteeory, for which (3.24) expresses the
special case in which the perturbation is set to.ze

IV.1 The Configuration Space Operator Derived via the Euler Lagrange
Equation

We first apply the Euler-Lagrange (2.20) to theglamgian density (4.1) to obtain the
classical field equation. We expect to fidd =9 ,F* of (2.1) which in Yang-Mills theory

really is J,; =0 ,F4z , but the exercise is worthwhile.
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We first expand out the Lagrangian density (4.1xhwrenamed indexes, using
F* = DG from (3.5) as well aP* =9* -iG*, as such:

®, =Tr(-1F”F,-21°G,)=Tr(-1 D"G" D, G, -2F G)=T(-D & D, G-23 ¢
=Tr(-D°G’D,G, + ' G’ D,G, -2 F G
:Tr(—(a”G”—iG”Gf")(aaGﬁ— iG,G)+(0°F -G &)0,G-iGG)-2 g) (4.2)
:Tr[—zJ”GU+G“G”q<;— CEGG
-9°G*0,G, +0°GP0, G, + B° & G G - 9"G’G,G, +iG"F9, G - iG Fd, G

Now, let’s use this in the Euler-Lagrange equaf{id20) written as:

08, _ os,
=0
aG, ”[a(aﬂGV)J
:£Tr(—ZJ”Ga+G"GBQ G-Cd&Gg) : (4.3)

v

[0 [060,6,+C0,G,
= ——Tr
“l0(0,G,) | +i0°G”G,G,+iG"GP0,G,- 1° G G G- IG o, G

Using the product rule for derivatives and thenlgpg the derivatives with proper index
gymnastics, this becomes, on a term-by-term cooredgnce to (4.3):

BV
T{—zJV{G G'G,+G GG+ CC G+ G GQB

-G’G,G-GGG-CGGG- GG G (4.4)
=0, (Tr(-0"G" -0*G" +0"G" +0" G+ i@ G + IG'G - iG G - iG @)
Reducing, all of thez® terms (e.g.G*G’ G;) cancel, and we are left with:
T =9, (Tr(o%c" -id*c"))=Tr, (9 - i) G =Tra, B* & =Tra, F". (4.5)

We thus see the electrodynamic field equatidn=0 ,F* is recovered from the Yang-

Mills Lagrangian, but in trace formirJ” =Trd ,F*". Going in the reverse direction, this means

that we can indeed start off with a classical fiefguation (3.11) for a Yang-Mills chromo-
electric source charge density with field strengttt = DI“G"!, take the trace of each side to
deduce thaffrJ” =Tro ,F*, and know that this trace equation will be repatliby applying

the Euler-LaGrange equation in the form of (4.3jh® Yang-Mills Lagrangian density (4.1).
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As a result, we confirm via (3.11) tha*’0,D° —-0“D", or with a hand-added Proca
mass, g*” (GUD” + mz)—a” D', is the configuration space operatorb”fZOﬂD[“A”] which is
thefield equation(4.5) of the Yang-Mills Lagrangian density (4.Bddiced consistently from the
Euler-Lagrange equation (2.20). This is in contrés the configuration space operator
g (606” + mz)—aﬂav of QED obtained in (2.9), and so we see that iietmost derivatives
have gone fromd* - D* while the leftmost derivatives have not. Takihg tead from (2.10),
this means to if we wish to develop an inverse #ques, =1,,J", we will have to find a new
inversel,, definedsuch that:

[ (2,D% +m?)-0" D] |V,_[g”(ag(a - iG7 )+ nf) -0 (0" - |G“)J [, “s
=[ g (0,07 -i0,G° +nt)-070* + 7G| I, =&,

vt T

Note that we have thus define@, =1, J* so as to reverse the order of operation of the

covariant spacetime indexes in relation@=1,J" used for electrodynamics between (2.9)
and (2.10). In electrodynamick,, =1,, so the ordering does not matter. In Yang-Millsaty,
the order does matter and this choice of convemtidirbe illustrative later on.

Before we proceed to calculate this inverse whiehshall do in section 5, we can see
from the field equationd” =d,D*G”, or from g* (OUD”+ mz)—a”D”, that we have come

upon a form of partial minimal coupling principle” in which the dynamicé&ld equations
retain their form, with the exception thabme but not allof the ordinary derivatives of
electrodynamics are replaced by gauge covariamntatees in the field strength. That is, going
from Abelian to non-Abelian gauge theory:

»=0,F"=0,0"G"=(g"0,0"-0"0")G,=> ¥ =0, P =0, ¥C =( ¢"9, D -0" D) G.(4.7)

Equation (4.7) to the right, with itgartial minimal coupling, now begs the question: why is
there not dull minimal coupling principle? Why do we repladgg - D, @ and 9 4 - Dy

for theories of scalar and Dirac fermions to aravé\belian gauge theories in the first place, and
then replacedG” - D'*G” to make the Abelian gauge theory non-Abelian, theh stop
short of making the final replacemeditD'“G"” — D,D*G? in the field equation (4.7)? We do

note that thed , rather thanD,, in (4.7) results from the outex, in the Euler-Lagrange equation,

so thatif the field equation were to in fact be thdly minimally-coupledJ” =D, DG, then
we would have to use a modified version of the Elbgrange equation that reads:
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o | 0% |08 _ 4.8)
9(0,G,)| 9G,

So the question we shall largely be exploring istlbr this form offull minimal coupling
principle is justified for Yang-Mills (non-Abelianjauge theories in relation to Abelian gauge
theories such as electrodynamics.

