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Abstract

Warp Drives are solutions of the Einstein Field Equations that allows superluminal travel within the
framework of General Relativity. There are at the present moment two known solutions: The Alcubierre
warp drive discovered in 1994 and the Natario warp drive discovered in 2001. However as stated by both
Alcubierre and Natario themselves the warp drive violates all the known energy conditions because the
stress energy momentum tensor is negative implying in a negative energy density. While from a classical
point of view the negative energy is forbidden the Quantum Field Theory allows the existence of very
small amounts of it being the Casimir effect a good example as stated by Alcubierre himself.The major
drawback concerning negative energies for the warp drive is the huge amount of negative energy able to
sustain the warp bubble.Ford and Pfenning computed the amount of negative energy needed to maintain
an Alcubierre warp drive and they arrived at the result of 10 times the mass of the entire Universe for a
stable warp drive configuration rendering the warp drive impossible.However Harold White manipulating
the parameter @ in the original shape function that defines the Alcubierre spacetime demonstrated that
it is possible to low these energy density requirements.We repeat here the Harold White analysis for the
Natario spacetime and we arrive at similar conclusions.From 10 times the mass of the Universe we also
manipulated the parameter @ in the original shape function that defines the Natario spacetime and we
arrived at arbitrary low results.We demonstrate in this work that both Alcubierre and Natario warp
drives have two warped regions and not only one.We also discuss Horizons and Doppler Blueshifts.The
main reason of this work is to demonstrate that Harold White point of view is entirely correct.
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1 Introduction

The Warp Drive as a solution of the Einstein Field Equations of General Relativity that allows superlu-
minal travel appeared first in 1994 due to the work of Alcubierre.([1]) The warp drive as conceived by
Alcubierre worked with an expansion of the spacetime behind an object and contraction of the spacetime
in front.The departure point is being moved away from the object and the destination point is being moved
closer to the object.The object do not moves at all1.It remains at the rest inside the so called warp bubble
but an external observer would see the object passing by him at superluminal speeds(pg 8 in [1])(pg 1 in [2]).

Later on in 2001 another warp drive appeared due to the work of Natario.([2]).This do not expands
or contracts spacetime but deals with the spacetime as a ”strain” tensor of Fluid Mechanics(pg 5 in [2]).
Imagine the object being a fish inside an aquarium and the aquarium is floating in the surface of a river but
carried out by the river stream.The warp bubble in this case is the aquarium whose walls do not expand or
contract. An observer in the margin of the river would see the aquarium passing by him at a large speed
but inside the aquarium the fish is at the rest with respect to his local neighborhoods.

However the major drawback that affects the warp drive is the quest of large negative energy require-
ments enough to sustain the warp bubble.While from a classical point of view negative energy densities
are forbidden the Quantum Field Theory allows the existence of very small quantities of such energies but
unfortunately the warp drive requires immense amounts of it.Ford and Pfenning computed the negative
energy density needed to maintain a warp bubble and they arrived at the conclusion that in order to sustain
a stable configuration able to perform interstellar travel the amount of negative energy density is of about
10 times the mass of the Universe and they concluded that the warp drive is impossible.(see pg 10 in [3]
and pg 78 in [5]).

Ford and Pfenning used in their calculations the piecewise shape function that is not exactly equal to
the Alcubierre shape function.Both shape functions are dimensionless but there exists a crucial difference
between the derivative of the Alcubierre shape function and the derivative of the Ford-Pfenning piecewise
shape function:

• 1)-The derivative of the Alcubierre shape function remains also dimensionless but the derivative of
the Ford-Pfenning shape function have dimensions and this affects the final calculation of the negative
energy density.Also the Ford-Pfenning piecewise shape function is not analytical in all the trajectory
points.

Another drawback that affects the warp drive is the quest of the interstellar navigation:Interstellar space is
not empty and from a real point of view a ship at superluminal speeds would impact asteroids,comets,interstellar
space dust and photons of Cosmic Background Radiation(COBE).

According to Clark,Hiscock and Larson a single collision between a ship and a COBE photon would
release an amount of energy equal to the photosphere of a star like the Sun.(see pg 11 in [9]).And how
many photons of COBE we have per cubic centimeter of space??

These highly energetic collisions would pose a very serious threat to the astronauts as pointed out by
McMonigal,Lewis and O’Byrne (see pg 10 in [10]).

1do not violates Relativity
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Another problem:these highly energetic collisions would raise the temperature of the warp bubble reaching
the Hawking temperature as pointed out by Barcelo,Finazzi and Liberati.(see pg 6 in in [11]).At pg 9 they
postulate that all future spaceships cannot bypass 99 percent of the light speed.

In section 5 we will see that these problems of interstellar navigation affects the Alcubierre warp drive
but not the Natario one.

The last drawback raised against the warp drive is the fact that inside the warp bubble an astronaut can-
not send signals with the speed of the light to control the front of the bubble because an Horizon(causally
disconnected portion of spacetime)is established between the astronaut and the warp bubble.We discuss
this in section 5 and in section 6 we discuss a possible way to overcome the Horizon problem using only
General Relativity.

Recently Harold White discovered that by a manipulation of the parameter @ in the original shape function
that defines the Alcubierre spacetime the amounts of negative energy density needed to maintain the warp
drive can be lowered to more reasonable levels.(see pg 4 fig 2 in [8])(see pg 8 in [17]).

In this work we repeat the analysis of Harold White for the Natario warp drive spacetime and by a
manipulation of the parameter @ in the original shape function that defines the Natario spacetime we
arrive at similar conclusions.

We adopted the International System of Units where G = 6, 67 × 10−11 Newton×meters2

kilograms2 and c = 3 × 108

meters
seconds and not the Geometrized System of units in which c = G = 1.

We consider here a Natario warp drive with a radius R = 100 meters a thickness parameter @ = 900 and
@ = 5000 moving with a speed 200 times faster than light implying in a vs = 2× 102 × 3× 108 = 6× 1010

and a vs2 = 3, 6× 1021

We also adopt a warp factor as a dimensionless parameter in our Natario shape function WF = 200

This work is a companion work to our work [13] but this work is by far much more advanced.

This work is organized as follows:

• Section 2)-Outlines the differences between the Alcubierre original shape function and the Ford-
Pfenning piecewise shape function.

• Section 3)-Outlines the problems of the immense magnitude in negative energy density when a ship
travels with a speed of 200 times faster then light.

• Section 4)-The most important section in this work.Outlines the analysis of Harold White for the
Natario warp drive spacetime.This section must be read together with the Appendices from B ro
F .In these Appendices we will see that both Alcubierre and Natario warp drive spacetimes have two
warped regions and not only one.
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• Section 5)-Outlines the major advantages of the Natario warp drive spacetime when compared to its
Alcubierre counterpart.The Natario warp drive can survive to the Horizons and Doppler Blueshift
problem.It can also survive against the objections raised by Clark,Hiscock,Larson,
McMonigal,Lewis,O’Byrne,Barcelo,Finazzi and Liberati

• Section 6)-Outlines the possibility of how to overcome the Horizon problem from an original point of
view of General Relativity.
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2 Differences between the Alcubierre shape function and the Ford-
Pfenning piecewise shape function

The negative energy density distribution in the Alcubierre warp drive spacetime is given by the following
expression(see eq 8 pg 6 in [3])23:

〈Tµνuµuν〉 = 〈T 00〉 =
1
8π

G00 = − 1
8π

v2
s(t)[y

2 + z2]
4r2

s(t)

(
df(rs)
drs

)2

, (1)

In the expression above f(rs) is the Alcubierre shape function defined as being 1 inside the warp bubble
and 0 outside the warp bubble while being 1 > f(rs) > 0 in the Alcubierre warped region according to eqs
6 and 7 pg 4 in [1] or top of pg 4 in [2].See also eq 3 pg 3 in [3].

The expressions for f/rs) are given by:

rs =
√

(x− xs)2 + y2 + z2 (2)

f(rs) =
tanh[@(rs + R)]− tanh[@(rs−R)]

2tanh(@R)
(3)

In the expressions above rs defined using meters is the distance travelled by the Eulerian observer from
the center of the bubble(rs = 0)to the end of the warp bubble.R is the radius of the bubble also defined
using meters and @ is a dimensionless parameter related to the thickness of the bubble.In the Appendix
B a plot of f(rs) can be seen for a warp bubble of 100 meters of radius R = 100 meters and a thickness
parameter @ = 900 and not @ = 900 meters.Note that in pg 4 in [1] Alcubierre mentions the fact that
both R and @ are arbitrary parameters although he do not mention the dimensionless nature of @.In the
Appendix C a plot of f(rs) can be seen for a warp bubble of 100 meters of radius R = 100 meters and a
thickness parameter @ = 5000 and not @ = 5000 meters.

In these Appendices B and C the regions inside the bubble f(rs) = 1 outside the bubble f(rs) = 0
and in the Alcubierre warped region 1 > f(rs) > 0 can be clearly seen.

Note that although Alcubierre defined the warped region as being 1 > f(rs) > 0 the transition region
between the interior and the exterior of the warp bubble(warp bubble walls) when rs approaches the
neighborhoods of the bubble radius R but still inside the bubble(f(rs) = 1) the derivative of the Alcu-
bierre shape function is not zero.In the same way when rs leaves the bubble and moves further in the
regions outside the bubble but also in the neighborhoods of the bubble radius (f(rs) = 0) the derivative
of the Alcubierre shape function is again not zero.

2f(rs) is the Alcubierre shape function.Equation written in the Geometrized System of Units c = G = 1
3Equation written in Cartezian Coordinates
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This leads us to these important conclusions:

• 1)-The Alcubierre warp drive have two warped regions and not one:The first is the region where
1 > f(rs) > 0 and the second is the region where the derivatives of the shape function are not zero
meaning a non-flat spacetime and a negative energy distribution even inside and outside the bubble
and not only in the region where 1 > f(rs) > 0.

• 2)-When computing the total amount of negative energy needed to sustain a warp bubble these
amounts of negative energy even inside and outside the bubble must be taken into account.

Plotting all the terms of the Alcubierre shape function individually we can see that the terms
tanh[@(rs + R)] = 1 and tanh(@R) = 1 for a dimensionless thickness parameter @ = 900 or @ = 5000 or
@ = 50000.So we can simplify the Alcubierre shape function.

