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We report a method for expressing the neutron and proton masses within experimental errors, 
exclusively as a function of the up and down current quark masses and charges, the Fermi vev, 
and the CKM quark mixing matrix.  In the process, we develop a mass and mixing matrix which 
may possibly be helpful for characterizing other baryon masses and better pinpointing higher-
generational quark masses. 
 
PACS: 14.20.Dh; 14.65.-q; 12.15.Ff; 14.20.-c 
 
1.  Introduction 

 
It has been known for decades that the proton and neutron masses, 

938.272 046 MeVPM =  and 939.565 379 MeVNM =  respectively, exceed the electron mass 

0.510 998 928 MeVem =  by a factor of just under 1840 to 1 (mass data is from [1]).  Yet to date, 

there is no good explanation for this ratio. 
 
Following the author’s deduction in [2] of an expression for the neutron minus proton 

mass difference which was reported in [3] strictly as a data-fitting relationship without 
theoretical assertions, the possibility of explaining the neutron and proton masses themselves 
appeared to be a realistic possibility.  Specifically, given the postulated-exact relationship  

 

( ) ( )
3
20.001388449188 u 3 2 3 / 2N P u d µ d uM M m m m m m π− = ≡ − + −  (1.1) 

 
reported in (22) of [3] for a difference between these two masses, one needs “only” find the sum 

N PM M+  of these masses in order to then be able to deduce each of NM  and PM  separately, via 

a simple algebraic solution of two independent simultaneous equations for two unknowns. 
 
 This problem of finding NM  and PM  in this manner was solved by the author in [4], but 

the solution was based on extensive theoretical development in [5] followed by [4].  In the spirit 
of only reporting objective numeric relationships among phenomenological masses and energies 
while foregoing any theoretical assertions, the author in this letter reports his findings for the 
neutron and proton masses themselves as simply, directly and cleanly as possible, independently 
from the author’s own underlying theory.  As in [3], this is intended to leave latitude for others to 
independently form modified or alternate conceptions of the underlying physics.  This letter goes 
beyond simply expanding with other examples upon the ideas reported in [3].  Rather, in relation 
to [3], this letter reports qualitatively new results and relationships involving empirical mass and 
energy and quark mixing data long-known but never before interconnected. 
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2.  The Clue 
 

The author concludes in [3] that Koide [6], [7] matrices of the form 
 

1

2

3

0 0

0 0

0 0

AB

m

K m

m

 
 

≡  
 
 
 

 (2.1) 

 
appear to correctly capture some underlying reality as to a substantial variety of mass / energy 
relationships, based on its facility for characterizing both the charged lepton masses and the 2H, 
3H, 3He and 4He binding data.  Related to the usefulness of (2.1), is also the usefulness of taking 

square roots of masses / energies, as well as of forming constructs such as u dm m  which 

appeared throughout [3], where um  and dm  are the up and down current quark masses. 

 
 In fact, we can immediately apply these conclusions to arrive at a “ballpark” explanation 
for the proton and neutron masses.  Using the conversion factor 1 u 931.494 061 21( ) MeV=  we 
first convert the quark masses deduced in (23) and (24) of [3] to 
 

0 002387339327 2.22379240 Vu  Meum .= = , (2.2) 

0 005267312526 4.90647034 Vu  Medm .= = . (2.3) 

 
Recall, these were deduced by simultaneously solving (1.1) together with (9) of [3], namely: 
 

( ) ( )1.5
0 000548579900.510998928 9 u 3MeV / 2=e d um . m m π= ≡ − , (2.4) 

 
using the empirical em  and N PM M− .  Next, we note that the Fermi vev energy Fv , defined 

from Fermi coupling constant FG  according to 2 42 /F FG v c c≡ � , is given by (data from [1]): 

 
246219.651 MeVFν = . (2.5) 

 

Finally, we use the above-noted u dm m  energy together with the usefulness of taking square 

roots of masses and energies, to construct and evaluate: 
 

24 901.835259 MeVF u d F u dv m m v m m⋅ = = . (2.6) 

 
This objective data relationship is symmetric under u d↔  interchange, as we surmise 

N PM M+  might be, and it differs from the observed masses, 938.272 046 MeVPM =  and 

939.565 379 MeVNM =  by only about 4%.  So we take this as a “clue” based on mass / energy 

data, that the proton and neutron masses are determined mainly by a product of Fν  with 
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.25 .25
u d u dm m m m= , in the spirit of (2.1).  In particular, we observe that the proton and neutron 

masses seem on a ratio basis to “straddle” halfway between the (much lower) quark masses and 
the (roughly equally higher) Fermi vev, and so appear to be determined by a hybrid combination 
of the Fermi vev and the up and down quark masses.  We now report exactly how. 
 