IV.2 The Configuration Space Operator derived via Integration-by-Parts of the
Yang-Mills Action

Back in (2.26) we used the product ru%’(ab):(a”a)b+a(6”b) with a=G’,
b=0,G, to obtain 0”(GV0[/IGV]):6”G’6[NG,] +G0"q , G for integration by parts in the

[p™=v]
action S( Gﬂ). For Yang-Mills theory the product rules are aithckier because of the gauge-
covariant derivatives. Specifically, we now needkéep in mind for ang, b that:

D*(ab) =(0* ~iG*) (ah) =0* ab+ @* b- iG al. (4.9)

The extra term-iG*ab is wholly a creature of the gauge-covariant deiea and does not exist
for an ordinary derivative. So with the same awmsigntsa=G’, b= DG, (4.9) becomes:

D“(¢'D,G,)=0"G'R,G + G D,G-IBGPG=DED G+ @ DE (410

This should be contrasted with (2.26). Noting ttle Yang-Mills Lagrangian density (4.1)
contains a term-iD"“G"”DQ,G,=-D"G'D,G,, we now restructure (4.10) in terms of

D“G" DG, - The full calculation is instructive, with indgymnastics starting on the fifth line:

D'G'D,G, = D'(G'R,G) - G2 b, G
=(0"-16")(6'D,G,) -G R, G,
=9"(6'D,G,)-1¢"G'D, G - Go" B, G
=0(6'D,G,)-IG*G'D,G+IF'GRG- G DG+ B DG (411
(6'D,G,)+(-iC’E'D,+IGE D -G D+ Gd' Q) G
_aﬂ(G qﬂGV])+(G”DVD -G'D’D )q
(6'D,G))+G,(-¢" DD+ D D) G

Then, we hand-add a Proca mass as has been demmpltg 4,9° - 4,07 +m’, so that
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D“G'D,G, =9*(G'R,G )+ G(-¢"( R O+ M)+ B D) G. (4.12)

Contrasting with (2.27) in which we uncovered theean configuration space operator
g“’0,0° —0"0* (and in which we commute@a",a“] =0 by assumiRg,, =0), we find in

the above the analogous operagji”(DgD” + mz)— D' D (and are not at liberty to commute

D"D* because these are not commuting). Thisfidlyaminimally-coupled configuration space
operator, in whickeveryordinary spacetime derivative has been replaced gguge-covariant
derivative, that is,0” - D* everywhere in the configuration space operatohisTs now a
gauge theory on complete steroids. And of equelast, the only ordinary derivative remaining

in the final line of (4.12) is in the terd* (GVD“,GV] ) which is perfectly-situated to allow this

term to be zeroed out by boundary conditions imgaodering integration by parts. So, let's
continue.

We next expand Lagrangian density (4.1) and coenwiith (4.12), thus:

€, =Tr(-D*G'Q,G, -2J'G))

:Tr(—a“(G"qﬂq])+Gy(g"’( DOD+m)-DB D) G-2¢ 9)' (443
From this we form the Yang-Mills action:
s(g)=[d7r(-0*(c B, G)+ G( ¢( Do+ H- DB) G249 g (4.14)

which should be contrasted directly with the Abelection (2.28). Aside from the trace and
factor of 2 that emerges from the normalizat‘lb'r(a‘aj ) =19, this haseexactlythe same form

as (2.28) and is now has fall minimal coupling 0¥ - D* (gauge theory on steroids)

everywhere except in the teréf (GVD“,GV] ) But, as noted, this is perfect, because if warag

impose GV(X/‘:oo):G’()(’:—oo):o as boundary conditions upon the gauge potential, a
calculation identical in form to (2.29) which neddeven be repeated here, clearly informs us
thatjd“xTrO”(G“ D, q]) =0. This means that (4.14) simplifies down to:

S(Gﬂ):Trjd4><Cg( ¢( Do+ M- bB) G20 5;,), (4.15)

to be contrasted to the Abelian action in (2.30his is the action that one then uses to quantize
Yang-Mills theorywhich will be explored in detail in section ??@ lje added).
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IV.3 The Yang-Mills Perturbation Tensor

Let us now take the configuration space operat@4 il5) and expand this out fully, thus:
9" (D,D7 +nf)- D' D" = g""((da— iG,)(0° -G )+ rﬁ)—(av - i¢)(e" - i¥)
=g" (9,07 +n?-i(9,6"+ G9,)- G G)-0"0" + (9" G'+ Go*)+ G G . (4.16)
9" (0,07 +nt +V)-9"0" —

Very importantly, we see that the configurationcgaperator contains a non-symmetric tensor
(especially becausieG#, G’ | # 0) is a hallmark of Yang-Mills):

