
1 

 

The Rectangular Spiral Solution for the n1 X  n2 X  … X nk 
Points Problem 

 

Marco Ripà 
 

Economics − Institutions and Finance, Roma Tre University, Rome, Italy.  

Email: marcokrt1984@yahoo.it 
 

 

Abstract. A generalization of Ripà’s square spiral solution for the n X n X … X n points upper bound problem. 

Additionally, we provide a non-trivial lower bound for the k-dimensional n1 X n2 X … X nk points problem. In 

this way, we can build a range in which, with certainty, all the best possible solutions to the problem we are 

considering will fall. Finally, we provide a few characteristic numerical examples in order to appreciate the 

fineness of the result arising from the particular approach we have chosen. 
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1.  Introduction 

Nearly a century ago, the classic nine dots problem appeared in Samuel Loyd’s Cyclopedia of Puzzles [1-4]. 

The challenge was as follows: “…draw a continuous line through the center of all the eggs so as to mark them 

off in the fewest number of strokes” [3-5]. 
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Fig. 1. The original problem from Samuel Loyd’s Cyclopedia of Puzzles, New York, 1914, p. 301. 

 

 

That puzzle can naturally be extended to an arbitrarily large number of distinct (zero-dimensional) points for 

each row / column [7]. This new problem asks to connect n X n points, arranged in a grid formed by n rows and n 

columns, using the fewest straight lines connected at their end points. Ripà and Remirez [6] showed that it is 

possible to do this for every            , using only 2∙n-2 straight lines. For any n ≥ 5, we can combine a 

given 8 line solution for the 5 X 5 problem and the square spiral frame [10]. In the same paper, they extended the 

n X n result to a three dimensional space [8] and finally to a generic k-dimensional space (for k > 3). 

 

Starting from that outcome, we consider the same problem and rules by [6]. We can apply the “pure” spiral 

method to a n1 X n2 rectangular grid (where n1 ≤ n2). In this way, it is quite simple to discover that the minimum 

number of lines we need to connect every point (solving the problem inside the box, connecting points without 

crossing a line, and visiting any dot just once) is given by the Eq. 1 [9]. 

 

                                 (1) 

 

2.  The n1 X n2 X … Xnk problem upper bound 

 

If we try to extend the result in Eq. 1 to a three dimensional space, where n1 ≤ n2 ≤ n3, we need to modify a 

somewhat the standard strategy described in [6] in order to choose the best “plane by plane” approach that we 

can effect, even if there are a few exceptions (such as if n3 – n2 ≤ 1, see Appendix). So, we need to identify the 

correct starting plane to lay the first straight line. Using basic mathematics, it is quite easy to prove that, in 

general, the best option is to start from the [n2 ; n3] plane. 

Hence, under the additional constraints that we must solve the problem inside the box only, connecting 

points without crossing a line, and visiting each dot just once, our strategy is as follows: 
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Step 1) Take one of the external planes identified by [n2 ; n3]: here is the plane to lay our first line; 

Step 2) Starting from one point on an angle of this grid, draw the first straight line to connect n3 points, until 

we have reached the last point in that row; 

Step 3) The next line is on the same plane as well. It lays on [n2 ; n3], it is orthogonal to the previous one, and 

it links n2 − 1 points; 

Step 4) Repeat the square (rectangular) spiral pattern until we connect every point belonging to this n2 ∙ n3 set 

to the others on the same surface; 

Step 5) Draw another line which is orthogonal to the [n2 ; n3] plane we have considered before, doubling the 

same scheme (in reverse) with the opposite face of this three dimensional box with the shape of a (n1 , n2 , n3) 

parallelogram. Repeat the same pattern for any n2 X n3 grid, n1 – 2 times more. 

 

The rectangular spiral solution also gives us the shortest path we can find to connect every point: the total 

length of the line segments used to fit all the points is minimal. 

 

 

N.B. 

Just a couple of trivial considerations. Referring to the rectangular spiral pattern applied to a k-dimensional 

space (k ≥ 2), we can return to the starting point using exactly one additional line (it works for any number of 

dimensions we can consider at or above 1). For any odd value of n1, we can visit a maximum of ⌈
    

 
⌉    

points twice, simply extending the line end (if we do not, we will not visit any dot more than once, otherwise we 

can visit ⌈
    

 
⌉    points, at most). Moreover, it is possible to visit up to        points twice if we move the 

second to last line too (crossing some more lines as well). Finally, considering k ≥ 2, if we are free to extend the 

ending line until we are close to the next (already visited) point (i.e., let ε be the distance between the last line 

and the nearest point and let the distance between two adjacent points be unitary, we have that 0 < ε < 1), it is 

possible to return to the starting point without visiting any point more than once. 