3.  Fitting the Neutron plus Proton Mass sum to 6 Parts in 10,000 
 
 The Fermi vev Fv , which from (2.6) appears to play a dominant role in establishing the 

proton and neutron masses, is also the energy at which the electroweak interaction undergoes 
spontaneous symmetry breaking.  Following symmetry breaking, the resulting electromagnetic 
interaction charge generator Q is has the value 2 / 3uQ =  for the up quark, and 1/ 3dQ = −  for 

the down quark.  So we start by forming “vacuum energy numbers” q FQν ν=  for each of the up 

and down quarks q, i.e., ( )2 / 3u Fν ν=  for the up quark and ( )1/ 3d Fν ν= −  for the down quark.  

We then again exercise the usefulness of taking square roots of masses and energies by forming 
“vacuum-enhanced masses” for each of the up and down quark (not to be confused with 
“constituent” quark masses), defined according to: 
 

2
3 604.175135 MeVu F uM mν≡ = , (3.1) 

1
3 634.578446 MeVd F diM m iν≡ − = ⋅ . (3.2) 

 
From these we find that the square root construct: 
 

224
9 619.190212 MeVu d F u dM M m mν= = . (3.3) 

 
Finally, we define “vacuum-enhanced Koide matrices” Κ  for both the proton and the 

neutron by using (2.1) with the assignments 1 2 3;d um iM m m M= = =  for the proton (P) and 

1 2 3;u dm M m m iM= = =  for the neutron (N).  That is, we now define: 

 
.5

.5

.5

0 0 0 0

0 0 ; 0 0

0 0 0 0

d u

P AB u N AB d

u d

i M M

M i M

M i M

   
   

Κ ≡ Κ ≡   
   
   
   

, (3.4) 

 
while at the same time, we recall the Koide matrices defined in (3) of [3] using the current quark 
masses (2.2), (2.3), namely: 
 

0 0 0 0

0 0 ; 0 0

0 0 0 0

d u

P AB u N AB d

u d

m m

K m K m

m m

   
   

≡ ≡   
   
   
   

. (3.5) 
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 Keeping in mind that our goal is to find N PM M+ , let us take the inner product 

P AB N BCΚ Κ  using (3.4), and then form its trace ( )Tr N P P AB N BAΚ ⋅Κ = Κ Κ .  This is manifestly 

symmetric under N P↔  interchange, as is N PM M+ .  To this, using (3.5), let us add the term 

( ) ( ) ( )2 2Tr Tr 3P N P AB P BA N AB N BA u dK K K K K K m m+ = + = + , which is simply the total of the 

current quark masses contained within N PM M+ .  The result, which is invariant under both 

N P↔  and u d↔   interchange, is: 
 

( ) ( ) ( ) ( ) ( )2 2 .5 .5 224
9Tr Tr Tr 3 3N P P N u d u d F u d u dK K i M M m m i v m m m mΚ ⋅Κ + + = + + = + + .(3.6) 

 
The negatively (-) signed charge of the down quark has, upon taking the fourth root, turned into 

( ).5 1 / 2i i= + .  If we use a phase / 4δ π= , we may instead write this fourth root of this 

negatively-signed charge as .5 ; / 4ii e δ δ π= = .  We use this to rewrite (3.6) as: 
 

( ) ( ) ( ) ( ) ( )2 2 224
9Tr Tr Tr 3 3i i

N P P N u d u d F u d u dK K e M M m m e v m m m mδ δΚ ⋅Κ + + = + + = + + .(3.7) 

 
 Now we take the liberty to vary this phase.  If we set 0δ = , which amounts to ignoring 
the .5i  in (3.6), or alternatively, to only considering the magnitudes but not the signs of the up 
and down quark charges Q, and if we then evaluate using Fv , um , dm from (2.5), (2.2), (2.3) 

respectively and compare to the actual N PM M+ , we find that for 0δ = : 

 