V# =-i(94G" +G*9*)- GG (4.17)
which we shall refer to as the “perturbation terisas well as its trace
V=v°, =-i(3,6°+G9,)- GG (4.18)

which we shall refer to as the “perturbation scafacalar in the spacetime sense, this is still an
NxN Yang-Mills matrix) Why? Because (4.18) ha&xactly the same form as the
electromagnetic perturbation! (See, e.g., [12][44])

The emergence of these perturbations in (4.15) ftbe integration by parts is very
important. This means that if we take the zerdywbation limit in whichV* - 0, then (4.16)
reduces tog/‘“(aaaunﬁ)—a“a/‘, which is identical to the operator that we inedrtfrom
(2.10) to (2.16), and then used to introduce femsources in (2.17). Then, it was (2.17) that
we used to inject fermions into the Yang-Mills matiac monopole when we threw caution to the
winds in (3.13), which led us to a magnetic monepdtP*" in (3.24) and its integral form
” TrP :@TrF in (3.25) which contains all the symmetries ofaaylon. So, if we can justify
the use of the configuration space operator (4d 7ake inverses, we will have established that

(3.24) represents a Yang-Mills magnetic monopolthe zero-perturbation limit And, once we
find the inverse for (4.16), we will have the meamgeneralize the magnetic monopole baryon

(3.24) to include circumstances whev&’ #0. In those circumstances, we should be able to
find a more general equation for (3.24) which indes (3.24) as well as additional terms

includingV* andV, and which reduces precisely to (3.24) once w&/$et 0.
If (4.16) is the correct operator to use in the adasshromo-electric field equation, this

would mean that the correct classical field equaf@ a Yang-Mills chromo-electric charge is
not (4.7), but rather is:

J”:DﬂF”V:DﬂD“‘G”]:(g””(DUD"+ nt)- D‘D)q, (4.19)
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and it would also mean that the Euler-Lagrange wguaeeds a dose of steroids and for non-
Abelian gauge theories should indeed be promot&tttode the minimal coupling in (4.8).

Now let’s turn to the inverse of this operator.v&i thatV® is not symmetric, left-right
order matters and it is important to set this upesly. In particular, we carefully establish
ordering by writing (4.19) tdefinethe inversel, as:

3*=(g" (D, +nf)-D D) G=(¢"(R D+ mM)- BB) L I=5 9, (4.20)
Therefore, compare to (4.6) and (2.10), the invepsratot |, for G, =1.,J" is:
| 9" (D, D7 +n?) - D' D | I}, =| ¢ (9,07 +V+ ni)-070" ~ V¥ | [ =0, (4.21)

And, if it is in fact correct to apply such a minimal cbog principle to Yang-Mills
theory, there is one other consequence as wellntdgnetic monopole field equation (2.2), see
also (3.7), needs to also be given its own dosterbids, and should be promoted to:

P* = D’F* + DYF" + D"F* =D’D*G" + DYD"G? + D BD° &*
=[D",D”]G“+[D”,D“]G”+[D“,D"]G” . (4.22)
:—i(D”[G”,G"]+ D*[G’,G" ]+ DV[G’,G“])

So, which is it? Is the partially minimally-couplelassical field equation for Yang-Mills
theory J” =d ,F* obtained in (4.5) via the ordinary Euler Lagrareggiation, which has the

inverse specified (4.6)? Or, is the fully mininyatloupled classical field equation (4.19),
J”=D,F*, which was deduced once we integrated the YangsMdtion by parts and found a

configuration space operator (4.16) which in aipects is identical to that of Abelian gauge
theory, which a minimal coupling principle in whiele simply replaceall ordinary derivatives
in the configuration space operators and the fedglations and even the Euler-Lagrange

eguation as in (4.8), with gauge-covariant derisgstiviad” — D*?

V. A Tale of Two Inverses

V.1. Symmetries of the Yang-Mills Perturbation Tensor
Let us first look as some of the symmetries ofgadurbation tensor operator (4.17). We

start by looking at the operation of taking two &gsive Yang-Mills gauge-covariant derivatives
as is done in th®"D* term of (4.16). Using (4.17):

D“D" = (6” —iG”)(a“ —iG”) =949" —i0*G" —iG*d" -G G" = 943" + V™. (5.1)
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A question which is always of interest is to fife tcommutator of these two derivatives:
[D#,D"]=[8*,0" |+VI¥. (5.2)
In flat spacetime Wheréa”,av] =0, see (2.5), this simply boils down to

vl =v#-v=[ DY, D . (5.3)

Sovi¥l s synonymous with the commutator of the Yang-dAdbvariant derivatives. In curved
spacetime, using (5.2) to operate on a vector f&ldand combining with (2.5) we obtain:

[D*,D*]G° =[9*,0" |67 +VI" & :( R +5° \W) G. (5.4)

So the anti-symmetrizedr"v[”v] plays a role in Yang-Mills theory that is not disgar to that

played by the Riemann tens&“" in gravitational theory: each is a “curvature” e of the

degree to which the spacetime derivatives do omdb commute! Applying (5.4) to the
magnetic monopole on steroids, (4.22), the cureatterms vanish as in (2.6) via

R+ R + R¥" =0, and so we obtain simply:
Pa,uv zv[U,U] GV + \/[IJV] GT + \}VU] G’ (55)

In (5.5), we clearly see the role wi*! as an operator: The non-vanishing magnetic mdeopo

arises via the index-cyclical application of theisgmmetric perturbation operatM[‘”] to the
Yang-Mills gauge fieldsG° .