The final expressions are given by:

f(rs) =
1− tanh[@(rs−R)]

2
(4)

f(rs) =
1
2
[1− tanh[@(rs−R)] (5)

The derivatives of the Alcubierre shape function are given by:

f ′(rs) =
1
2
[− @

cosh2[@(rs−R)]
] (6)

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (7)

Note that all the terms in the expressions above are dimensionless and dividing dimensionless terms
we will get a dimensionless result.Hence we can clearly see that the derivatives of the Alcubierre shape
function are dimensionless.Another important thing:The Alcubierre shape function is analytical in all the
points of its trajectory.4

4continuous and differentiable
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The Ford-Pfenning piecewise shape function fp.c.(rs) in order to resemble the Alcubierre shape function
f(rs) must be defined as being 1 inside the warp bubble and 0 outside the warp bubble while being
1 > fp.c. > 0 in the Alcubierre warped region according to eq 4 pg 3 in [3].The Ford-Pfenning piecewise
shape function is almost equal to the Alcubierre shape function.

fp.c.(rs) =


1 rs < R− ∆

2
− 1

∆(rs −R− ∆
2 ) R− ∆

2 < rs < R + ∆
2

0 rs > R + ∆
2

(8)

In order to make fp.c.(rs) dimensionless as f(rs) and since R and rs have dimensions given in meters
if we divide as shown above both R and rs by ∆ then ∆ must be also given in meters.

But the derivatives of fp.c.(rs) with respect to rs are not dimensionless:As a matter of fact we have:

f ′p.c.(rs) =


0 rs < R− ∆

2
− 1

∆ R− ∆
2 < rs < R + ∆

2
0 rs > R + ∆

2

(9)

[f ′p.c.(rs)]2 =


0 rs < R− ∆

2
1

∆2 R− ∆
2 < rs < R + ∆

2

0 rs > R + ∆
2

(10)

These derivatives have dimensions in meters or in square meters due to the non-dimensionality of the
term ∆.

Also this function is not analytical in the points where rs = R− ∆
2 and rs = R + ∆

2
5

Looking again to the Alcubierre expression of the negative energy density and the derivatives of the
Alcubierre shape function:

〈Tµνuµuν〉 = 〈T 00〉 =
1
8π

G00 = − 1
8π

v2
s(t)[y

2 + z2]
4r2

s(t)

(
df(rs)
drs

)2

, (11)

f ′(rs) =
1
2
[− @

cosh2[@(rs−R)]
] (12)

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (13)

If we insert the derivatives of the Alcubierre shape function in the expression of the negative energy
density we will get a result different than the one obtained if we insert the derivatives of the Ford-Pfenning
shape function into the same expression due to differences in the dimensionality.

The total energy calculations must be made with the original Alcubierre shape function that is analytical
in all the points of he trajectory.

5not continuous and not differentiable in these points
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3 The Problem of the Negative Energy in the Natario Warp Drive
Spacetime-The Unphysical Nature of Warp Drive

The negative energy density for the Natario warp drive is given by(see pg 5 in [2])

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(14)

Converting from the Geometrized System of Units to the International System we should expect for
the following expression(see eqs 21 and 23 pg 6 in [4]):

ρ = −c2

G

vs2

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

rs

2
n′′(rs)

)2
sin2 θ

]
. (15)

Rewriting the Natario negative energy density in cartezian coordinates we should expect for6:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2

]
(16)

In the equatorial plane:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(17)

Note that in the above expressions the warp drive speed vs appears raised to a power of 2. Considering
our Natario warp drive moving with vs = 200 which means to say 200 times light speed in order to make
a round trip from Earth to a nearby star at 20 light-years away in a reasonable amount of time(in months
not in years) we would get in the expression of the negative energy the factor c2 = (3 × 108)2 = 9 × 1016

being divided by 6, 67× 10−11 giving 1, 35× 1027 and this is multiplied by (6× 1010)2 = 36× 1020 coming
from the term vs = 200 giving 1, 35× 1027 × 36× 1020 = 1, 35× 1027 × 3, 6× 1021 = 4, 86× 1048 !!!

A number with 48 zeros!!!

Our Earth have a mass7 of about 6 × 1024kg and multiplying this by c2 in order to get the total pos-
itive energy ”stored” in the Earth according to the Einstein equation E = mc2 we would find the value of
54× 1040 = 5, 4× 1041Joules.

Earth have a positive energy of 1041Joules and dividing this by the volume of the Earth(radius REarth =
6300 km approximately) we would find the positive energy density of the Earth.Taking the cube of the
Earth radius (6300000m = 6, 3 × 106)3 = 2, 5 × 1020 and dividing 5, 4 × 1041 by (4/3)πR3

Earth we would
find the value of 4, 77×1020 Joules

m3 . So Earth have a positive energy density of 4, 77×1020 Joules
m3 and we are

talking about negative energy densities with a factor of 1048 for the warp drive while the quantum theory
allows only microscopical amounts of negative energy density.

So we would need to generate in order to maintain a warp drive with 200 times light speed the nega-
tive energy density equivalent to the positive energy density of 1028 Earths!!!!

6see Appendix A
7see Wikipedia:The free Encyclopedia
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A number with 28 zeros!!!.Unfortunately we must agree with the major part of the scientific commu-
nity that says:”Warp Drive is impossible and unphysical!!”

However looking better to the expression of the negative energy density in the equatorial plane of the
Natario warp drive:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(18)

We can see that a very low derivative and hence its square can perhaps obliterate the huge factor of 1048

ameliorating the negative energy requirements to sustain the warp drive.By manipulating the term @ in
the original Alcubierre shape function Harold White lowered these requirements for the Alcubierre warp
drive.

In the next section we will repeat the White analysis for the Natario warp drive manipulating also the
term @ in the original Natario shape function ameliorating the negative energy requirements from 10 times
the mass of the Universe that would render the warp drive as impossible and unphysical to arbitrary low
values.
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4 The Analysis of Harold White applied to the Natario Warp Drive
Spacetime

According to Natario(pg 5 in [2]) any function that gives 0 inside the bubble and 1
2 outside the bubble

while being 0 < n(rs) < 1
2 in the Natario warped region is a valid shape function for the Natario warp drive.

The Natario warp drive continuous shape function and its derivatives can be defined by:(see eq 38 pg
9 and eqs 39 and 40 pg 10 in [4]).

n(rs) = [
1
2
][1− f(rs)]WF (19)

n′(rs) = −[
1
2
]WF [1− f(rs)]WF−1f ′(rs) (20)

n′(rs)2 = [
1
4
]WF 2[1− f(rs)]2(WF−1)f ′(rs)2 (21)

This shape function gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1
2 outside the

warp bubble while being 0 < n(rs) < 1
2 in the Natario warped region according with our Microsoft Excel

simulations .(see pg 5 in [2])(see also Appendices B,C and D)

Note that the Alcubierre shape function is being used to define its Natario counterpart.Below is pre-
sented the Alcubierre shape function and its derivatives.(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in
[2])8.

f(rs) =
1
2
[1− tanh[@(rs−R)] (22)

f ′(rs) =
1
2
[− @

cosh2[@(rs−R)]
] (23)

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (24)

.

rs =
√

(x− xs)2 + y2 + z2 (25)

In the Alcubierre shape function xs is the center of the warp bubble where the ship resides. R is the ra-
dius of the warp bubble and @ is the Alcubierre dimensionless parameter related to the thickness.According
to Alcubierre these can have arbitrary values.We outline here the fact that according to pg 4 in [1] the
parameter @ can have arbitrary values.This is very important for the White analysis as we will see later.

8tanh[@(rs ∗R)] = 1,tanh(@R) = 1.See section 2
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The shape function f(rs) have a value of 1 inside the warp bubble and zero outside the warp bubble
while being 0 < f(rs) < 1 in the warp bubble walls.rs is the path of the so-called Eulerian observer that
starts at the center of the bubble xs and ends up outside the warp bubble.In our case we consider the
equatorial plane and we have for rs the following expression9.

rs =
√

(x− xs)2 (26)

rs = x− xs (27)

The term WF in the Natario shape function is dimensionless too:it is the warp factor that will squeeze the
region where the derivatives of the Natario shape function are different than 0.(see Appendices B,C and D)

It is easy to figure out when f(rs) = 1(interior of the Alcubierre bubble) then n(rs) = 0(interior of
the Natario bubble) and when f(rs) = 0(exterior of the Alcubierre bubble)then n(rs) = 1

2(exterior of the
Natario bubble).

Back again to the negative energy density in the Natario warp drive10:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(28)

The total energy needed to sustain the Natario warp bubble is obtained by integrating the negative energy
density ρ over the volume of the Natario warped region(The region where the derivatives of the Natario
shape function are not null)(points a and b in the integral in the bottom of this page).
Since we are in the equatorial plane then only the term in rs accounts for and the total energy integral
can be given by:

E =
∫

(ρ)drs = −c2

G

v2
s

8π

∫
(3(n′(rs))2)drs = −3

c2

G

v2
s

8π

∫
((n′(rs))2)drs (29)

Above we placed the constant terms c,G and vs2 outside the integral. But the integral now becomes:∫
((n′(rs))2)drs =

∫
(
1
4
WF 2[1− f(rs)]2(WF−1)f ′(rs)2)drs =

1
4
WF 2

∫
([1− f(rs)]2(WF−1)f ′(rs)2)drs

(30)
Since WF ia also a constant.Then the total energy integral for the Natario warp drive is given by:

E = −3
c2

G

v2
s

8π

∫
((n′(rs))2)drs = −3

c2

G

v2
s

8π

1
4
WF 2

∫
([1− f(rs)]2(WF−1)f ′(rs)2)drs (31)

Unfortunately integrals of this form do not have known primitives and also the integration methods to
compute the integral are not known.In order to compute the total energy needed to sustain the Natario
warp bubble we must employ the numerical integration by the Trapezoidal Rule.(see pg 4 in [18])11∫ b

a
f(x)dx = (b− a)

f(b) + f(a)
2

∼= 0 99K b− a ∼= 0 99K b ∼= a 99K f(b) ∼= f(a) (32)

9see Appendix A
10written in the International System of units
11see Wikipedia the Free Encyclopedia
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The total energy integral needed to sustain the Natario warp bubble now becomes:

E =
∫ b

a
ρdrs =

∫ b

a
−c2

G

v2
s

8π

[
3n′(rs))2

]
drs = −3

c2

G

v2
s

8π

∫ b

a

[
n′(rs)2

]
drs (33)

∫ b

a

[
(n′(rs)2

]
drs = (b− a)

n′(b)2 + n′(a)2

2
(34)

E = −3
c2

G

v2
s

8π
(b− a)

n′(b)2 + n′(a)2

2
' 0 99K b ' a 99K b− a ' 0 (35)

The dimensionless thickness parameter @ defines the width of the region where the derivatives of the
Natario shape function are not null.Inside the bubble but in the bubble center or at the neighborhoods of
the bubble center the derivatives are zero.If an Eulerian observer starts to move from the bubble center
towards the bubble walls he will cross regions inside the bubble where the derivatives of the Natario shape
function are zero.When he reaches the Natario warped region the derivatives of the shape function ceases
to be zero and starts to grow to reach a maximum value and then decreases again.When the observer
crosses the bubble radius leaving the bubble and entering in the regions outside the bubble the derivatives
of the shape function in the regions outside the bubble but in the neighborhoods of the bubble radius are
not zero but as far as the observer moves away from the bubble the derivatives decrease its values reaching
again zero in distant regions outside the bubble.