( ) ( ) ( ) ( )2 2 224
9Tr Tr Tr 3

                                                                                     

Difference:                                

N P P N F u d u d

N P

K K v m m m m

M M

Κ ⋅Κ + + = + + =

+ =

1878.96142

1877.83743 MeV

 MeV

                                                             1.12400 MeV

. (3.8) 

 
This differs from the empirical N PM M+  by a mere 0.0599%.  We note that embedded within, is 

the “clue” 24
F u dv m m  of (2.6) multiplied by the coefficient 4 43 2 / 9 3 u dQ Q= − , to which is 

added the sum ( )3 u dm m+  of current quark masses.  If we take the predicted energy in the top 

line of (3.8) and divide by 2, we obtain: 
 

( )224
9 939.480713 / 2  MeVF u d u dv m m m m+ + = , (3.9) 

 
which actually “threads the needle” between the observed values for 938.272 046 MeVPM =  

and 939.565 379 MeVNM = .  Given the closeness of (3.8), (3.9) to the observed proton and 

neutron masses and the fact that (3.8) is symmetric under both P N↔  and u d↔  interchange, 
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we now regard (3.8) as a meaningful expression for N PM M+  to about to about 6 parts in 

10,000.  Thus, we now set: 
 

( ) ( ) ( ) ( )2 2 224
9Tr Tr Tr 3N P P N F u d u d N PK K v m m m m M MΚ ⋅Κ + + = + + ≅ + , (3.10) 

 
which, again, is accurate to 6 parts in 104.  But in arriving at (3.8) to (3.10), we have neglected 
the phase by setting 0δ = .  We now need to gain a better understanding of this phase, and in the 
process, see if we can close the remaining 0.06% gap to arrive at an exact expression for 

N PM M+ , and therefore, for NM  and PM  separately. 

 
4.  Exact Expressions for the Proton and Neutron Masses 
 

 Working from ( )3 i
u d u de M M m mδ + +  in (3.7), let us form yet another Koide matrix 

(2.1), this time, setting 1 3 u dm M M= , 2 3 um m=  and 3 3 dm m= .  We then write (3.7) in 3x3 

matrix form, with the phase factor separated into its own matrix, as: 
 

( ) ( ) ( ) ( )2 2

4 4

Tr Tr Tr 3

0 0 0 00 0

3Tr 0 0 0 1 0 0 0

0 0 10 0 0 0

i
N P P N u d u d

i
u d u d

u u N P

d d

K K e M M m m

M M M Me

m m M M

m m

δ

δ

Κ ⋅ Κ + + = + +

    
     ≅ +    
           

. (4.1) 

 
The middle matrix with the complex phase factor ie δ  seems pregnant.  Specifically, we know 
that the unitary matrices U which are used to mix the quark and lepton generations, namely: 
 

1 1 1 1 3 1 3

2 2 1 1 3 3 1 2 1 2 3 2 3 1 2 3 2 3

2 2 3 3 1 2 1 2 3 2 3 1 2 3 2 3

1 0 0 0 1 0 0

0 0 0

0 0 0 0

iδ iδ

i iδ iδ

c s c s c s s

U c s s c c s s c c c c s s e c c s s c e

s c e s c s s c s c c s e c s s c c eδ

     
     = − = − − +     
     − − − − − +     

(4.2) 

 
in the original CKM representation, also contain a middle matrix with a phase just like the 
middle matrix in (4.1).  But these also contain 1sinθ  and 1cosθ  representing a real (Cabibbo) 

mixing factor.  Let us therefore hypothesize that the middle matrix in (4.1) has a form analogous 
to the middle matrix in (4.2), but is merely rotated to an angle of 1 0θ =  so that this angle has 

thus far been hidden from view.  Thus, let us introduce an analogous angle 1θ  into the middle 

matrix in (4.1), and allow this angle the liberty of varying just as we earlier allowed the phase δ  
to vary.  We make no a priori suppositions as to the relationship, if any, between this new 1θ  and 

the analogous 1θ  used in CKM quark mixing.  We leave it to the objective empirical data to 

inform us about this question.  Consequently, we now rewrite (4.1) as: 
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( ) ( ) ( )

( )

( ) ( )( )