In contrast, the term corresponding\Md” in (3.11) and (4.6) which is derived via the
ordinary, non-steroidal Euler-Lagrange equatio2}.is 0“D" =9“0" —i0“G". It will be seen
that —id“G"” corresponds to the very first term in (4.17). fEhés no particular apparent
significance to the spacetime commutadgiD"! = -ig'“G" .

Next, let us examine the behavior\f under a gauge transformation. In Yang-Mills
theory, in matrix form, a gauge fiel@” transforms according to:

G - G*+0“6+i6,G"], (5.6)

where HAB(X") = A8 is an NxN matrix for SU(N) and contains thie=1,2,3..N? - : local

gauge parameter@ (x”). SoV* in (4.17) will transform as:
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VA :—i(a"(GV +0'6+1[6,6 ) +(c* +046+ i[e,c«"])aﬂ)
-(c"+046+i[6,6])(c" +o'6+i[6,G" )

(5.7)
=-i(0"G" +G"9") -GG’
-ip*(0*6+i[6G*])-i(6+i[6G*])D* -(a+6+i[6G*])(0*6+i [6G"])
To simplify the appearance of (5.7), we define & f@ur-component object:
iNF =040 +i [e,eﬂ] (5.8)
and use this together with (4.17) to condense owWn to:
VA V' = VA 4 DEAY + A D+ AN (5.9)
In contrast, for the non-steroidal (3.11) and Y4tlée transformation is:
-i0“G" - —i9*G" =-i9" (G” +0" 0 +i [G,G”]) =—id*G" +90¥N\". (5.10)

This contains only the first term of (5.9), with“A” - 0“A" dropped back to an ordinary
derivative.

From (5.9) it is helpful to examine the gauge sfarmation law for th@nti-commutator
v which is:

vied ovld i Dt NV DY R AN (5.11)
Similarly, we form the anticommutator for (5.10)hmh gauge transforms as:
-i0“G% - -id “G" =-id “G" +b “N" . (5.12)

It is worth noting that these twgauge transformationg5.11), (5.12) have certain
similarities in form to the behavior of the symmetgravitational field h*Y in the linear

approximation of gravitational theory undegeneral coordinate transformatior - x* +A*,
which behavior is (e.g. [13], eq. [3.49]):

h* "' '=h" +9¥A% . (5.13)
Here, we see more similarity between the non-datoitransformation (5.12) and the

gravitational field transformation (5.13) than beem the steroidal (5.11) and the gravitational
(5.13). But this actually argues in favor of thersids: we know that gravitational theory has
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nothing to do with Yang-Mills, but we also susp#wit a more complete theory of gravitation
should achieve some connection with non-Abelianggafields. If one were to employ in
gravitational theory the same “full minimal couginthat we are examining here in Yang-Mills

theory and thereby change” - D* =0 —-iG* (really, 0¥ — D¥ =0“ -iG*), then to the
degree thav'“ D" =d#9" —-id “G¥ leads to the gauge transformation law (5.12) witialks
(5.13) in form, an fully-steroidal anticommutator:

{p*. D"} ={o#,0"} -io"“G" -iG “9* -G +@ ={o*,0"} + V", (5.14)

leads to (5.11). This would perhaps imply that gnavitational field, in Yang-Mills theory 1)
would become an operator, and 2) would transforooming to

W o = Y+ DAY N AD AN (5.15)

i.e., that the linear gravitational fiels” would transform exactly the same way under a géner

coordinate transformation as the symmetrized peation vt of (5.11) transforms under a
gauge transformation.

It is surprising, and perhaps pregnant, that a gatnsformation acting on the spin-1
gauge fields of a symmetrized perturbatlvﬁ“”} produce the same effect as a gravitational
gauge transformation acting on the linear gravtal field h*Y, and at least raises the question
whether there is some deep physical connectiondstvihe symmetric perturbatMH‘”} and

the linear gravitational field*”, and between Yang-Mills theory and linear graidtadl theory,
each of which in their own separate domains, are-lmear theories in which spacetime
derivatives are non-commuting, see also the rel&eq.

V.2 Calculation of the Fully-Minimally-Coupled Yang-Mills Inverses

With the foregoing background, it is time tdccdate the inverse$) and |, of the

two configuration space operators (4.21) and (Wldigh we are in the midst of comparing here.
To save time and space, however, it is only readlgessary to calculate the inverse specified in

(4.21), because (4.6) is simply the special cagd.afl) in whichV*" - -ig“G", i.e., in which
V" is replaced by its first term only;id“G" .

