Legendre's Algorithm and Pascal's Triangle

Germán Andrés Paz germanpaz ar@hotmail.com

July 17, 2013

Abstract

In this paper we show the relation that exists between Pascal's Triangle and Legendre's algorithm for calculating the exact amount of prime numbers that are less than a given number.

1 The Formula $P(n) = n - C(n) - 2$

To begin with, if n is an integer greater than 1, $P(n)$ the amount of prime numbers that are less than n and $C(n)$ the amount of composite numbers that are less than n , then we have

$$
P(n) = n - C(n) - 2.
$$

Therefore, if we know the value of $C(n)$ we can calculate the value of $P(n)$.

Let us suppose that n is in fact an integer greater than 4. The fact that $n > 4$ implies that there exists at least one prime number p such that that $n > 4$ implies that there exists at least one prime number p such that $p < \sqrt{n}$. According to Legendre's algorithm, in order to calculate $C(n)$ we $p \lt \sqrt{n}$. According to Legendre's algorithm, in order to calculate the vertex of the prime numbers that are less than \sqrt{n} .

2 Calculating $C(n)$

Let us suppose that n is an integer greater than 4 and that there are exactly Let us suppose that *n* is an integer greater than 4 and that there are exactly m prime numbers less than \sqrt{n} (of course, we have $m \ge 1$). In order to calculate $C(n)$ we need to follow these steps:

1. We need to find all the prime numbers that are less than \sqrt{n} . These m prime numbers form a set which we will call $Set M$.

- 2. We need to calculate the amount of composite numbers divisible by 2 that are less than n. This amount equals $n/2-2$ or $\lfloor n/2\rfloor-1$ depending on whether $n/2$ is an integer or not respectively. If applicable (that is on whether $n/2$ is an integer of not respectively. If applicable (that is to say, if there exists more than one prime p such that $p < \sqrt{n}$), we need to repeat this with the rest of the prime numbers that are less the number such than \sqrt{n} (in general, if p is a prime number such that $p < \sqrt{n}$, then the amount of composite numbers divisible by p that are less than n equals $n/p - 2$ or $\lfloor n/p \rfloor - 1$ depending on whether n/p is an integer or not respectively). After having done so we will have obtained m results. By adding up these m results we will obtain a new result which we will denote by $T_1(n)$.
- 3. We need to find all possible combinations without repetition of 2 primes from Set M (the number of these combinations is equal to the binomial coefficient $\binom{m}{2}$. Then we need to express these combinations as multiplications (as an example, $2 \times 3 = 6$ is the combination {2,3} expressed as a multiplication). By solving these multiplications we will obtain a series of products (precisely, $\binom{m}{2}$ products): r_1 , r_2 , $r₃$, etc. We need to calculate the amount of positive integers divisible by r_1 that are less than n. This amounts equals $n/r_1 - 1$ or $\lfloor n/r_1 \rfloor$ depending on whether n/r_1 is an integer or not respectively. Then we need to repeat this with the rest of the products $(r_2, r_3, \text{ etc.})$. After having done so, we will have obtained $\binom{m}{2}$ results. By adding up these $\binom{m}{2}$ results we will obtain a new result which we will denote by $T_2(n)$.
- 4. In order to calculate $T_3(n)$ we need to use the same method that we used to calculate $T_2(n)$. The difference is that in this case we need to work with all possible combinations without repetition of 3 primes from Set M. In other words, we need to work with all possible 3 combinations of Set M.
- 5. We calculate $T_4(n)$. In this case we need to work with all possible 4-combinations of Set M.
- 6. Following the same rule we calculate $T_5(n)$, $T_6(n)$, $T_7(n)$, ..., $T_m(n)$.
- 7. Finally, if m is odd we have

$$
C(n) = T_1(n) - T_2(n) + T_3(n) - T_4(n) + \cdots + T_m(n),
$$

whereas if m is even we have

$$
C(n) = T_1(n) - T_2(n) + T_3(n) - T_4(n) + \cdots + T_{m-1}(n) - T_m(n).
$$

These two formulas can be combined into one by stating that

$$
C(n) = -\left(\sum_{j=1}^{m} (-1)^{j} T_{j}(n)\right).
$$

Remark 2.1. As we can see, $T_i(n)$ has a positive sign when i is odd and a negative sign when i is even.