2 2

4 4

1 1

1 1

1 1

1 1

1

Tr Tr Tr

0 0 0 00 0

3Tr 0 0 0 cos sin 0 0

0 sin cos0 0 0 0

exp 0 0

3Tr 0 cos sin

0 sin cos

3 exp cos

N P P N

i
u d u d

u u

d d

u d

u u d

u d d

u d u d

K K

M M M Me

m m

m m

M M i

m m m

m m m

M M i m m

δ

θ θ
θ θ

δ
θ θ

θ θ

δ θ

Κ ⋅Κ + +

    
    =     
    −       

 
 

=  
 
 − 

= + + ≡ N PM M+

. (4.3) 

 
In the very final line of (4.3), we have made one other very noteworthy change from 

(3.10) and (4.1), which contained “ N PM M≅ + ” at the very end to represent the 0.06% 

approximation found in (3.8).  In (4.3), in very important contrast, we have now ended with the 
expression N PM M≡ + .  That is, following the introduction of this new angle 1θ ,  we shall now 

define both the phase δ  and this new angle 1θ  such that the expression 

( ) ( )( )13 exp cosu d u dM M i m mδ θ+ +  is exactly equal to the neutron plus proton mass sum.  

That is, we shall define δ  and 1θ  via 

 

( ) ( )( )13 exp cosN P u d u dM M M M i m mδ θ+ ≡ + + , (4.4) 

 
exactly, by using the empirical values of NM  and PM .  Then, explaining the exact magnitudes 

of the neutron and proton masses will boil down to explaining the deduced values of δ  and 1θ . 

 
 To find δ  and 1θ , we first solve the simultaneous equations (1.1) for N PM M−  and (4.4) 

for N PM M+ , to arrive for the first time at separate masses for the neutron and proton, namely: 

 

( ) ( )( ) ( ) ( )( )3
21

12 3 exp cos 3 2 3 / 2N u d u d u d µ d uM M M i m m m m m m m πδ θ= + + + − + − , (4.5) 

( ) ( )( ) ( ) ( )( )3
21

12 3 exp cos 3 2 3 / 2P u d u d u d µ d uM M M i m m m m m m m πδ θ= + + − + + − . (4.6) 

 
The detailed calculation to deduce δ  and 1θ  from (4.5) and (4.6) is shown in (6.23) to (6.30) of 

[4] and so will not be repeated here.  But as a result of this calculation, using 
938.272 046 MeVPM =  and 939.565 379 MeVNM =  together with (2.2), (2.3) and (3.3) we 

deduce that: 
 

0δ = , exactly, and (4.7) 
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1 0.94745co 2s 41 4θ = . (4.8) 

 
 The deduction that 0δ =  removes the complex phase from (4.4) through (4.6), and is 
both validated and explained by empirical data which shows that the mass of the antiproton is 
equal to that of the proton, and that the mass of the antineutron is equal to that of the neutron, 
see, e.g., [8], [9].  The deduction that 1 0.94745co 2s 41 4θ =  now presents a new, empirical, 

“nucleon fitting angle” which, if it can be explained on some known, independent basis, would 
then provide a complete fitting of the proton and neutron masses to other known parameters, 
specifically, the up and down quark masses and charges, the Fermi vev, and to the extent that it 
can also be understood independently, the nucleon fitting angle 1cosθ . 

 
5.  Connection between the Nucleon Fitting Angle and the CKM Quark Mixing Angles 
 
 The angle 1θ  which we now seek to understand first appeared in the middle matrix in 

(4.2) for CKM generational mixing.  So, our first avenue of inquiry should be to explore whether 
this angle is related in some manner to the angles used for the CKM mixing of quarks.  Toward 
this end, we first transcribe the empirical values of this matrix from (11.27) of PDG’s [10] as: 
 

0.00015
0.00014
0.0011
0.0005

0.00029 0.0011
0.00031 0.0005 0.

0.97427 0.00015 0.22534 0.00065 0.00351

0.22520 0.00065 0.97344 0.00016 0.0412

0.00867 0.0404 0.999146

ud us ub

cd cs cb

td ts tb

V V V

V V V V

V V V

+
−
+
−

+ +
− − −

± ± 
 = = − ± ± 
  − − 

0.000021
000046

+

 
 
 
 
 

. (5.1) 

 
Because (11.27) of PDG’s [10] contains magnitudes, but the actual mixing matrix is formed from 
three matrices in which sinθ−  is always a lower-left matrix entry, see the matrix product in 
(4.2), we have restored the negative sign in front of the three lower-left entries in (5.1) above. 
 