So, similarly to what we did with starting at (2)1ive surmise that from studying (4.21)
that the inverse will now be of the general fotfh=g,A+d,0,B+\,C. We therefore place
this into (4.21):
|9 (0,07 +V+n?)-a"a" - V* [ g, 0,9, Br \ ¢=0",. (5.16)

As in (4.20) and (4.21), we are being very carefih left-right placement. Recognizing that
B and a newly-require@ will themselves be matrices, we define thesegbtsrmultiply each of
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9,.90,0,,V,, respectively, thus taking them out of the midaéween the two bracketed sets of

terms in the above. Now we solve #9rB andC. As for (2.12) we first expand and then apply
¥, =9%g, and absorb the remaining metric tensgy;s to write:

(5.17)

v

o - 5", (0,07 +V +nt) A+(9,0° + v+ ni)9,0" Br(0,07 + W+ rh) ¥
| =(0,0" +v,#) A-(07043,9, +v*9,9,) B-("9"V, + V' V,) ©

We match upd”, with d%, (aga‘f +V + mz), and after cancelling the Kronecker delta, wiitis t
matchup as(aga" +V + mz) A=1. Then becaus®,0° +V +nt is an NxN Yang-Mills matrix

due toV, we multiply from the left b>(aga” +V + rnz)_l to write:
A=(0,0° +V+nf) =(D D+ ni) @=1/(0,0°+ v+ m)"=1/"( D B+ /)" (5.18)

There is a very important point now to be madecaBgeV =V = —i(agG" + G"ag) -GG
in (4.18) contains Yang-Mills matrice8 = A,,G“ and so is an NxN matrix, we cannot blithely

put a term containing’ = G;; into a denominator. Rather, we must recognizeAlabove is a

matrix inverse and in particular, the inverse of a Yang-Millstma However, as a compact
notation which will allow us to compare the formthe equations presently being developed to
their Abelian counterparts such as those develgeation Il for electrodynamics, we shall often

write the inverseM ™ of a matrixM using a “quoted” denominator defined by"M"=M ™.
And, when we use this compact notation, we haveé&p in mind that when we de-compact, the

inverse will be used to multiply from the left, ias( D,D? + mz)_l .
Proceeding, we now use (5.18) in (5.17) and redlce

9,0" +V. 4 (606” +V + mz)(OVG” B+ \(¥ C)

(5.19)

We see that the numerator on the |éfi9“ +V,*, can be made identical to one of the terms on

the right,d,0“B+V,“C, if we setB=C. Let us do just that, and rewrite (5.19) with sofurther
consolidation as:

0,0" +V *
"9,07 +V +nr"

= (8,07 +v +n?)(a,0¢ + ) -(070* + v¥)(3,0, + V,) | E (5.20)
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Note, if we had reversed the order of index openatvhen defining, =17, J* in (4.20) or

G, =1,,J% in (4.6) we would not have matchirggo” +V,” terms on each side of the above.

We point this out in passing for now, but laterstwill be a reason for symmetrizing the inverse
| in its spacetime indexes.

Now we apply (5.1)D#D" =0%9" +V**, so that this compacts even further:

D,D*

W:[(DaDg+mz)Dv D'-D'D'D,D, |B. (5.21)

Therefore, with yet another inverse representea loyioted denominator which left-multiplies
when represented as an inverse, and renamipguofwe obtain:

D,D”
"(DO.DU"'mZ) DﬁDa_ DTDH DﬁDr"
B=C= o . (5.22)

Finally, we use (5.18) and (5.22) It} =g,,A+0,0,B+\, C= g, A+ D D E with some further
index adjustments to obtain our final result:

D,D,D’D”
gVT+
"(D D"+m2) D°Df - D.DPD° D°"
"= o o 5.23
vr ||D D0'+m2|| " ( " )

This inverse fully incorporates all of the non-lmdeatures in Yang-Mills gauge theory. While
certainly more complex than the Abelian inversg2ri4), one will observe that this steroidal
inverse has some important similarities in its alldorm.

Given (5.1),D#D" =9%90" +V*", let us first expand to:

(0,0, +V,,) (870" +v*)
. 0,07 +V +nt) (3797 + V) -(9,0” + ¥ ) (070" + V" )" |
v "9,07 +V +nr"

gvr + "
( (5.24)

We can now obtain the inverse (4.6},, which is contained within the inverdd, of
(5.23). As noted in the first paragraph of thidsction prior to (5.16), we save ourselves
another inverse calculation if we simply replat® - -id“G" to obtain:
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. (8,0, -19,G,)(0°0” ~i0°G”)
S *(0,0° -i0,G" +n?)(9°9” - i9°G”) - (9,0” - id,G”) (88" - 10°G* )"

Il = . 5.25
g "9_9% —i9,G° +m’" (5:25)

This re-consolidates to:
0,D,0°D”
9,D7 +n")8" D’ -9, D9 D°"
I, = )
uaJDO' + rnle

gvr + "
(

(5.26)

This is based on the configuration space opergtt‘.’n(agD" + mz)—O” D’ of the field equation
vV — [ V] . . . .
J"=0,D¥A" obtained in (4.5) from the ordinary Euler Lagrargguation, whereas (5.23)

emanates from the operatgr” ( D,D? + mz)— D“ D obtained from integrating the Yang-Mills

action by parts and then employed in the field 8qug4.19). Contrasting (5.23) and (5.26), it
is clear that this carries straight through toitherses.