 

 

The total number of lines we use to connect every point is always lower or equal to 

h = 2 ∙ n1 ∙ n2 − 1                  (2) 

 

In fact, h = (2 ∙ n2 − 1) ∙ n1 + n1 − 1. 

Nevertheless, (2 ∙ n2 − 1) ∙ n1 + n1 – 1 = 2 ∙ n1 ∙ n2 – n1 + n1 – 1 = 2 ∙ n1 ∙ n2 – 1 = 2 ∙ n1 ∙ n2 – n2 + n2 – 1 =  

= (2 ∙ n1 − 1) ∙ n2 + n2 − 1  (Q.E.D.). 

 

The “savings”, in terms of unused segments, are zero if (and only if) 

n1 < 2 ∙ (n3 − n2) + 3                 (3) 

 

In general, (also if n1 ≥ 2 ∙ (n3 − n2) + 3), the Eq. 2 can be rewritten as: 

h = 2 ∙ n1 ∙ n2 − c                  (4) 

 

Where c = 1 if the “savings” are zero, while c ≥ 2 if not. 

As an example, let us consider the following cases: 
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a) n1 = 5;  n2 = 6;  n3 = 9. 

b) n1 = 11;  n2 = 12;  n3 = 13. 

 

While in the first hypothesis c = 1 (in fact 5 < 2 ∙ (9 - 3) + 3), h = 2 ∙ 5 ∙ 6 - 1 = 59, in case b) we have c = 

13, h = 2 ∙ 11 ∙ 12 - 13 = 251. This is by virtue of the fact that the fifth and the sixth connecting lines allow us 

to “save” one line for every subsequent plane, whereas each plane “met” after the sixth can be solved using 

two fewer lines (if compared with the first four we have considered).  

 

Fig. 2. The rectangular spiral for the case of the example b): n1 = 11, n2 = 12, n3 = 13. 

 

If               , the (pure) rectangular spiral method, with specific regard to the three dimensional 

problem, can be summarized as follows: 

h = n1 – 1 + [2 ∙ (n3 – n2) + 2] ∙ (2 ∙ n2 – 1) + 2 ∙ (2 ∙ n2 – 2) + [2 ∙ (n3 – n2) + 4] ∙ (2 ∙ n2 – 3) + 4 ∙ (2 ∙ n2 – 4) + [2 ∙ 

(n3 – n2) + 6] ∙ (2 ∙ n2 – 5) + 6 ∙ (2 ∙ n2 – 6) + … + d 

Where d represents the product of the number of line segments used to solve the plane which contains the 

fewest lines (the last plane we have considered, the plane which cuts roughly halfway through our imaginary 

box) and “    {[    (   –    )   ]      [    (   –    )   ]     } ”. 

 

Thus, we can synthesize the previous formula as  

       ∑                        
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Making some calculations, we have that 
 

b:= 

{
 
 
 
 

 
 
 
 

      
        

           
            

                     
               

                                               
                       

                                       

      
        

           
            

                     
               

                                               
                        

                                       
 

 

 

Thus, the general solution is given by: 
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           (5) 

Where      is the maximum value j    0 such that                               

→      ⌊
 

 
 (√  

    
                                  )⌋. 

 

 

The Eq. 5 can be rewritten more elegantly as 

 

h=

{
 
 
 

 
 
 

 

 
     

                    
  [                 

  

 
]                              

                [    
                             ]

 

 
     

                    
  [                

  

 
]                               

                [    
                             ]

(6) 

Where       ⌊
 

 
 (√  

    
                                )⌋. 

 

N.B. 

For obvious reasons, the Eq. 6 is always applicable, on condition that               . Otherwise, the 

solution follows immediately from Eq. 4, since c can assume only two distinct values: 1 or 2 (c = 1 if the 

condition (3) is verified, c = 2 if the (3) is not satisfied, but the Eq. 6 cannot be used – therefore, this is the case 

              ). 
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Fig. 3. The rectangular spiral and its development [2] for the cases of (from left to right)  n3 – n2 = 0, n3 – n2 = 1 

and n3 – n2 = 2. 

  

Therefore, it is possible to extend the aforementioned result we have previously shown in the k-dimensional 

case: n1 X n2 X … X nk. The method to determine an acceptable upper limit for the optimal solution remains the 

same as in the case n1 = n2 = … = nk : 

         ∏   
   
                      (7) 

Where t, the lowest upper limit available for the nk-2 X nk-1 X nk problem, is given by Eq. 4 (with the exception 

of the very particular cases we introduced at the beginning of the paper [6]) and it is made explicit by (2)-(6). 