Remark 2.2. In order to calculate the value of $T_i(n)$ we need to work **The index 2.2.** In order to calculate the value of $I_i(h)$ we need to with all possible *i*-combinations of the primes that are less than \sqrt{n} .

Remark 2.3. The symbol $\vert \vert$ represents the *floor function*.

Remark 2.4. Steps 3 to 6 can only be followed when applicable.

3 Relation Between Legendre's Algorithm and Pascal's Triangle

The relation that exists between Legendre's algorithm and Pascal's Triangle can be summarized in the following two statements:

1. If

- (a) the number *n* is an integer such that $n \geq 5$,
- (b) the number c is a composite number such that $c < n$, and
- (c) c is divisible by a maximum of x prime numbers that are less $\frac{1}{\tan \sqrt{n}}$

then c appears (is included) $\binom{x}{y}$ y^x) times in $T_y(n)$.

2. It is correct to say that if a is any positive odd integer, then

$$
\binom{a}{1} - \binom{a}{2} + \binom{a}{3} - \binom{a}{4} + \dots + \binom{a}{a} = 1,
$$

whereas if b is any positive even integer, then

$$
\binom{b}{1} - \binom{b}{2} + \binom{b}{3} - \binom{b}{4} + \dots + \binom{b}{b-1} - \binom{b}{b} = 1.
$$

Remark 3.1. This last statement describes one of the properties of Pascal's Triangle (see [viXra:1303.0163\)](http://vixra.org/abs/1303.0163). This property could also be expressed by stating that for every positive integer n we have

$$
-\left(\sum_{j=1}^n (-1)^j \binom{n}{j}\right) = 1.
$$

Statements 1 and 2 imply that if a composite number $c < n$ is divisible by a maximum of x prime numbers that are less than \sqrt{n} , then the following occurs when we use Legendre's algorithm to calculate $C(n)$:

- The number c gets included $\binom{x}{1}$ $\binom{x}{1} - \binom{x}{2}$ $\binom{x}{2} + \binom{x}{3}$ $\binom{x}{3} - \binom{x}{4}$ $\binom{x}{4} + \cdots + \binom{x}{x}$ $\binom{x}{x} = 1$ time in $C(n)$ if x is odd.
- The number c gets included $\binom{x}{1}$ $\binom{x}{1} - \binom{x}{2}$ $\binom{x}{2} + \binom{x}{3}$ $\binom{x}{3} - \binom{x}{4}$ $\binom{x}{4} + \cdots + \binom{x}{x-1}$ $\begin{pmatrix} x \\ x-1 \end{pmatrix} - \begin{pmatrix} x \\ x \end{pmatrix}$ $\binom{x}{x} = 1$ time in $C(n)$ if x is even.

In other words, the number of times every composite number $c < n$ gets included in $C(n)$ when we use Legendre's algorithm to calculate $C(n)$ is equal to

$$
-\left(\sum_{j=1}^x (-1)^j \binom{x}{j}\right) = 1.
$$

This means that by using Legendre's algorithm the correct values of $C(n)$ and $P(n)$ are obtained.

Remark 3.2. In this paper we used the notation $P(n)$ instead of $\pi(n)$, since $P(n)$ denotes the amount of prime numbers that are less than n, whereas $\pi(n)$ denotes the amount of primes that are less than or equal to *n*. Similarly, we used $C(n)$ to denote the amount of composite numbers that are less than n , not the amount of composites that are less than or equal to n.

− − − − − − − − − − − − − − − − − − −