These two inverses (5.23) and (5.26) are our tarediclates to employ for the inverse
field equationG, =1,J%, with I , =1’ or 1, =17 . When it comes time to taking the path
integral to quantize Yang-Mills theory there is goestion: the action is (4.15), period.
Whatever that action (4.15) produces from the patygral will be quantum Yang-Mills theory,
and that action does lead to the inverje of (5.23). There is a good argument to be made th
the configuration space operator whigtustbe used in the path integral at leasghtto be
given serious consideration for use in the clasdiedd equation. Additionally, Yang-Mills
theory is well known for its producinG* terms in the gauge fiel&*, see for example, the

Lagrangian (3.4). The inversg, in (5.23), with terms such ag), D,D“D”, clearly contains

G* interactions. Thel, in (5.26) clearly does note. This is another ergnt weighing in

H n
favor of usingl,

that theV#” which is contains have the complete transformatiom (5.9) under Yang-Mills
gauge transformations; whereas the transformabidi®] appears truncated.

and notl,, in the classical field equation. A final arguménfavor of I is

But we do not have to make a definite choice, bsedhe inversé’ in (5.23) contains
the inversel,, of (5.26) as a special case. Thus, we can wodeireral from (5.23), and can
always consider (5.26) if we choose. So, referiog5.23), we can achieve a substantial
simplification if we impose the gauge conditi@®,D”D“D? =0 on the operatoD, DD D*
which represents a fourth-gauge-covariant-derieativobtain:
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D,D,D?D” DD
gvr+ e > g 4+ vr
|" _ ||(DUDJ+m ) DHD/?" _ vr n DJD0'+m2H (5 27)
vr n DJDU+m2" n DJDU+n,f|| ) )

This now starts to resemble the form of the Abelrarerse (2.14), but as we shall see in section
??, the physics of this inverse has many interggiroperties not seen in Abelian gauge theory.
Most importantly, this is how it is that the nualdarce is short-ranged, even though its gauge
fields are masslesslin addition to the problem of confinement, expiag the nuclear short
range given massless gluons is a central challehtjee Yang-Mills mass gap problem. [7] All
of this will be reviewed in section ??, but for tm@ment, it is worth noting that even if we set
the gauge mass to zero in the above, and evenwitny +ie term, (5.27) still has the finite,
well-behaved form:

DV DT al/ar +VVT K/ K ~ \I//T
9, * Oty qo Sty T
I T Y A Y s 529
vr " DJDUH " agaa’ +V" n K7 ka- —_ v ’ '

Comparing with (2.37) from Abelian electrodynamiege see that when the gauge field of a
Yang-Mills theory is made massless, the perturbasicalar’y (which is a 3x3 matrix for QCD)
moves into the exact same formal position in tiveiise as does the non-zem and so operates
as apseudo massMore precisely, when the matrix inverses areperly calculatedV , sitting
where the mass sits in QED, plays a central rolgdnerating mass eigenvalues which one
should then expect to observe in the experimengsom spectrum of QCD. In this manner, one
may close the “mass gap.”

But because our immediate purpose is to use thisrse to populate the magnetic
monopole (3.7) with quarks as we did in sectiorlbut now including all the non-linearities of

Yang-Mills theory, we use (5.27) i, = |;,J* from which this inverse originates, and also use
(5.1), to form:

D,D, 0,0,+V,,
g V+ g 2 glJV+ g g n
WD D7 +me "9,0° +\,° + ",
G/J: n g 2n J = n ag ag n J
D,D% +m 0,07 +\.7 + nf

- 9,0,-i(0,G,+G,0,)-G,G,
19,07 -i(0,G7 +G,07)-G,G7 +m’"

T a0 (6,67 +G,07)-G,G7 +m*" ”

(5.29)

It should be observed that this_is not a closedesgion, becaus€, is self-definedecursively
in terms of itself, as is indicated by all of thelded G, in the final line. To obtain a closed
expression, one would have to repeatedly in€grtinto itself, on the right hand side in the
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bolded G , positions,ad infinitum It may well be possible to discern the pattemd develop a

closed form of (5.29), but for the moment, we siynpbte this recursion as yet a fourth view of
the way in which Yang-Mills gauge theory imon-linear non-commuting and steroidal in
which we now see that Yang-Mills igecursivefield theory.

Thus far we have use the quoted denominators fatediin (5.18) for compactness. But
let us now “unpack” these. Written in terms of mainverses, (5.29) becomes:

o + DD,
6= g g (0.0 o) (R i) 0
=(9,0° +mP+V)" 3, +(0,0°+ nf+ V)" DD J . (5.30)

(—kgk”+nf+v)_1;,+(—lgﬁ+ i+ \)_2 PDY

This form of unpacking to the left originates frofn= ( D,D? + mz)_1 1 in (5.18). We have also

employed (5.1) to expand somewhat, and then haweected viad’ - ik to momentum
space.