The beginning of the region where the derivatives of the shape function ceases to be zero is the beginning
of the Natario warped region for negative energy(point a).It coincides with the Natario warped region for
the shape function(0 < n(rs) < 1

2)(see in the Appendices B,C and D the explanation for the two warped
regions) .

The end of the region outside the bubble where the derivatives of the shape function still are not zero
is the end of the Natario warped region for negative energy.It extends beyond the Natario warped region
for the shape function.(point b)

Now a reader can see the power of the White idea.Compare the distance between the points a (beginning of
the negative energy warped region) and b(end of the negative energy warped region) in the Appendices B
and C.The points a and b are more close to each other in Appendix C than in the Appendix B.As higher
the thickness parameter @ is as thicker or thinner the Natario negative energy warped region becomes
approaching the point b to the point a.The thickness parameter passed from @ = 900 to @ = 5000.If we
make @ = 500.000 or @ = 5.000.000 the points a and b will be so close that the difference between b and
a will approach zero for real obliterating the value of 1048 or any other value.(b ' a)(b− a ' 0)

This was exactly what Harold White did:by manipulating @ to very large values he created Alcubierre
warped regions so thinner that the point b is infinitely closed to a giving a very low (and acceptable) value
for the negative energy in the Alcubierre warp drive able to obliterate factors of 1048(see pg 4 fig 2 in
[8])(see pg 8 in [17]).
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However there exists an error margin in the integration by the Trapezoidal Rule.The correct procedure
is to decompose the area to be integrated in slices and integrate numerically still by the Trapezoidal Rule
separately each slice and in the end we sum the result of all the slices integrated.This method is known as
the Composite Trapezoidal Rule.(see pg 15 in [18])(see Appendix D)

As higher the number of slices is as more precise the result of the integral by the Composite Trape-
zoidal Rule is.(see pgs 14 and 15 in [18]).Remember from the Appendix B that a warp bubble wether in
the Alcubierre or Natario cases with a radius of 100 meters moving at 200 times light speed have the total
amount of negative energy equal to the product of 1048 by the integral of the square derivatives of the
shape function in the region between the point b(end of the warped region) and the point a(beginning of
the warped region).If we want to integrate from the point a to point b using the Composite Trapezoidal
Rule reducing the error margin we must divide the region between a and b in slices and integrate separately
each slice also by the Trapezoidal Rule and in the end we sum the result of all the integrations.As higher
the number of slices as accurate the integration becomes.Following pg 14 and 15 in [18] if we want to divide
the region between a and b in n slices each slice have a width given by:

h =
b− a

n
(36)

And the final integration is the sum of the integration of all the slices by the Trapezoidal Rule given
by:

∫ b

a
n′(rs)2drs =

∫ a+h

a
n′(rs)2drs+

∫ a+2h

a+h
n′(rs)2drs+ .......+

∫ a+(n−1)h

a+(n−2)h
n′(rs)2drs+

∫ b

a+(n−1)h
n′(rs)2drs

(37)
Note that each slice above have a width h.

Writing the integral using sums we get the following expressions(pg 15 in [18]):

∫ b

a
n′(rs)2drs =

1
2n

(b− a)[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ∼= 0 99K b− a ∼= 0 99K b ∼= a 99K n >> 1 (38)

∫ b

a
n′(rs)2drs =

b− a

2n
[n′(b)2 + n′(a)2 +

n−1∑
i=1

n′(a + ih)2] ∼= 0 99K b− a ∼= 0 99K b ∼= a 99K n >> 1 (39)

Inserting these expressions in the integral of the negative energy density we get:

E =
∫ b

a
ρdrs =

∫ b

a
−c2

G

v2
s

8π

[
3n′(rs))2

]
drs = −3

c2

G

v2
s

8π

∫ b

a

[
n′(rs)2

]
drs (40)

E = −3
c2

G

v2
s

8π

1
2n

(b− a)[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (41)

E = −3
c2

G

v2
s

8π

b− a

2n
[n′(b)2 + n′(a)2 +

n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (42)
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Look again to the equations of the total negative energy needed to sustain a Natario warp bubble:

E = −3
c2

G

v2
s

8π

1
2n

(b− a)[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (43)

E = −3
c2

G

v2
s

8π

b− a

2n
[n′(b)2 + n′(a)2 +

n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (44)

Now note an interesting thing:

• 1)-The number of slices raises the accuracy of the integration method and we have the factor c2

G × vs2

8π
generating the huge factor 1048 for a bubble speed vs = 200 times light speed constraining the
negative energy densities in the Natario warp bubble.

• 2)-How about to make the numerical integration by the Trapezoidal Rule using 1048 slices??.How
about to make n = 1048 ???

If n = 1048 then n in the denominator of the fraction b−a
2n will completely obliterate the factor c2

G × vs2

8π
in the equations of the total energy integral lowering the negative energy density requirements for the
Natario warp bubble.

Again a reader can see the power of the White idea.Compare the distance between the points a (be-
ginning of the negative energy warped region) and b(end of the negative energy warped region) in the
Appendices B and C.The points a and b are more close to each other in Appendix C than in the Appendix
B.The thickness parameter passed from @ = 900 to @ = 5000.If we make @ = 500.000 or @ = 5.000.000
the points a and b will be so close that the difference between b and a will approach zero for real obliterating
the value of 1048 or any other value.(b ' a)(b− a ' 0)

If we want a rigorous integration of the Natario negative energy density warped region shown in the
Appendix C which starts at rs = 100 meters from the center of the bubble(bubble radius R) and ends up
at rs = 100, 03 meters then we must divide this region in 1048 slices each one with a width h of:

h =
b− a

n
=

100, 03− 100
1048

=
0, 03
1048

=
3

1049
= 3× 10−49 (45)

Inserting these values in the total energy integral equations we should expect for:

E = −3
c2

G

v2
s

8π

3
2× 1049

[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (46)

We choose to divide the Natario negative energy warped region in 1048 slices due to the factor c2

G
v2

s
8π

which is 1048 for a bubble speed vs = 200 times faster than light .In the equation above keeping the
bubble radius R = 100 meters and the thickness parameter @ = 5000 and the warp factor WF = 200 all
constants and since c and G are constants if we use a different bubble velocity vs higher than 200 times
faster than light giving a factor c2

G
v2

s
8π > 1048 then the number of slices n needed to integrate accurately by

the Trapezoidal Rule the energy density in the Natario warp bubble must be equal to this new factor in
order to reduce the total energy integral.(see also Appendix E)
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5 Horizon and Infinite Doppler Blueshifts in both Alcubierre and Natario
Warp Drive Spacetimes

According to pg 6 in [2] warp drives suffers from the pathology of the Horizons and according to pg 8
in [2] warp drive suffer from the pathology of the infinite Doppler Blueshifts that happens when a photon
sent by an Eulerian observer to the front of the warp bubble reaches the Horizon.This would render the
warp drive impossible to be physically feasible.

For a complete mathematical demonstration of the Horizon and Doppler Blueshift Problems see pg 20
section 6 in [7](basic) and pg 4 section 2 in [6](advanced).The Horizon occurs in both spacetimes.This
means to say that the Eulerian observer cannot signal the front of the warp bubble wether in Alcubierre or
Natario warp drive because the photon sent to signal will stop in the Horizon..The solution for the Horizon
problem must be postponed until the arrival of a Quantum Gravity theory that encompasses both General
Relativity and Non-Local Quantum Entanglements of Quantum Mechanics however in the next section we
will present a possible solution for this problem that only encompasses General Relativity.

The infinite Doppler Blueshift happens in the Alcubierre warp drive but not in the Natario one.This
means to say that Alcubierre warp drive is physically impossible to be achieved but the Natario warp drive
is perfectly physically possible to be achieved.

Consider again the negative energy density distribution in the Alcubierre warp drive spacetime(see eq
8 pg 6 in [3])1213:

〈Tµνuµuν〉 = 〈T 00〉 =
1
8π

G00 = − 1
8π

v2
s(t)[y

2 + z2]
4r2

s(t)

(
df(rs)
drs

)2

, (47)

And considering again the negative energy density in the Natario warp drive spacetime(see pg 5 in
[2])1415:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2

]
(48)

In pg 6 in [2] a warp drive with a x-axis only is considered.In this case for the Alcubierre warp drive
[y2 + z2] = 0

〈Tµνuµuν〉 = 〈T 00〉 =
1
8π

G00 = − 1
8π

v2
s(t)[y

2 + z2]
4r2

s(t)

(
df(rs)
drs

)2

,= 0 (49)

And the negative energy density is zero but the Natario energy density is not zero and given by:.