 

Specifically, we will start considering an external grid defined by [nk-1 ; nk], and we will connect the 

corresponding nk ∙ nk-1 points using 2 ∙ nk-1 – 1 lines (following the rectangular spiral pattern), then, from the 

ending point of that external grid, we will draw the line segment which is orthogonal to any [nk-1 ; nk] plane 

(along the nk-2 points direction), and so on. 

 

3.  The n1 X n2 X … X nk problem bounded from below 

In this section we provide a non-trivial lower bound for the k-dimensional n1 X n2 X … X nk points problem. In 

this way, we can build a range in which all the best possible solutions to the problem we are considering (for any 

natural number ni and number of dimensions k) will certainly fall. In conclusion, we provide a few characteristic 

numerical examples in order to appreciate the quality of the result arising from the particular approach we have 

chosen. 

For k = 3 (n1 ≤ n2 ≤ n3), let us examine first the structure of the grid: it is not possible to intersect more than 

(n3−1)+(n2–1)=n3+n2−2 points using two consecutive lines; however, there is one exception (which, for 

simplicity, we may assume as in the case of the first two lines drawn). In this circumstance, it is possible to fit n3 

points with the first line and n2−1 points using the second one, just as in the case of the pure rectangular spiral 

solution that we have already considered. 

Let us observe now that, lying (by definition) each segment on a unique plan, it will be necessary to provide 

n1−1 lines to connect the various plans that are addressed in succession (of any type): there is no way to avoid 

using fewer than n1−1 lines to connect (at most) n1−1 points at a time (under the constraint previously explained 

above to connect n3+n2−1 points with the first two line segments). Each of these lines could be interposed 

between as many rectilinear line segments capable of connecting nk−1 points at any one time. 

Following the same pattern, we notice that the previous result, in the k-dimensions case (k ≥ 3), does not 

substantially change. 

Let hl be the number of line segments of our lower bound, for any k ≥ 3, so that we have 
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Taking into account the fact that,     ,      , ⌊
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⌋, doing some basic calculations, we 

get the following result: 
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Notice now how we can improve the result by the (9) whereas the linking lines between the various plans 

cannot actually join ni−1 points each time: to connect all the points of every plane belonging to the dimension/s 

distinguished by the fewest points aligned (the values of the ni characterized by the lowest subscript) it is 

possible to connect ni−1 points with the first line segment, ni−2 using the second line segment, ni−3 points with 

the next one, and so on. 

Therefore, with reference to the three-dimensional case, these n1−1 linking lines intersect ∑    
    
       

         

 
 new (unvisited) points. As noted above, we can assume that, at most, each one of them will precede and 

follow as many line segments that intersect nk−1 points. 

Thus 
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In detail (looking at the (11)), if k =3, it follows that 
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Now, let us consider that, for every                     (             , 
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Thus, considering the fact that we can arbitrarily change the value of    (i.e., we can take   ̃       if we 

like) without varying the number of line segments we need to connect every point, we can assume, without loss 

of generality, that  
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for any [        ...      ].  

Consequently, if    ,    ⌈
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On specifics, for             ,    ⌈   
   

 
⌉          

 

4.  Conclusion 

 

Given    , by combining Eq. 14 with the (2)-(6), we get the intervals in which the best possible solutions 

of the problem will certainly fall. 
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How wide this range is (and therefore how interesting this outcome may be considered) also depends on the 

particular values of   ,    and   . 

 

Example 1:       ,      ,      . 

 

          

 

Example 2:       ,      ,       . 

 

          

 

 

If k > 3, the interval is given by 
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Where t, the minimal upper limit for the nk-2 X nk-1 X nk points problem, is the result obtained from the (4)-(6) 

or, if nk-1 ≤ nk − 1, from the (16)-(17) (see Appendix). 

In this case, how great the interval is also depends on the particular value of k (in general, the lager the k, the 

wider is the interval). 

 

Example 3:      ;      ,      ,      ,       (thus      ). 

 

            

 

 

If I had to gamble, setting k := 3, I would put money on any betting odds higher than 1+10
−80 

:
 
1 (there are 

roughly 10
80

 atoms in the visible universe) that “hbest” (the number of straight line segments associated with the 

best possible solution) is significantly closer to the upper bound I defined and can be small compared to its 

counterpart - mathematically, I would be willing to bet on the fact that, for the vast majority of the possible 

combinations [        ], 
        

        
  . 

Finally, it is interesting to note that, for some particular combinations, the upper bound and the lower bound 

coincide, thus allowing us to obtain a complete and definitive resolution of the given problem. 