 Now, none of the entries in (5.1) compares directly to 1 0.94745co 2s 41 4θ =  in (4.8).  

But, rather than examine individual entries, we instead use mid-range entries in (5.1) to ascertain 
the “upper-left-to-lower-right” portion of the determinant V , which we designate as V

+
 and 

refer to as the “major determinant.”  We find, from empirical data, and comparing 1cosθ , that: 

 

1cos                                               

Difference:                                         

ud cs tb us cb td ub cd tsV V V V V V V V V V

θ
+

= + + =

=

0.947535

0.947454

0.000081

. (5.2) 

 
This is a difference of a mere 8.1 parts per 100,000.  The fact that the nucleon fitting angle 

1 0.94745co 2s 41 4θ =  derived in (4.8) from the empirical neutron and proton masses is so close 

to V
+
 derived from quark generation mixing, certainly warrants attention if one is objectively 

comparing and characterizing data.  This is especially so because V
+
, which is formed from all 

nine mixing entries in (5.1), is an invariant of V. 
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So the next question is whether these results (5.2) are truly the same within experimental 
errors.  Happily, it turns out that they are!  Specifically, we find that 

1cos0.947192 0.000262V θ
+

= −=  if we use the lower bounds of all the experimental error 

ranges in (5.1), and 1cos0.947854 0.000400V θ
+

+= =  if we use upper bounds.  So this is within 

experimental errors.  Using 1 0.94cos 7454θ =  as the baseline against which to compare V
+
, we 

express this result as: 
 

0.000400 0.000400
0.000262 0.0 61 - 002 20.947454cosV θ + +

−+
= = . (5.3) 

 
Because of this concurrence within experimental errors, we now establish: 
 

1cosV θ
+

≡  (5.4) 

 
as a meaningful relationship, then use (5.4) together with (4.7) to rewrite (4.4) through (4.6) as: 
 

( )( )3N P u d u dM M M M V m m
+

+ ≡ + + , (5.5) 

( )( ) ( ) ( )( )3
21

2 3 3 2 3 / 2N u d u d u d µ d uM M M V m m m m m m m π
+

= + + + − + − , (5.6) 

( )( ) ( ) ( )( )3
21

2 3 3 2 3 / 2P u d u d u d µ d uM M M V m m m m m m m π
+

= + + − + + − . (5.7) 

 
The nucleon fitting angle 1 0.94745co 2s 41 4θ =  is known to at least three digits (~103) greater 

accuracy than the mid-range 0.947535V
+

=  due to the former being derived from the proton 

and neutron masses 938.272 046 MeVPM =  and 939.565 379 MeVNM =  which are known to 

nine digits of accuracy in MeV and the quark masses (2.2), (2.3) which also become known to 
nine digits of accuracy in MeV because they are based on simultaneously solving (1.1) and (2.4).  
Thus, we may now use the far more accurate 1 0.94745co 2s 41 4θ =  to set 0.947454124V

+
= .  

This now becomes another empirical data point – derived ultimately from the proton, neutron 
and electron masses – which can then be used to fine-tune the CKM matrix entries in (5.1). 
 
 With this, we have now reached our goal of fitting the proton and neutron masses to other 
known parameters, and have found that these other known parameters are the up and down quark 
masses and charges, the Fermi vev, and an invariant V

+
 of the  CKM quark mixing matrix. 

 
6.  A New “Toy” for Seeking to Understand the Baryon Mass Spectrum 
 
 As a final exercise, keeping in mind that 1θ  is but one of three angles in CKM mixing, 

analogously to (4.3), let us form two more matrices for the second and third quark generations 
with c, s, t, b quarks, and use two more  mixing matrices with angles 2 3,θ θ , as follows: 
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2 2

4 4

2 2

2 2

2 2

0 0 0 0cos 0 sin

3 0 0 0 1 0 0 0

sin 0 cos0 0 0 0

cos 0 sin

3 0 0

sin 0 cos

s s

c s c s

c c

s c s

c s

c s c

m m

M M M M

m m

m m m

M M

m m m

θ θ

θ θ

θ θ

θ θ

        
    
    −       

 
 

=  
 
 − 

. (6.1) 

 