Now, let us return to the section Ill.4 where wad®a a first pass to populate the Yang-
Mills magnetic monopoles with fermions and showed lihese magnetic monopoles had many
symmetries reminiscent of baryons in QCD. If wentify G, = G, ,; with the gluons of QCD,

then these must be massless, so we need togetabove. Additionally, let us place these
gluonson-mass shellso thatk k? =0. Ordinarily, these two actions cause problemshwit

inverses, and require thee prescription. Here they do not. Rather, (5.3@)ety reduces to:
G,=v*'J,+v*QDJ. (5.31)

The perturbation in (4.18) is a 3x3 matrix, andaageneral rule for non-zend is perfectly
invertible into the finite matrixv =(-i(0,G” +G0,) -G, G )_1. Extending (5.31) with

J¥ =ywy*y from Dirac theory, see (2.17), we now write (5.8&)on-shell, massless gluons, as:
G*=V™J,+V?D,D'F = Vigyw+ V> Q) Byy'y = Vigyy+ V(0,0 + Y )wy'y (5.32)

This is the fully-non-linear, Yang-Mills counterpao (2.16) from Abelian gauge theory. But
here, the gauge fields may be made massless ah(breshell). When we do so, there is no
need for +ig; any complex or imaginary mass values will comarfrcomplex terms in the

generators of the Yang-Mills theory. The inverses all well-behaved, and so there is an
inherent mass and lifetime spectrum in the abovielwban be used to fill the Yang-Mills mass
gap, as we shall see more fully in section ??.sdction I1l.4, we populated the Yang-Mills

magnetic monopoles with fermions by throwing “caantito the winds” and substituting (2.17)
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which ignored perturbations, into the magnetic npmte (3.7). We are now ready to again
populate the Yang-Mills magnetic monopole with femns that we will turn into quarks. But
this, time, we will omit nothing, and will accoufdr all the non-linear aspects of Yang-Mills
theory.

VI. Magnetic Monopole Baryons for On-Shell Gluons, including all the
non-linear Features of Yang-Mills Theory

Our starting point for the ensuing discussionhis tinal line of the magnetic monopole

(4.22), into which we substitute the newly-develbpéully nonlinear G of (5.32), which
applies to massless, on-shell gluons for which aeehin (5.27) imposed the gauge condition

D,D?D?D’ =0 on fourth-covariant-derivatives. The result is:

P =-i(p?[¢*.¢' |+ D¥[¢. ¢+ D[ G, &)

D7 [V 7@y y +V D, DYy Y N Yy w VD, Dy y |

i| +D#[V 'y @ +V D, D Yy Y Ny VD, Dy |

+D' [V +V D, DYy Ny + VD, Dy |

DV [N |+ DV [V |+ DV [ vy |y

+D°VED, DUy [V [y + DVED, DUy 9V |+ DVED BTy [ vy [y

| VI VDD [y VIR [V B D e DV Ry [V D, 0 [y
+D°V D, DYy [yV D, D'y |y (6.1)

+D*V D, D gy [@V D, D7y |y

+D'V 2D, D°wy” [wV D, Dy |y

Structurally, because of thB,D* and V™ terms, this is a 3x3 matriP%" of 3x3matrices
. U -1
emanating fron(D[,D )CD and(V )CD

Now, let us go to (5.29) in th®,D”D?D’ =0 gauge, in quoted denominator form, in
the limiting case wher¥,, =0. Then, the quoted denominators become ordinargrdaators.
In flat spacetime, and witl,J” =0, this becomes:

1 I = 1 =

1 I
- - =
S oY T Tke-m K- A

Yy . (6.2)
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This, of course, is the inverse (2.17) of Abeliauge theory. If we substitute this into the top
line of (6.1) while dropping backD? - 0, then as we did in (3.13), we obtain (square-

bracketed terms below are to be contrasted toaime sn (6.1)):
P =-i(0°[G*,G" |+0*[ G, & |+0'[ &', &)

1 (el ey elee el 69
k k' — nt kK- n k k- rh kk=

T

Then, following all the same steps we showed irti@edIl.4, we can turn this into (3.19),
namely:

P =—i(0 (@ (p-m) " V) + 0 (0 (p-m) i)+ 0 (09 (o= ™ V'0)). (6.4)
which in turn can be converted into (3.24), namely,
TP ==i(0° (e (B =) o) +0* (0l (pam M V0 J +0" (wa? (0= mY ¥y ).(6.5)

which as discussed seems to have all of the synesatnd confinement properties that one
expects to find in a baryon associated with QCD.

Because the explicit introduction of QCD color gpiinom (6.4) to (6.5) simply entails
given a R, G, B color to each of the fermions dmehtadding a trace, we recognize that the same
path will lead to the explicit introduction of colmto (6.1), that is, with color added explicitly,
(6.1) will become:
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DV W YN Y oy
DV Y YN Yy W
DV Y YN Yy
+DV D, DY o) W N Y o
+DV D, D o YN Y oV W
+D'V D, DY N W oy W
+DV Y PPN D, DY o
+DV Y P VD, Dy
+D'V Y WV D, D o i
+DV D, DY oy V2 D, D' o
+DV 7D, DY oy N D, D7 oy
+D"V 2D, DY oy 1V 2 D, Dy oy

TP = - (6.6)

Structurally, we have taken one trace, namilp™” = P\, but this is still s 3x3 matrix
because of( D,D* )CD and (V‘l)CD. Certainly, there are many further manipulaticar
reductions that might be considered from here fanuthe moment, we simply point out how this

retains in all aspects the OuOv~ROGOB=H G B+ ¢ B R+ B R color baryon
wavefunction, as discussed following (4.24).