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2(

x

rs
)2

]
(50)

12f(rs) is the Alcubierre shape function.Equation written in the Geometrized System of Units c = G = 1
13Equation written in Cartezian Coordinates
14n(rs) is the Natario shape function.Equation written the Geometrized System of Units c = G = 1
15Equation written in Cartezian Coordinates.See Appendix A
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Note that in front of the ship in the Alcubierre case the spacetime is empty but in the Natario case
there exists negative energy density in the front of the ship.

According with Natario in pg 7 before section 5.2 in [14] negative energy density means a negative mass
density and a negative mass generates a repulsive gravitational field. This repulsive gravitational field in
front of the ship in the Natario warp drive spacetime protects the ship from impacts with the interstel-
lar matter.The objections raised by Clark,Hiscock,Larson,McMonigal,Lewis,O’Byrne,Barcelo,Finazzi and
Liberati in the introduction of this work are not valid for the Natario warp drive spacetime.

Since the Alcubierre warp drive dont have negative energy in front of the ship but only empty space-
time it doest not have protection against the interstellar medium making valid the objections raised by
Clark,Hiscock,Larson,McMonigal,Lewis,O’Byrne,Barcelo,Finazzi and Liberati in the introduction of this
work.

The Alcubierre shape function f(rs) is defined as being 1 inside the warp bubble and 0 outside the warp
bubble while being 1 > f(rs) > 0 in the Alcubierre warped region according to eq 7 pg 4 in [1] or top of
pg 4 in [2].

Expanding the quadratic term in eq 8 pg 4 in [1] and solving eq 8 for a null-like interval ds2 = 0 we
will have the following equation for the motion of the photon sent to the front(see pg 3 in [12] and pg 22
eqs 146 and 147 in [7])16:

dx

dt
= vsf(rs)− 1 (51)

Inside the Alcubierre warp bubble f(rs) = 1 and vsf(rs) = vs.Outside the warp bubble f(rs) = 0 and
vsf(rs) = 0.

Somewhere inside the Alcubierre warped region when f(rs) starts to decrease from 1 to 0 making the
term vsf(rs) decreases from vs to 0 and assuming a continuous behavior then in a given point vsf(rs) = 1
and dx

dt = 0.The photon stops,A Horizon is established and in the Horizon the Doppler Blueshift occurs
rendering the Alcubierre warp drive impossible.This due to the fact that there are no negative energy
density in the front of the Alcubierre warp drive in the x-axis to deflect the photon.

Now taking the components of the Natario vector defined in the top of pg 5 in [2] and inserting these
components in the first equation of pg 2 in [2] and solving for the same null-like interval ds2 = 0 consider-
ing only radial motion we will get the following equation for the motion of the photon sent to the front(see
eqs 16 and 17 pg 5 in [6])17:

dx

dt
= 2vsn(rs)− 1 (52)

The Natario shape function n(rs) is defined as being 0 inside the warp bubble and 1
2 outside the warp

bubble while being 0 < n(rs) < 1
2 in the Natario warped region according to pg 5 in [2].

16The coordinate frame for the Alcubierre warp drive as in [1] is the remote observer outside the ship
17The coordinate frame for the Natario warp drive as in [2] is the ship frame observer in the center of the warp bubble

xs = 0
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Inside the Natario warp bubble n(rs) = 0 and 2vsn(rs) = 0.Outside the warp bubble n(rs) = 1
2 and

2vsn(rs) = vs. Somewhere inside the Natario warped region n(rs) starts to increase from 0 to 1
2 making

the term 2vsn(rs) increase from 0 to vs and assuming a continuous behavior then in a given point we
would have a 2vsn(rs) = 1 and a dx

dt = 0 The photon would stops.A Horizon would be established.

However when the photon reaches the beginning of the Natario warped region it suffers a deflection by the
negative energy density in front of the Natario warp drive because this negative energy is not null.So in
the case of the Natario warp drive the photon never reaches the Horizon and the Natario warp drive never
suffer from the pathology of the infinite Doppler Blueshift due to a different distribution of energy density
when compared to its Alcubierre counterpart.This negative energy with repulsive gravitational behavior
deflects the photon from inside avoiding it to reach the Horizon and protects the Natario warp drive from
the dangers of collisions with the interstellar medium at superluminal speeds.

Adapted from the negative energy in Wikipedia:The free Encyclopedia:

”if we have a small object with equal inertial and passive gravitational masses falling in the gravitational
field of an object with negative active gravitational mass (a small mass dropped above a negative-mass
planet, say), then the acceleration of the small object is proportional to the negative active gravitational
mass creating a negative gravitational field and the small object would actually accelerate away from the
negative-mass object rather than towards it.”

The Natario warp drive as a solution of the Einstein Field Equations of General Relativity that allows
faster than light motion is the first valid candidate for interstellar space travel.
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6 A causally connected superluminal Natario warp drive spacetime us-
ing micro warp bubbles

In 2002 Gauthier,Gravel and Melanson appeared with the idea of the micro warp bubbles.([15],[16])

According to them,microscopical particle-sized warp bubbles may have formed spontaneously immedi-
ately after the Big Bang and these warp bubbles could be used to transmit information at superluminal
speeds.These micro warp bubbles may exist today.(see abs of [16])

A micro warp bubble with a radius of 10−10 meters could be used to transport an elementary particle
like the electron whose Compton wavelength is 2.43 × 10−12 meters at a superluminal speed.These micro
warp bubbles may have formed when the Universe had an age between the Planck time and the time we
assume that Inflation started.(see pg 306 of [15])

Following the ideas of Gauthier,Gravel and Melanson ([15],[16]) a micro warp bubble can send information
or particles at superluminal speeds.(abs of [16],pg 306 in [15]).Since the infinite Doppler Blueshift affect
the Alcubierre warp drive but not the Natario one and a superluminal micro warp bubble can only ex-
ists without Infinite Doppler Blueshifts18 we consider in this section only the Natario warp drive spacetime.

The idea of Gauthier,Gravel and Melanson ([15],[16]) to send information at superluminal speeds us-
ing micro warp bubbles is very interesting and as a matter of fact shows to us how to solve the Horizon
problem. Imagine that we are inside a large superluminal warp bubble and we want to send information
to the front.Photons sent from inside the bubble to the front would stop in the Horizon but we also know
that incoming photons from outside would reach the bubble.19 The external observer outside the bubble
have all the bubble causally connected while the internal observer is causally connected to the point before
the Horizon.Then the external observer can create the bubble while the internal observer cannot. This was
also outlined by Everett-Roman in pg 3 in [12]. Unless we find a way to overcome the Horizon problem. We
inside the large warp bubble could create and send one of these micro warp bubbles to the front of the large
warp bubble but with a superluminal speed vs2 larger than the large bubble speed X = 2vsn(rs).Then
vs2 >> X or vs2 >> 2vsn(rs) and this would allow ourselves to keep all the warp bubble causally
connected from inside overcoming the Horizon problem without the need of the ”tachyonic” matter.

• 1)- Superluminal micro warp bubble sent towards the front of the large superluminal warp bubble
vs2 = dx

dt > X − 1 > vs− 1 99K X = 2vsn(rs)

From above it easy to see that a micro warp bubble with a superluminal speed vs2 maintains a large
superluminal warp bubble with speed vs causally connected from inside if vs2 > vs

18assuming a continuous growth of the warp bubble speed vs from zero to a superluminal speed at a given time the speed
will be equal to c and the Infinite Doppler Blueshift crashes the bubble.The Alcubierre warp drive can only exists for vs < c
so it cannot sustain a micro warp bubble able to shelter particles or information at superluminal speeds

19true for the Alcubierre warp drive but not for the Natario one because the negative energy density in the front with
repulsive gravitational behavior would deflect all the photons sent from inside and outside the bubble effectively shielding the
Horizon from the photon avoiding the catastrophical Infinite Doppler Blueshift
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From the point of view of the astronaut inside the large warp bubble he is the internal observer with
respect to the large warp bubble but he is the external observer from the point of view of the micro warp
bubble so he keeps all the light-cone of the micro warp bubble causally connected to him so he can use it
to send superluminal signals to the large warp bubble from inside.(Everett-Roman in pg 3 in [12]).

Gauthier,Gravel and Melanson developed the concept of the micro warp bubble but the idea is at least 5
years younger.The first time micro warp bubbles were mentioned appeared in the work of Ford-Pfenning
pg 10 and 11 in [3]
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7 Conclusion

In this work we demonstrated that the analysis of Harold White can be applied also to the Natario
warp drive spacetime. From 10 times the mass of the Universe manipulating the parameter @ we lowered
the negative energy density requirements to arbitrary low levels.

White point of view is entirely correct:by manipulating the parameter @ in the Alcubierre equations
he lowered the negative energy density requirements to arbitrary low levels and we matched his results.

However the objections raised by Clark,Hiscock,Larson,McMonigal,Lewis,O’Byrne,Barcelo,Finazzi and Liberati
in the introduction of this work are valid for the Alcubierre warp drive so it can be regarded as physically
impossible independently from the arbitrary lower levels of negative energy White can obtain for it.

On another way these objections do not affect the Natario warp drive which is perfectly possible to be
achieved.This was the main reason behind our interest in the reproduction of the White analysis for the
Natario warp drive spacetime.

The Natario warp drive once created can survive against all the obstacles pointed as physical impossi-
bilities that rules out the warp drive as a dynamical spacetime.

Lastly and in order to terminate this work:There exists another problem not covered here:the fact that
we still dont know how to generate the negative energy density and negative mass and above everything
else we dont know how to generate the shape function that distorts the spacetime geometry creating the
warp drive effect.So unfortunately all the discussions about warp drives are still under the domain of the
mathematical conjectures.

However we are confident to affirm that the Natario warp drive will survive the passage of the Cen-
tury XXI and will arrive to the Future.The Natario warp drive as the first Human candidate for faster
than light interstellar space travel will arrive to the the Century XXIV on-board the future starships up
there in the middle of the stars helping the human race to give his first steps in the exploration of our Galaxy

Live Long And Prosper
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8 Appendix A:The Natario Warp Drive Negative Energy Density in
Cartezian Coordinates

The negative energy density according to Natario is given by(see pg 5 in [2])20:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(53)

In the bottom of pg 4 in [2] Natario defined the x-axis as the polar axis.In the top of page 5 we can see
that x = rs cos(θ) implying in cos(θ) = x

rs and in sin(θ) = y
rs

Rewriting the Natario negative energy density in cartezian coordinates we should expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2

]
(54)

Considering motion in the equatorial plane of the Natario warp bubble (x-axis only) then [y2 + z2] = 0
and rs2 = [(x− xs)2] and making xs = 0 the center of the bubble as the origin of the coordinate frame for
the motion of the Eulerian observer then rs2 = x2 because in the equatorial plane y = z = 0.