3 3

3 3

4 4

3 3

3 3

0 0 0 0cos sin 0

3 0 0 sin cos 0 0 0

0 0 10 0 0 0

cos sin 0

3 sin cos 0

0 0

t t

b b

t b t b

t t b

t b b

t b

m m

m m

M M M M

m m m

m m m

M M

θ θ
θ θ

θ θ
θ θ

        −    
           

 
 

= − 
 
 
 

. (6.2) 

 
In the foregoing, analogously to (3.1) to (3.3), we have also defined the vacuum enhanced: 
 

2
3 14,467c c ev VM m M≡ = , (6.3) 

1
3 2792s sM evm M V=≡ , (6.4) 

2
3 168,758t tM vm MeV≡ = , (6.5) 

1
3 18,522b b ev VM m M≡ = , (6.6) 

6356c sM M MeV= , (6.7) 

55,908t b VM M Me= . (6.8) 

 
These values are calculated from the PDG data [11] rounded to the nearest MeV, recognizing 
substantial experimental uncertainties.  Also, in (6.1), (6.2), we have “cycled” the “large” square 
root terms involving the vacuum enhanced masses from the upper-left position in (4.3) to the 
lower-right position in (6.2), and have cycled the mixing angles in step with this.  This is but one 
of several “representations” that one might choose to form. 
 
 Now, let us place the matrices (6.1), (4.3) (sans trace) and (6.2) next to one another from 
left to right and then multiply them to arrive at a mass and mixing matrix Θ  defined as such: 
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 
 
 
 
 
 
 
 
 
 
 
 
 − 

. (6.9) 

 
Then, let us consider the specialization where we set 2 3 0θ θ= =  and 1c s t bm m m m= = = =  and 

1c s t bM M M M= = .  In this specialization, now taking the trace, (6.9) reduces to: 

 

( )

( ) ( )( )

1 1

1 1

1

exp 0

Tr 3Tr 0 cos sin
9

0 sin cos

            3 exp cos

u d

u u d

u d d

u d u d N P

M M i

m m m

m m m

M M i m m M M

δ

θ θ
θ θ

δ θ

 
 Θ  =   

   
 − 

= + + = +

. (6.10) 

 
This is synonymous with (4.3) which is simply the definition of the sum of the neutron plus 
proton masses which was later consummated in (5.5) by the connection to CKM mixing.  Of 
course, one can readily see that (6.9) was constructed so as to include N PM M+ , by design.  But 

this is a potentially useful design. 
 
 Specifically, given that Θ  in (6.9) contains all six of the quark masses and charges, the 
Fermi vev, three angles, and one phase, and given that in the specialization (6.10) Θ  yields the 
mass sum N PM M+ , it is clear that (6.9) contains within, information pertinent to the proton and 

neutron masses.  But the proton and neutron are simply the duu and udd baryons of spin ½.  
Because their mass sum sits within (6.9), the question is raised whether (6.9) might be employed 
in other manipulations as a vehicle to characterize additional baryon masses or sums thereof.  We 
leave this as an open question, and provide (6.9) simply as a new “toy” which individuals 
attempting to explain the baryon mass spectrum may wish to employ to assist their efforts. 
 
7.  Conclusion 
 
 Similarly to what was done in [3], we have simply shown how the proton and neutron 
masses may be fitted to the up and down quark masses and charges, the Fermi vev, and in a 
surprise which might not be expected a priori, the CKM quark mixing matrix, while forgoing 
any discussion of the underlying theory developed by the author successively in [12], [2], [5] and 
[4].  As such, while reporting data that objectively fits with empirical observation, we leave room 
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for others in the nuclear and particle physics communities to evaluate these results based on the 
data alone, and perhaps develop modified or alternative theories as to the physics which might be 
underlying these clearly accurate relationships involving known empirical masses and energies 
and quark mixing matrices. 
 

Additionally, the Θ  matrix (6.9) may afford an opportunity to fit additional baryon 
masses beyond those of the proton and neutron together with the higher-generation quark 
masses.  If the results in [3] are any indication, it is likely that the observed higher-generation 
baryon masses will be useful to better pinpoint the higher-generation quark masses, rather than 
vice versa, because these baryon masses are providing precise “signals” about the quark masses 
they confine in the same manner that the proton and neutron masses and binding energies are 
sending “signals” about the up and down quark masses confined within the proton and neutron. 
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