Now, we can finally answer the question posed m ititroduction to this paper. In
section 2 of [1], surrounding equation (2.9), th¢har stated as follows:

Now, inverse [2.7] [which is a special case vaomtof (5.27) above] has many
interesting properties which we shall not take tinee to explore here which
would require an entire separate paper to do thestice [we shall do those
special cases justice in section ?? to follow, jhere. . We will also note that

when working towards a quantum path integral foatiah, i[k”,GJ]:a”GJ in
(2.7) is replaced by a gauge-invariant perturbatig,n:i(aﬂea+c;gaﬂ)+eﬂeg,
contracted from a perturbation tensar :i(a“GV +G“6“)+G’G [sic in [1]: thei

was omitted from the perturbation leading to somisptaced or omitted’s
elsewhere]. But our interest at the moment ihelow-perturbation limit, which
is specified by.a,G, - 0. Thus, using (2.7) in the inverse relatign=1_,37, we

“turn off” all the perturbations by settingg, G, =0. When we do so, all the

inverses (quoted denominators) in (2.7) becomenargliidenominators. We then
reduce using the fact that in momentum space, muoenservatiord ,J*(x) =0

becomesk,J#(k)=0. . . . We thus obtainG, =-g,,J°/ K’k - nf [2.9]. The
above is just like the expressions we encountemfggrses with a Proca mass in
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QED. It says, not unexpectedly, that in the lowtymbation limit, when we set
9,G, ~ 0 (and in a deeper analysis, -v** =i(9"G’ +G'9")+G'G - 0) QCD
looks like QED.

The “deeper analysis” referred to in [1], is nowpkained fully by all of the foregoing
development here: When we fully considdir of the non-linear aspects of Yang-Mills theory,
we find an inverse relationship of the form (5.280d even more generally (5.23) if we forego
the gauge conditionD,D*D?D? =0) which is chock full of -v* :i(a"GV +G”0”)+G‘G’

perturbations which reflect the essential non-liftgaf Yang-Mills theory. However, if we set
V, =0, and in flat spacetime, the inverse is (6.2) whighthe same inverse used in [1] to

populate the Yang-Mills magnetic monopoles with rgga Certainly, by populating the

magnetic monopolies in this way, we are omittingnemf the non-linear features of Yang-Mills
theory (those which appear in (5.23) and (5.29)jemaking advantage of other non-linearities
(those that appear in (6.3)).

But the question is whether there is any physichéineficial information to be gained
from populating the Yang-Mills monopoles with arvénse which ignores the perturbations by
setting all of theV*” =0. Clearly there is benefit, because: 1) We canlilgasee that the
essential symmetries of the Yang-Mills magnetic opmies, once populated with fermions, and
even with the perturbations turned off, are the esa® the essential symmetries of baryons in
QCD, including the extremely important propertycohfinement as reviewed in detail in section
l1l.4 here as well as in sections 1, and 12 of [2).As good fortune would have it, the energies
which are derived out of the magnetic monopolesywit” =0 in the inversel, used to

populate the Yang-Mills magnetic monopoles, coteelaith parts per T0or 1@ precision in
AMU to at least fifteen(15) distinct light nuclidending energies as has now been demonstrated
in [2], [4], [5], [6]. So we learn that nuclearnkiing energies — at least to the first five or six
orders of precision in AMU — are not impacted dtkgl the perturbationd/*", that is, that
nuclear binding energies can be obtained to higdtipion from the energies of Yang-Mills
magnetic monopoles which have the Yang-Mills pd&dtions of their quarks, turned off.

At the same time, if we do want to see the conepletadulterated magnetic monopole
baryon with all the perturbations included, thennveed look no further than (6.1) or, with color
explicit, (6.6). And even (6.1) and (6.6) do empdiaree limitations: 1) massless gluons, 2) on-

shell gluons, and the gauge conditiiyD”D?D? =0. If one wanted to not even make these

simplifications, and wanted to consider virtualf{stfiell) gluons and permiD, DD’D’? #0,

and even consider massive gluons, then one wouwdthes unreduced, complete non-linear
expression (5.23) to populate the magnetic mongpelth quarks via (6.1), and would arrive at
an even more formidable expression than (6.1).

Finally, as will be further develop in section,tasthe question “. . . these nonlinearities
are essential for generating short-range forces fiazero-mass gauge field. How you expect to
get short-range forces from your approach is a enysio me” recited in the introduction, the
answer is to be found in (5.28). Here, we see ¢liah with the gluon masses set to zero, the
perturbation scalay arising from these non-linearities naturally asgdntaneously” insinuates
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its way into the mass position in the vector bosoerse, which means there will be non-zero
pseudo-mass eigenstates observed in relatioh éeen though the gauge fields are massless.
And as is well known from weak interaction theaspce a non-zero mass (or here, perturbation
energy spacetime scalar which is still a 3x3 YanfisMmatrix) makes its way into the mass
position of the vector boson propagator, the rasylinteractions, in this case the nuclear
interaction, will have a short range.

Draft in Progress. Moreto be added.
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