Rewriting the Natario negative energy density in cartezian coordinates in the equatorial plane we should
expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2

]
(55)

20n(rs) is the Natario shape function.Equation written in the Geometrized System of Units c = G = 1
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9 Appendix B:Alcubierre and Natario warped regions with @ = 900
R = 100 meters δ = 0, 01 meters WF=200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

99, 81 1 0 2, 838699289278E − 291 0
99, 82 1 0 1, 223828992894E − 275 0
99, 83 1 0 5, 276210162534E − 260 0
99, 84 1 0 2, 274696370235E − 244 0
99, 85 1 0 9, 806742751644E − 229 0
99, 86 1 0 4, 227913872611E − 213 0
99, 87 1 0 1, 822751566642E − 197 0
99, 88 1 0 7, 858304056807E − 182 0
99, 89 1 0 3, 387896835715E − 166 0
99, 90 1 0 1, 460600771678E − 150 0
99, 91 1 0 6, 296988124713E − 135 0
99, 92 1 0 2, 714777385557E − 119 0
99, 93 1 0 1, 170403390823E − 103 0
99, 94 1 0 5, 045880021458E − 088 0
99, 95 1 0 2, 175395713187E − 072 0
99, 96 1 0 9, 378634626322E − 057 0
99, 97 1 0 4, 043346547061E − 041 0
99, 98 1 0 1, 743180318993E − 025 0
99, 99 9, 9E − 001 0 7, 515253525863E − 010 0
100 4, 9E − 001 3, 111507925458E − 061 2, 025000000000E + 005 3, 136800025852E − 111

100, 01 1, 5E − 008 4, 999984770044E − 001 7, 515253498181E − 010 7, 515207944370E − 006
100, 02 0 0, 5 1, 743180312572E − 025 1, 743180312572E − 021
100, 03 0 0, 5 4, 043346532168E − 041 4, 043346532168E − 037
100, 04 0 0, 5 9, 378634591777E − 057 9, 378634591777E − 053
100, 05 0 0, 5 2, 175395705174E − 072 2, 175395705174E − 068
100, 06 0 0, 5 5, 045880002871E − 088 5, 045880002871E − 084
100, 07 0 0, 5 1, 170403386511E − 103 1, 170403386511E − 099
100, 08 0 0, 5 2, 714777375558E − 119 2, 714777375558E − 115
100, 09 0 0, 5 6, 296988101519E − 135 6, 296988101519E − 131
100, 1 0 0, 5 1, 460600766298E − 150 1, 460600766298E − 146
100, 11 0 0, 5 3, 387896823236E − 166 3, 387896823236E − 162
100, 12 0 0, 5 7, 858304027861E − 182 7, 858304027861E − 178
100, 13 0 0, 5 1, 822751559928E − 197 1, 822751559928E − 193
100, 14 0 0, 5 4, 227913857038E − 213 4, 227913857038E − 209
100, 15 0 0, 5 9, 806742715522E − 229 9, 806742715522E − 225
100, 16 0 0, 5 2, 274696361856E − 244 2, 274696361856E − 240
100, 17 0 0, 5 5, 276210143100E − 260 5, 276210143100E − 256
100, 18 0 0, 5 1, 223828988386E − 275 1, 223828988386E − 271
100, 19 0 0, 5 2, 838699278822E − 291 2, 838699278822E − 287
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According with Alcubierre any function f(rs) that gives 1 inside the bubble and 0 outside the bubble
while being 1 > f(rs) > 0 in the Alcubierre warped region is a valid shape function for the Alcubierre
warp drive.(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in [2]).

According with Natario(pg 5 in [2]) any function n(rs) that gives 0 inside the bubble and 1
2 outside

the bubble while being 0 < n(rs) < 1
2 in the Natario warped region is a valid shape function for the

Natario warp drive. (see eq 38 pg 9 and eqs 39 and 40 pg 10 in [4]).

The table in the previous page depicts two warp bubbles(one for Alcubierre and another for Natario)
placed side by side in the same plot each one with 100 meters of radius R = 100 meters and a dimension-
less thickness parameter @ = 900 and not @ = 900 meters or @ = 900 meters−1.The Natario bubble have
a dimensionless warp factor WF = 200.

For two Eulerian observers one in the center of the Alcubierre bubble and the other in the center of
the Natario bubble we verify that rs = 0 and x = xs being xs the center of the bubble in both cases.The
expression for rs is given by:

rs =
√

(x− xs)2 + y2 + z2 (56)

Inside the Alcubierre bubble we can see that f(rs) = 1 and inside the Natario bubble we can see that
n(rs) = 0.The derivative of each shape function is zero in the neighborhoods of each bubble center and at
a faraway distance from each bubble radius meaning flat spacetime.Eulerian observers moving themselves
inside each bubble at a distance rs from the center of each bubble remains in flat spacetime if rs is less
than the bubble radius R or rs << R.The expressions for the Alcubierre and Natario shape functions and
their derivatives are given by:

• Alcubierre shape function and its derivatives(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in [2])21.

f(rs) =
1
2
[1− tanh[@(rs−R)] (57)

f ′(rs) =
1
2
[− @

cosh2[@(rs−R)]
] (58)

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (59)

• Natario shape function and its derivatives(see eq 38 pg 9 and eqs 39 and 40 pg 10 in [4]).

n(rs) = [
1
2
][1− f(rs)]WF (60)

n′(rs) = −[
1
2
]WF [1− f(rs)]WF−1f ′(rs) (61)

n′(rs)2 = [
1
4
]WF 2[1− f(rs)]2(WF−1)f ′(rs)2 (62)

21tanh[@(rs ∗R)] = 1,tanh(@R) = 1.See section 2
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The negative energy density distribution in the Alcubierre warp drive spacetime is given by the following
expression(see eq 9 pg 3 in [4])2223:

〈Tµνuµuν〉 = −c2

G

1
8π

v2
s(t)[y

2 + z2]
4r2

s(t)

(
df(rs)
drs

)2

, (63)

The negative energy density distribution in the Natario warp drive spacetime is given by the following
expression2425(see eqs 21 and 23 pg 6 in [4]):

ρ = −c2

G

v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2

]
(64)

Note that in both equations the term given below appears:

ρ = −c2

G

v2
s

8π
(65)

Considering a speed of 200 times faster than light 3 × 108 × 2 × 102 = 6 × 1010 for both bubbles the
value of this term26 is:

c2 = (3 × 108)2 = 9 × 1016 being divided by 6, 67 × 10−11 giving 1, 35 × 1027 and this is multiplied
by (6× 1010)2 = 36× 1020 giving 1, 35× 1027 × 36× 1020 = 1, 35× 1027 × 3, 6× 1021 = 4, 86× 1048 !!!

A number with 48 zeros!!!The planet Earth have a mass27 of about 6× 1024kg.

This term is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet
Earth!!!or better:The amount of negative energy density needed to sustain a warp bubble at a speed of 200
times faster than light requires the magnitude of the masses of 1.000.000.000.000.000.000.000.000 planet
Earths for both Alcubierre and Natario cases!!!!

Unless we can use very low derivatives close to zero ' 0 in the respective expressions for the negative
energy density in both cases in order to obliterate this term.

Now lets back to our Eulerian observers in the center of each bubble.In a given time they leave their
centers and starts to move inside each bubble towards each bubble radius R at 100 meters from the
center(rs = 0).The ”surface” of the warp bubble lies at R = 100 meters.At 99 meters from the center of
each bubble rs = 99 meters and rs < R both observers are still in flat spacetime because the derivatives
of the respective shape functions are zero in this region.

But what happens when both Eulerian observers rs approaches respectively each bubble radius R??What
happens when rs ' R ??

22f(rs) is the Alcubierre shape function.Equation written in the International System of Units
23Equation written in Cartezian Coordinates
24n(rs) is the Natario shape function.Equation written in the International System of Units
25Equation written in Cartezian Coordinates
26in units of the International System
27see Wikipedia:The free Encyclopedia
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Since we have two different Eulerian observers in different warp bubbles(one for Alcubierre and another
for Natario) we must analyze the physical situation of each observer separately:

• Eulerian observer rs inside the Alcubierre warp bubble approaching the bubble radius R(rs ' R).
R = 100 meters.

From the center of the warp bubble (rs = 0) to a distance of 99, 80 meters from the center rs = 99, 80
the spacetime is flat.The derivatives of the Alcubierre shape function are zero and the observer lies well
inside the bubble(f(rs) = 1).

However at 99, 81 meters from the center rs = 99, 81 and still well inside the bubble (f(rs) = 1) the
derivative square of the Alcubierre shape function ceases to be zero.It have a very small value but it is not
zero meaning that this region is no longer flat spacetime.Then we have negative energy density still inside
the bubble.This derivative square grows from 10−291 when rs = 99, 81 meters to 10−25 when rs = 99, 98
meters and still inside the bubble (f(rs) = 1).Remember that the negative energy density means that this
derivative square must be multiplied by 1048 and 1048 × 10−25 = 1023 giving a negative energy density of
about 1023 when rs = 99, 98 meters almost the magnitude of the mass of the Earth and still inside the
bubble(f(rs) = 1).!!!!

This negative energy density of 1023 inside the bubble and the other non-null negative energy densi-
ties also inside the bubble resulting from the multiplication of the other derivative squares by 1048 must be
taken into account when computing the total energy requirements needed to sustain a warp bubble(total
energy integral).

From rs = 99, 99 meters to rs = 100, 01 meters we can see the Alcubierre warped region where 1 >
f(rs) > 0.Exactly in the center of the Alcubierre warped region when rs = R the derivative square reaches
its maximum value of 105.Note that 100 is not only the value of the bubble radius R.It is exactly the
midpoint between rs = 99, 99 and rs = 100, 01 the delimiters of the Alcubierre warped region.Note that
the values of the derivative squares when rs = 99, 99 and rs = 100, 01 are almost equal. Almost symmetric
with respect to the value of the derivative square when rs = R = 100.

