Quantum measurement theory improves the no-cloning theorem
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We improve the no-cloning theorem that relies on the property of the quantum theory. Usually,
the no-cloning theorem allows for a cloning two orthogonal quantum states, simultaneously. Here
we take into account specific quantum measurement theory. We result in the fact that we cannot
allow for a cloning two orthogonal quantum states, simultaneously. Especially, we systematically
describe our assertion based on more mathematical analysis using raw data.
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I. INTRODUCTION

As a famous physical theory, the quantum theory (cf.
[1-5]) gives accurate and at times remarkably accurate
numerical predictions. Much experimental data has fit
to the quantum predictions for long time.

The no-cloning theorem is a result of quantum me-
chanics that forbids the creation of identical copies of
an arbitrary unknown quantum state. It was stated by
Wootters and Zurek [6] and Dieks [7] in 1982, and has
profound implications in quantum computing and related
fields.

The state of one system can be entangled with the
state of another system. For instance, one can use the
Controlled NOT gate and the Walsh-Hadamard gate to
entangle two qubits. This is not cloning. No well-defined
state can be attributed to a subsystem of an entangled
state. Cloning is a process whose result is a separable
state with identical factors. According to Asher Peres [8]
and David Kaiser [9], the publication of the no-cloning
theorem was prompted by a proposal of Nick Herbert [10]
for a superluminal communication device using quantum
entanglement.

A literature concerning quantum cloning topic can be
seen in Ref. [11].

In this paper, we improve the no-cloning theorem that
relies on the property of the quantum theory. Usually,
the no-cloning theorem allows for a cloning two orthog-
onal quantum states, simultaneously. Here we take into
account specific quantum measurement theory. We re-
sult in the fact that we cannot allow for a cloning two
orthogonal quantum states, simultaneously. Especially,
we systematically describe our assertion based on more
mathematical analysis using raw data.

We review the no-cloning theorem as follow:

Ulp)ale)s = o) ald)B. (1)

U is the time evolution operator. Alice has a quantum
state |¢)4. Bob has a quantum state |e)g. Bob’s state
changes into |¢)p by using the time evolution operator.
Thereby Alice’s state is cloned into Bob’s state. Let us

consider inner product. Thus,

(el (¢lalt)ale)s = (e|(d|aUTU W) ale)

= (¢|p(¢lal¥)al) B (2)
Thus,
(@lya = (DY) aldly) 5. (3)
By omitting subscript A and B, we have
(Bly) = (ly)*. (4)
We derive the following proposition:
(0l)* =0V (gl)? = L. (5)

Therefore the no-cloning theorem allows for a cloning two
orthogonal quantum states or for a cloning two identical
quantum states, simultaneously. However, we cannot as-
sume

(dlv)? =0 (6)

when we take into account specific quantum measure-
ment theory. Therefore new no-cloning theorem does not
allow for a cloning two orthogonal quantum states, simul-
taneously.

II. NEW TYPE OF NO-CLONING THEOREM
A. Orthogonal case

We consider a quantum expected value as

(gly)? = 0. (7)

The above quantum expected value is zero if |¢) and |))
are orthogonal.

We derive a necessary condition for the quantum ex-
pected value given in (7). We derive the following propo-
sition

(¢ly)* = 0. (8)



B. Specific quantum measurement theory forbids
orthogonal case

On the other hand, a mean value E satisfies specific
quantum measurement theory if it can be written as

S nlel)?)

m

E 9)
where [ denotes a label and r is the result of specific
quantum measurement. We assume the value of r is £1.

In what follows, we show that we cannot assign the
truth value “1” for the proposition (8).

Assume the quantum mean value given in (9) admits
the quantum measurement theory. One has the following
proposition concerning the quantum measurement theory

m

We can assume as follows by Strong Law of Large Num-
bers,

(@le)* (+00) = (9lv)*. (11)

Assume the proposition (10) is true. By changing the
label | into I’ and by changing the label m into m/’, we
have same quantum mean value as follows

_ S (@))

m’

(@l1)*(m") (12)

An important note here is that the value of the right-
hand-side of (10) is equal to the value of the right-hand-
side of (12) because we only change the labels. We have

(Bl m) x (Bl)2 (')
S o) | S re(9l)?)
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=1. (13)
Here 6y is a delta function. We use the following fact

(r((gl)*)* =1 (14)

and

o
- 1. 15
o (15)

Thus we derive a proposition concerning the quantum
mean value under the assumption that the quantum mea-
surement theory is true, that is

(@l)?(m) x (gly)*(m') = 1. (16)
From Strong Law of Large Numbers, we have
(8lv)* x (ly)* = 1. (17)

Hence we derive the following proposition concerning the
quantum measurement theory

(@)t =1. (18)
Thus,

(dly)?* =1. (19)
This implies that we cannot assume

(Bl)* =0 (20)
and we can assume only the following case

(@lv) = 1A (dly)* = 1. (21)

This implies we can assume only the following case

[9) = [). (22)

Therefore new no-cloning theorem allows only for a
cloning one kind quantum state, in this case.

III. CONCLUSIONS

In conclusion, we have improve the no-cloning theo-
rem that relies on the property of the quantum theory.
Usually, the no-cloning theorem has allowed for a cloning
two orthogonal quantum states, simultaneously. Here we
have taken into account specific quantum measurement
theory. We have resulted in the fact that we cannot allow
for a cloning two orthogonal quantum states, simultane-
ously. Especially, we have systematically described our
assertion based on more mathematical analysis using raw
data.
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