E.g., for     ;        ,      , it follows that hl = hu = hbest = 17. Ditto if     ;     ,     , 

     . In fact, hl = hu = hbest = 23. While, if     ;           ,      , hl = hu = hbest = 15.  

 

5.  Appendix 

 

If we do not take into account all the additional constraints (solving the problem “inside the box” only, no 

intersections between lines, and so on) we could improve our “plane by plane” upper bound. For example, we 
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could use the basic pattern below (Fig. 4), for any n ≥ 4. This kind of solutions can be applied to the n X n X … X 

n points problem and to the n1 X n2 X … X nk points one as well (e.g., nk − nk-1 = 1 Fig. 5): 

 

 

Fig. 4. The “double spiral” pattern for nk = nk-1 (2∙nk-1-2 lines). 
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Fig. 5. The “double spiral” pattern if nk − nk-1 = 1 (2∙nk-1-1 lines). 

 

Looking at the pattern of Fig. 5, we can easily discover that we can use it to reduce the 3D upper bounds by 

the rectangular spiral: e.g., for         ,       it follows that     902, which is far better than    , the 

rectangular spiral one. 

 

Therefore, if           , the best “thinking outside the box” upper bounds are as follows. 

Table 1: n X n X n points puzzle upper bounds following the “double spiral pattern” by Fig. 4. 

n 

Best Upper 

Bound 

Currently 

Discovered 

 
n 

Best Upper 

Bound 

Currently 

Discovered 

 
n 

Best Upper 

Bound 

Currently 

Discovered 

1 / 

 

18 587 

 

35 2258 

2 7 

 

19 655 

 

36 2391 

3 14 

 

20 726 

 

37 2528 

4 26 

 

21 801 

 

38 2669 

5 42 

 

22 880 

 

39 2814 

6 62 
 

23 963 

 

40 2963 

7 85 
 

24 1050 

 

41 3115 

8 112 

 

25 1141 

 

42 3270 

9 143 

 

26 1236 

 

43 3429 

10 178 
 

27 1335 

 

44 3592 

11 216 

 

28 1438 

 

45 3759 

12 257 
 

29 1544 

 

46 3930 

13 302 

 

30 1653 

 

47 4105 

14 351 
 

31 1766 

 

48 4284 

15 404 

 

32 1883 

 

49 4467 

16 461 

 

33 2004 

 

50 4654 

17 522 

 

34 2129 

 

51 4845 

 

N.B. 

The upper bounds for n = 4 and n = 5 are only two particular cases. They are based on a combination of a few, 

different, two-dimensional patterns. A personal conjecture is that it is possible to do the same for any n ≥ 4; i.e., 

we would be able to solve every n X n X n (n ≥ 4) puzzle with a plane by plane approach using at least one line 

less than the “pure” double spiral solution. 

 

 

 

Thus,      ,  
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hu (n1=n2=n3:=n) = 

{
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Hence 

 

hu (n1=n2=n3:=n) = 
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Where      is the maximum value i    0 such that            →      ⌊
 

 
 (√       )⌋. 

 

While, if           , the best “thinking outside the box” upper bounds are given by Table 2. 

Table 2: n1 X n2 X n3 points puzzle upper bounds for n1 = n2 = n3 − 1 following the “double spiral pattern” by 

Fig. 5. 

n1=n2=n3−1 

Best Upper 

Bound 

Currently 

Discovered 

 
n1=n2=n3−1 

Best Upper 

Bound 

Currently 

Discovered 

 
n1=n2=n3−1 

Best Upper 

Bound 

Currently 

Discovered 

1 1 

 

18 605 

 

35 2293 

2 7 

 

19 674 

 

36 2427 

3 17 

 

20 746 

 

37 2565 

4 31 

 

21 822 

 

38 2707 

5 48 

 

22 902 

 

39 2853 

6 68 
 

23 986 

 

40 3003 

7 92 
 

24 1074 

 

41 3156 

8 120 

 

25 1166 

 

42 3312 

9 152 

 

26 1262 

 

43 3472 

10 188 
 

27 1362 

 

44 3636 

11 227 

 

28 1466 

 

45 3804 

12 269 
 

29 1573 

 

46 3976 

13 315 

 

30 1683 

 

47 4152 

14 365 
 

31 1797 

 

48 4332 

15 419 

 

32 1915 

 

49 4516 

16 477 

 

33 2037 

 

50 4704 

17 539 

 

34 2163 

 

51 4896 

 

 

Therefore, for any               , it follows that 
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hu (n2=n3−1) = 

{
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Where      is the maximum value i    0 such that             →      ⌊
 

 
 (√        )⌋. 
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