From rs = 100, 02 meters to rs = 100, 19 meters we have a region outside the bubble where the derivative
square is not zero meaning a non-flat spacetime and a region of non-null negative energy density outside
the bubble(f(rs) = 0). As far as we move away from the bubble radius the derivative squares decreases
almost by the same way it increased when we approached the bubble radius.

Beyond 100, 19 meters the square of the derivatives are zero again and we recover flat spacetime.

These non-null negative energy densities outside the bubble must also be taken into account when com-
puting the total energy integral.
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Then we can see that the Alcubierre warp drive have two warped regions:

• 1)-The region where 1 > f(rs) > 0 separating the interior of the bubble(f(rs) = 1) from the exterior
of the bubble(f(rs) = 0)

• 2)-The regions around the bubble radius from inside the bubble(f(rs) = 1) to outside the bubble
(f(rs) = 0) where the negative energy is not null.The total energy integral must encompass these
negative energy densities inside and outside the bubble and not only the ones when 1 > f(rs) > 0.

Since we have two different Eulerian observers in different warp bubbles(one for Alcubierre and another
for Natario) we must analyze the physical situation of each observer separately.Now it is the time for the
Natario case:

• Eulerian observer rs inside the Natario warp bubble approaching the bubble radius R(rs ' R).
R = 100 meters.

In the Natario bubble there are no negative energy densities inside the bubble where n(rs) = 0 because
the derivatives of the negative energy density are zero inside the bubble.So an Eulerian observer can go
from the center of the bubble(rs = 0) to the end of the region inside the bubble still with n(rs) = 0 at
rs = 99, 99 meters always in flat spacetime.

The Natario warped region where 0 < n(rs) < 1
2 begins at rs = 100 meters exactly the bubble ra-

dius and ends up at rs = 100, 01 meters.Note that the Natario warped region is thinner than its Alcubierre
counterpart.

At rs = 100, 02 meters the region outside the bubble where n(rs) = 1
2 begins.

The geometric form of this Natario bubble is due to the choice we made for the Natario shape func-
tion.The details are explained in pg 9 to 13 in [4].

Now we must examine the derivative squares of the Natario shape function:The derivative squares starts
to be non-null exactly in the bubble radius:the beginning of the Natario warped region with a low value
of 10−111 and terminates with a value of 10−6 in the end of the Natario warped region at rs = 100, 01
meters.So as far as we approach the end of the Natario warped region from the bubble radius the derivative
squares grows from 10−111 to 10−6 .

Note that when rs = 100, 02 meters where the region outside the bubble begins the derivative square is
10−21 and as far as we move away from the bubble the derivative squares decreases and beyond rs = 100, 19
the derivative squares are zero again and we recover flat spacetime.

Note also that when we multiply 1048 by 10−21 we will get 1027 a magnitude of the masses of 1000
Earths!!!. So we have huge concentrations of negative energy densities also in the Natario warp drive like
its Alcubierre counterpart but in this case these concentrations are outside the bubble and not in the
middle of the warped region.

These negative energy densities outside the bubble must be taken into account when computing the total
energy integral.
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Then we can see that the Natario warp drive like its Alcubierre counterpart have two warped regions:

• 1)-The region where 0 < n(rs) < 1
2 separating the interior of the bubble(n(rs) = 0) from the exterior

of the bubble(n(rs) = 1
2)

• 2)-The region outside the bubble where the negative energy is not null.The total energy integral
must encompass these negative energy densities outside the bubble and not only the ones when
0 < n(rs) < 1

2

Between rs = 100, 01 meters where the derivative square is 10−6 the end of the Natario warped region
and rs = 100, 02 meters where the derivative square is 10−21 the beginning of the region outside the bubble
the derivative square do not decreases directly from 10−6 to 10−21.As far as we move away from the end
of the Natario warped region in the transition region between rs = 100, 01 to rs = 100, 02 the square
derivative continues to grow to reach irs maximum value of 105 in an inflexion point located somewhere
between rs = 100, 01 meters to rs = 100, 02 meters and passing this inflection point the derivative square
decreases to 10−21 when rs = 100, 02 meters.This will be addressed in the next Appendices.
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10 Appendix C:Alcubierre and Natario warped regions with @ = 5000
R = 100 meters δ = 0, 01 meters (WF=200)

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

99, 97 1 0 2, 650396579309E − 253 0
99, 98 1 0 1, 915169615918E − 166 0
99, 99 1 0 1, 383896540755E − 079 0
100 4, 9E − 001 3, 111507925458E − 061 6, 250000000000E + 006 9, 681489643510E − 110

100, 01 0 0, 5 1, 383896512435E − 079 1, 383896512435E − 075
100, 02 0 0, 5 1, 915169576726E − 166 1, 915169576726E − 162
100, 03 0 0, 5 2, 650396525072E − 253 2, 650396525072E − 249

The plots in the Appendices B and C illustrate the power of White idea.By manipulation of the dimen-
sionless thickness parameter @ in the Alcubierre and Natario shape functions we can reduce the negative
energy density requirements to sustain a warp bubble.

In Appendix B a plot for two warp bubbles one for Alcubierre and another for Natario with a bubble
radius R = 100 meters using a dimensionless thickness parameter @ = 900 and not @ = 900 meters
was presented.The warped region for negative energy density starts at rs = 99, 81 meters and ends up at
rs = 100, 19 meters for Alcubierre and for Natario the negative energy density warped region starts at
rs = 100 meters and ends up at rs = 100, 19 meters.

Now for a plot for the same warp bubbles with a dimensionless thickness parameter @ = 5000 and not
@ = 5000 meters the warped region for negative energy density is more thicker or thinner.It starts at
rs = 99, 97 meters and ends up at rs = 100, 03 meters for Alcubierre and starts at rs = 100 meters and
ends up at 100, 03 meters for Natario.

Note that the points a and b where the warped region for negative energy begins(a) and ends(b) are now
much more close from each other in the Appendix C when compared to the same points in the Appendix
B.The difference between a and b is much reduced when the dimensionless thickness parameter is @ = 5000.

As higher the thickness parameter @ is as smaller the difference between the points of the beginning
and the end of the warped region for negative energy becomes.As higher the thickness parameter @ is as
thicker or thinner the warped region for negative energy becomes.As higher the thickness parameter @ is
as close the points a (beginning of the negative energy warped region) and b(end of the negative energy
warped region) are from each other.(@ >> 1 99K b ' a 99K (b− a) ' 0).

Consider a function:

y = F (x) (66)

its derivative

f(x) =
dF (x)

dx
(67)
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The primitive ∫
f(x)dx = F (x) + C (68)

And the definite integral between the regions a and b∫ b

a
f(x)dx = [F (b)− F (a)] (69)

Independently of the values of f(x) the derivative of F (x) in the points a and b if the point b is close
to a (b ∼= a) then F (b) is close to F (a) (F (b) ' F (a)) and the difference between F (b) and F (a) is close to
zero (F (b)− F (a) ' 0) making the result of the definite integral between a and b also close to zero.∫ b

a
f(x)dx ' 0 (70)

This illustrates how the White idea works.By manipulation of the thickness parameter @ he approaches
the points a and b the beginning and the end of the negative energy warped region and the total energy
integral(the integration of all non-null negative energy densities-squares of the derivatives of the shape
functions in the negative energy warped region that starts at point a and ends at point b) is also close to
zero.

The negative energy requirements to sustain a warp bubble with a thickness parameter @ = 5000 are
much smaller than the ones to sustain a warp bubble with a thickness parameter @ = 900.

By making @ = 50.000 or @ = 500.000 or @ = 5.000.000 we can reduce the negative energy require-
ments even further.28

For our particular choice of the Natario shape function no primitive is known so we must integrate the
derivative squares of the Natario shape function numerically using the Trapezoidal Rule.(see pg 4 in [18])29∫ b

a
f(x)dx = (b− a)

f(b) + f(a)
2

∼= 0 99K b− a ∼= 0 99K b ∼= a 99K f(b) ∼= f(a) (71)

Note that when b(end of the negative energy warped region) is close to a(beginning of the negative
energy warped region)(b ' a) the thickness of the negative energy warped region is very small and the
difference between b and a is close to zero (b− a ' 0) independently of the values of f(b) and f(a).

28we are limited by the floating point precision of Microsoft Excel or Open Office
29see Wikipedia the Free Encyclopedia
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11 Appendix D:Natario warped region with @ = 5000 R = 100 meters
δ = 1, 000000000005E−003 meters.End of the warp bubble and begin-
ning of the region outside the bubble (WF=200)

.
rs n(rs) n′(rs)2 Tpz

1, 00000000000E + 002 3, 111507638931E − 061 9, 681479787123E − 110 NA
1, 00001000000E + 002 4, 954806584405E − 001 2, 023878013030E + 003 1, 011939006520E + 000
1, 00002000000E + 002 4, 999997938847E − 001 4, 248350734364E − 006 1, 011939008644E + 000
1, 00003000000E + 002 4, 999999999906E − 001 8, 756510759858E − 015 2, 124175371571E − 009
1, 00004000000E + 002 5, 000000000000E − 001 1, 804851387156E − 023 4, 378255388974E − 018
1, 00005000000E + 002 5, 000000000000E − 001 3, 720075974245E − 032 9, 024256954423E − 027
1, 00006000000E + 002 5, 000000000000E − 001 7, 667648069329E − 041 1, 860037990965E − 035
1, 00007000000E + 002 5, 000000000000E − 001 1, 580420062475E − 049 3, 833824042585E − 044
1, 00008000000E + 002 5, 000000000000E − 001 3, 257488529719E − 058 7, 902100312411E − 053
1, 00009000000E + 002 5, 000000000000E − 001 6, 714184282441E − 067 1, 628744268224E − 061
1, 00010000000E + 002 5, 000000000000E − 001 1, 383896525415E − 075 3, 357092148156E − 070

The plot above presents the regions of the Natario warp drive from the end of the warp bubble30 to
the beginning of the regions outside the bubble.

Like in the previous Appendices B and C the Natario warped region starts at rs = 1, 00000000000E +002
meters the bubble radius and ends at rs = 1, 00003000000E + 002 meters.The region starting at the point
rs = 1, 00004000000E + 002 meters and beyond depicts the regions outside the bubble.

Note that the region outside the bubble depicted here lies in the neighborhoods of the bubble radius
at short distances so the negative energy density warped region(the region where the squares of the deriva-
tives of the Natario shape function are non-null) encompasses these regions outside the bubble.

Note also that as far as we move away from the bubble radius in the region outside the bubble the
derivative squares decreases as the distance to the bubble radius increases.

Note also that from rs = 1, 00000000000E + 002 meters to rs = 1, 00001000000E + 002 meters the
derivative square increases from n′(rs)2 = 9, 681479787123E − 110 to n′(rs)2 = 2, 023878013030E + 003

When rs = 1, 00002000000E +002 meters the square of the derivative is n′(rs)2 = 4, 248350734364E−006.
This do not means that the derivative square decreases linearly from 103 to 10−6 in the region between
rs = 1, 00001000000E + 002 to rs = 1, 00002000000E + 002 .As a matter of fact somewhere between these
points the derivative square reaches the maximum value of 106 in an inflexion point and after this point
starts to decrease to reach 10−6.

30from the point where rs the distance travelled by an Eulerian observer starting in the center of the bubble rs = 0 reaches
the bubble radius rs = R and leaves the bubble ”surface” located at R and enter in the regions outside the bubble where
rs > R.
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If we want to integrate the derivative squares of the Natario shape function in the regions depicted
by the plot shown31 which means to say the regions between rs = 1, 00000000000E + 002 to rs =
1, 00010000000E + 002 where the derivative squares are respectively n′(rs)2 = 9, 681479787123E − 110
and n′(rs)2 = 1, 383896525415E − 075 we can apply the direct formula of numerical integration by the
Trapezoidal Rule.(see pg 4 in [18]).The point b corresponds to rs = 1, 00010000000E + 002 and the point
a corresponds to rs = 1, 00000000000E + 002 and the functions f(b) and f(a) corresponds to the squares
of the derivatives in these points.

If the point b(end of the warped region) is too much close to the point a(the beginning of the warped
region) and this happens in White approach when the value of the thickness parameter @ is high(see
Appendices B and C and compare the negative energy warped regions) then the Trapezoidal Rule can be
written as: ∫ b

a
f(x)dx = (b− a)

f(b) + f(a)
2

∼= 0 99K b− a ∼= 0 99K b ∼= a 99K f(b) ∼= f(a) (72)

And the value of the definite integral-the total amount of negative energy needed to sustain a warp bubble
is close to zero.

However there exists an error margin in the integration by the Trapezoidal Rule.The correct procedure is
to decompose the area to be integrated in slices and integrate numerically still by the Trapezoidal Rule
separately each slice and in the end we sum the result of all the slices integrated.In the plot we have 11
rows.Each row is a slice.This method is known as the Composite Trapezoidal Rule.The formula for the
Composite Trapezoidal Rule is given by:(see pg 15 in [18])∫ b

a
f(x)dx =

∫ a1

a
f(x)dx +

∫ a2

a1

f(x)dx +
∫ a3

a2

f(x)dx +
∫ a4

a3

f(x)dx +
∫ b

a4

f(x)dx (73)

In the formula above we divided the region between a and b in 5 slices:(a to a1)(a1 to a2)(a2 to a3)(a3
to a4) and (a4 to b).If a is close to b then b ∼= a and each slice boundary limits are close to the ones of the
next slice.Then we have:∫ a1

a
f(x)dx = (a1 − a)

f(a1) + f(a)
2

∼= 0 99K a1 − a ∼= 0 99K a1
∼= a 99K f(a1) ∼= f(a) (74)

∫ a2

a1

f(x)dx = (a2 − a1)
f(a2) + f(a1)

2
∼= 0 99K a2 − a1

∼= 0 99K a2
∼= a1 99K f(a2) ∼= f(a1) (75)

∫ a3

a2

f(x)dx = (a3 − a2)
f(a3) + f(a2)

2
∼= 0 99K a3 − a2

∼= 0 99K a3
∼= a2 99K f(a3) ∼= f(a2) (76)

∫ a4

a3

f(x)dx = (a4 − a3)
f(a4) + f(a3)

2
∼= 0 99K a4 − a3

∼= 0 99K a4
∼= a3 99K f(a4) ∼= f(a3) (77)

∫ b

a4

f(x)dx = (b− a4)
f(b) + f(a4)

2
∼= 0 99K b− a4

∼= 0 99K b ∼= a4 99K f(b) ∼= f(a4) (78)

31Although this is not the complete Natario negative energy warped region depicted in the Appendix C,This is only a slice
for illustrative purposes
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As higher the number of slices is as more precise the result of the integral by the Trapezoidal Rule
is.(see pgs 14 and 15 in [18]).Remember from the Appendix B that a warp bubble wether in the Alcubierre
or Natario cases with a radius of 100 meters moving at 200 times light speed have the total amount of
negative energy equal to the product of 1048 by the integral of the square derivatives of the shape function
in the region between the point b(end of the warped region) and the point a(beginning of the warped region)

The total energy required to sustain the warp bubble in the Natario case of the Equatorial plane32 for a
Natario negative energy warped region that starts at point a and end at point b is:

E =
∫ b

a
ρdrs (79)

ρ is the negative energy density written in Cartezian Coordinates in the International System(SI) of
units:

ρ = −c2

G

v2
s

8π

[
3n′(rs)2

]
(80)

Then the total energy is given by:

E =
∫ b

a
ρdrs =

∫ b

a
−c2

G

v2
s

8π

[
3n′(rs))2

]
drs = −3

c2

G

v2
s

8π

∫ b

a

[
n′(rs)2

]
drs (81)

Since c G and vs are constants33

Applying the Trapezoidal Rule to the integral of the derivative squares of the Natario shape function
we have: ∫ b

a

[
(n′(rs)2

]
drs = (b− a)

n′(b)2 + n′(a)2

2
(82)

And the total energy integral needed to sustain a warp bubble becomes:

E = −3
c2

G

v2
s

8π
(b− a)

n′(b)2 + n′(a)2

2
' 0 99K b ' a 99K b− a ' 0 (83)

Again a reader can see the power of the White idea.Compare the distance between the points a (be-
ginning of the negative energy warped region) and b(end of the negative energy warped region) in the
Appendices B and C.The points a and b are more close to each other in Appendix C than in the Appendix
B.The thickness parameter passed from @ = 900 to @ = 5000.If we make @ = 500.000 or @ = 5.000.000
the points a and b will be so close that the difference between b and a will approach zero for real obliterating
the value of 1048 or any other value.(b ' a)(b− a ' 0)

We could theoretically have a thickness of @ = 5.000.000.000 and a speed vs = 6000 times light speed
enough to reach Kepler-22 at 600 light-years in months not in years using an incredible small amount of
negative energy because the difference between b and a would obliterate everything since a and b would be
infinitely close to each other.34

32see Appendix A
33both Alcubierre and Natario warp drives are spacetimes of constsant bubble speed vs.A real warp drive must accelerate

or de-accelerate meaning a variable vs
34we are limited by the floating point precision of Microsoft Excel the only program we have.
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Back again to the Trapezoidal Rule to the integral of the derivative squares of the Natario shape
function(we did not finished yet):∫ b

a

[
(n′(rs)2

]
drs = (b− a)

n′(b)2 + n′(a)2

2
(84)

As pointed out before if we want to integrate from the point a to point b using the Trapezoidal Rule
reducing the error margin we must divide the region between a and b in slices and integrate separately
each slice also by the Trapezoidal Rule and in the end we sum the result of all the integrations.As higher
the number of slices as accurate the integration becomes.

Following pg 14 and 15 in [18] if we want to divide the region between a and b in n slices each slice
have a width given by:

h =
b− a

n
(85)

And the final integration is the sum of the integration of all the slices by the Trapezoidal Rule given
by:

∫ b

a
f(x)dx =

∫ a+h

a
f(x)dx+

∫ a+2h

a+h
f(x)dx+

∫ a+3h

a+2h
f(x)dx+ .......+

∫ a+(n−1)h

a+(n−2)h
f(x)dx+

∫ b

a+(n−1)h
f(x)dx

(86)
Note that each slice above have a width h.

Writing the integral using sums we get the following expressions(pg 15 in [18]):

∫ b

a
f(x)dx =

1
2n

(b− a)[f(b) + f(a +
n−1∑
i=1

f(a + ih)] ∼= 0 99K b− a ∼= 0 99K b ∼= a 99K n >> 1 (87)

∫ b

a
f(x)dx =

b− a

2n
[f(b) + f(a +

n−1∑
i=1

f(a + ih)] ∼= 0 99K b− a ∼= 0 99K b ∼= a 99K n >> 1 (88)

For the integral of the square derivative of the Natario shape function by the Trapezoidal Rule in the
region between a and b divided by n slices of width h we get:

∫ b

a
n′(rs)2drs =

∫ a+h

a
n′(rs)2drs+

∫ a+2h

a+h
n′(rs)2drs+ .......+

∫ a+(n−1)h

a+(n−2)h
n′(rs)2drs+

∫ b

a+(n−1)h
n′(rs)2drs

(89)

∫ b

a
n′(rs)2drs =

1
2n

(b− a)[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ∼= 0 99K b− a ∼= 0 99K b ∼= a 99K n >> 1 (90)

∫ b

a
n′(rs)2drs =

b− a

2n
[n′(b)2 + n′(a)2 +

n−1∑
i=1

n′(a + ih)2] ∼= 0 99K b− a ∼= 0 99K b ∼= a 99K n >> 1 (91)
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Rewriting the equations of the total energy integral in the Natario warp drive spacetime using the
Composite Trapezoidal Rule we get:

E =
∫ b

a
ρdrs =

∫ b

a
−c2

G

v2
s

8π

[
3n′(rs))2

]
drs = −3

c2

G

v2
s

8π

∫ b

a

[
n′(rs)2

]
drs (92)

The integration is being taken between the point a(beginning of the negative energy density warped
region) and b(end of the negative energy density warped region).Dividing the region between a and b in n
slices we get:

h =
b− a

n
(93)

∫ b

a
n′(rs)2drs =

∫ a+h

a
n′(rs)2drs+

∫ a+2h

a+h
n′(rs)2drs+ .......+

∫ a+(n−1)h

a+(n−2)h
n′(rs)2drs+

∫ b

a+(n−1)h
n′(rs)2drs

(94)

∫ b

a
n′(rs)2drs =

1
2n

(b− a)[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ∼= 0 99K b− a ∼= 0 99K b ∼= a 99K n >> 1 (95)

∫ b

a
n′(rs)2drs =

b− a

2n
[n′(b)2 + n′(a)2 +

n−1∑
i=1

n′(a + ih)2] ∼= 0 99K b− a ∼= 0 99K b ∼= a 99K n >> 1 (96)

Inserting the Composite Trapezoidal Rules in the total energy integral we get:

E = −3
c2

G

v2
s

8π

1
2n

(b− a)[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (97)

E = −3
c2

G

v2
s

8π

b− a

2n
[n′(b)2 + n′(a)2 +

n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (98)

Now note an interesting thing:

• 1)-The number of slices raises the accuracy of the integration method and we have the factor c2

G × vs2

8π
generating the huge factor 1048 for a bubble speed vs = 200 times light speed constraining the
negative energy densities in the Natario warp bubble.

• 2)-How about to make the numerical integration by the Trapezoidal Rule using 1048 slices??.How
about to make n = 1048 ???

If n = 1048 then n in the denominator of the fraction b−a
2n will completely obliterate the factor c2

G × vs2

8π
in the equations of the total energy integral lowering the negative energy density requirements for the
Natario warp bubble.
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E = −3
c2

G

v2
s

8π

1
2n

(b− a)[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (99)

E = −3
c2

G

v2
s

8π

b− a

2n
[n′(b)2 + n′(a)2 +

n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (100)

Again a reader can see the power of the White idea.Compare the distance between the points a (be-
ginning of the negative energy warped region) and b(end of the negative energy warped region) in the
Appendices B and C.The points a and b are more close to each other in Appendix C than in the Appendix
B.The thickness parameter passed from @ = 900 to @ = 5000.If we make @ = 500.000 or @ = 5.000.000
the points a and b will be so close that the difference between b and a will approach zero for real obliterating
the value of 1048 or any other value.(b ' a)(b− a ' 0)

We could theoretically have a thickness of @ = 5.000.000.000 and a speed vs = 6000 times light speed
enough to reach Kepler-22 at 600 light-years in months not in years using an incredible small amount of
negative energy because the difference between b and a would obliterate everything since a and b would be
infinitely close to each other.35

35we are limited by the floating point precision of Microsoft Excel the only program we have.
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12 Appendix E:Natario warped region with @ = 5000 R = 100 meters
δ = 1, 009999550661E−008 meters.Slightly beyond the end of the warp
bubble but within the neighborhoods of the end of the warp bubble
and faraway from the distant regions outside the bubble (WF=200)

.
rs n(rs) n′(rs)2 Tpz

1, 000004370000E + 002 4, 045667505366E − 002 1, 021849168291E + 006 NA
1, 000004370101E + 002 4, 046688557033E − 002 1, 022161107678E + 006 1, 032224730137E − 002
1, 000004370202E + 002 4, 047709764524E − 002 1, 022473090568E + 006 1, 032539810747E − 002
1, 000004370303E + 002 4, 048731127836E − 002 1, 022785116946E + 006 1, 032854935287E − 002
1, 000004370404E + 002 4, 049752646967E − 002 1, 023097186799E + 006 1, 033170103743E − 002

The plot above depicts the region outside the bubble but within the bubble radius neighborhoods where
the inflexion point mentioned earlier occurs for the square of the derivatives of the Natario shape function.
Note that each derivative square possesses the maximum value for our Natario shape function which is 106.

The column Tpz is an integration by the Trapezoidal Rule of 4 slices of this region each slice with a
width δ = 1, 009999550661E − 008.Note that all the square derivatives of the shape function have values
around 1, 2 × 106 and the sum of the boundary points(the values of the square derivatives of the shape
function in the boundary points)of each slice divided by 2 gives a value of about 1, 2 × 106.Multiplying
1, 2 × 106 by δ = 1, 009999550661E − 008 we get values of about 1, 2 × 10−2.As smaller the value of the
slice width is as smaller the result of the Trapezoidal Rule becomes.

For a slice width of δ = 1, 009999550661E−020 multiplied by 1, 2×106 the final result would be 1, 2×10−14.

This is important to illustrate how the Trapezoidal Rule integral must deal with the factor of 1048 in
order to reduce the total energy integral36.Slices with smaller width are better than the ones with larger
widths.

Remember that the plot above depicts only a small fraction of the Natario warp bubble and the Trapezoidal
Rule presented above with 4 slices is not accurate.

The plot that represents the whole Natario bubble is the Appendix C

36Trapezoidal Rule integral multiplied by 1048
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Plotting again the table of Appendix C

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

99, 97 1 0 2, 650396579309E − 253 0
99, 98 1 0 1, 915169615918E − 166 0
99, 99 1 0 1, 383896540755E − 079 0
100 4, 9E − 001 3, 111507925458E − 061 6, 250000000000E + 006 9, 681489643510E − 110

100, 01 0 0, 5 1, 383896512435E − 079 1, 383896512435E − 075
100, 02 0 0, 5 1, 915169576726E − 166 1, 915169576726E − 162
100, 03 0 0, 5 2, 650396525072E − 253 2, 650396525072E − 249

If we want a rigorous integration of the Natario negative energy density warped region which starts at
rs = 100 meters from the center of the bubble(bubble radius R) and ends up at rs = 100, 03 meters then
we must divide this region in 1048 slices each one with a width h of:

h =
b− a

n
=

100, 03− 100
1048

=
0, 03
1048

=
3

1049
= 3× 10−49 (101)

Inserting these values in the total energy integral equations:

E = −3
c2

G

v2
s

8π

1
2n

(b− a)[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (102)

E = −3
c2

G

v2
s

8π

b− a

2n
[n′(b)2 + n′(a)2 +

n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (103)

we should expect for:

E = −3
c2

G

v2
s

8π

3
2× 1049

[n′(b)2 + n′(a)2 +
n−1∑
i=1

n′(a + ih)2] ' 0 99K n >> 1 99K b ' a 99K b− a ' 0 (104)

We choose to divide the Natario negative energy warped region in 1048 slices due to the factor c2

G
v2

s
8π

which is 1048 for a bubble speed vs = 200 times faster than light .In the equation above keeping the
bubble radius R = 100 meters and the thickness parameter @ = 5000 and the warp factor WF = 200 all
constants and since c and G are constants if we use a different bubble velocity vs higher than 200 times
faster than light giving a factor c2

G
v2

s
8π > 1048 then the number of slices n needed to integrate accurately by

the Trapezoidal Rule the energy density in the Natario warp bubble must be equal to this new factor in
order to reduce the total energy integral.
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13 Appendix F:Natario warped region with @ = 5000 R = 100 meters
δ = 9, 999999974752E − 007 meters.From the end of the warp bubble
to a region slightly beyond the end of the warp bubble but within
the neighborhoods of the end of the warp bubble and faraway from
the distant regions outside the bubble (WF=200)

.
rs n(rs) n′(rs)2 Tpz

1, 000000000000E + 002 3, 111507638931E − 061 9, 681479787123E − 110 NA
1, 000000010000E + 002 8, 436836263117E − 061 7, 047018947824E − 109 4, 007583453150E − 115
1, 000000020000E + 002 2, 276234286411E − 060 5, 078139220097E − 108 2, 891420550140E − 114
1, 000000030000E + 002 6, 110588727772E − 060 3, 622759985185E − 107 2, 065286948383E − 113
1, 000000040000E + 002 1, 632218040042E − 059 2, 558649877926E − 106 1, 460462934535E − 112

The plot above depicts what happens in the beginning of the Natario warp drive negative energy warped
region which starts at the end of the bubble R = rs = 100 meters.

This region lies between the bubble radius and the inflexion point mentioned earlier

The Trapezoidal Rule Tpz depicted here is not accurate
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14 Epilogue

• ”The only way of discovering the limits of the possible is to venture a little way past them into the
impossible.”-Arthur C.Clarke37

• ”The supreme task of the physicist is to arrive at those universal elementary laws from which the
cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition,
resting on sympathetic understanding of experience, can reach them”-Albert Einstein3839
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16 Remarks

References [8] ”Warp Field Mechanics 101” and [17] ”Warp Field Mechanics 102” by Harold ”Sonny”
White of NASA Lyndon B.Johnson Space Center Houston Texas are available at NASA Technical Reports
Server (NTRS)40 however we can provide a copy in PDF Acrobat reader of these references for those
interested.

Reference [18] ”Numerical Integration” from Autar Kaw and Charlie Barker is available at
http://numericalmethods.eng.usf.edu however we can provide a copy in PDF Acrobat reader of this refer-
ence for those interested.

Reference [15] was online at the time we picked it up for our records.It ceased to be online but we can
provide a copy in PDF Acrobat reader of this reference for those interested.

Reference [16] we only have access to the abstract.

We performed all the numerical calculus of our simulations for both Alcubierre and Natario warp drive
spacetimes using Microsoft Excel41.We can provide our Excel files to those interested and although Excel is
a licensed program there exists another program that can read Excel files available in the Internet as a free-
ware for those that perhaps may want to examine our files:the OpenOffice42 at http://www.openoffice.org

37special thanks to Maria Matreno from Residencia de Estudantes Universitas Lisboa Portugal for providing the Second
Law Of Arthur C.Clarke

38”Ideas And Opinions” Einstein compilation, ISBN 0− 517− 88440− 2, on page 226.”Principles of Research” ([Ideas and
Opinions],pp.224-227), described as ”Address delivered in celebration of Max Planck’s sixtieth birthday (1918) before the
Physical Society in Berlin”

39appears also in the Eric Baird book Relativity in Curved Spacetime ISBN 978− 0− 9557068− 0− 6
40browse Google for ”Warp Field Mechanics 101” and ”Warp Field Mechanics 102”
41Copyright(R) by Microsoft Corporation
42Copyright(R) by Oracle Corporation
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