
The Projective Line as a Meridian

1. Introduction

(1.1) Prologue This paper investigates that mathematical idea which in algebra is known as a
cross ratio, in one-dimensional geometry as a projective line, in two-dimensional geometry as a circle, and in
three-dimensional geometry as a regulus. We view each of these in its natural habitat, and show how each
is an avatar of one Platonic object, which object we refer to as a meridian.

(1.2) Cross-Ratio The cross ratio looms large in the development of projective geometry. It was
known to Pappus of Alexandria back in the first half of the fourth century, and was used by Karl von Staudt
in 1857 to present the first entirely synthetic treatment of the subject. Von Staudt1 introduced the notion of
a Wurf or throw : this was a pair of ordered pairs of points on a line. Throws were separated into equivalence
classes by projectivities of the line, relative to its situation in a plane.

In Section 2 we follow a somewhat similar course, the main difference being that we regard the line as a
set by itself without the influence of a surrounding plane, setting out four postulates to which the equivalence
classes of throws must be subject. This approach not only induces a ‘‘projective’’ structure on the set, but
also provides a particular model of a meridian, with from four to six distinguished points.

(1.3) Projective Line A ‘‘projective line’’ M over a field F is often defined as the family of
lines through the origin of a two dimensional vector space V over F . The ‘‘projective structure’’ of such a
projective line is induced by a set of so-called homogeneous coordinates: V is given a coordinate system, and
the homogeneous coordinates of any (line) element of is the set of inherited coordinates of all the points on
that line distinct from the origin of V: they are related of course by all having the same ratio.

An equivalent ‘‘synthetic’’ definition is to consider a line N embedded in a projective plane and then to
use ‘‘complete quadrilaterals’’ to define addition and multiplication. Given any ‘‘throw’’ {´

`
A,B `

´
, ´
`
C,D`

´
} in

the sense of von Staudt, and any fifth point E, there exist many complete quadrilaterals for which each of
the pairs of the throws lie on the intersections of opposing lines of the quadrilateral, and such that one of
the other lines passes through the fifth point.

Fig. 1: The Quinary Operator on a Line in the Real Projective Plane.

However, for each of these complete quadrilaterals the remaining line cuts N at the same point. This
defines a quinary operator µ on the points of N . One fixes three distinct points of N , calling them 0, 1 and
∞, and then places them in a certain way in three of the arguments of µ to obtain a binary operator. One
of these ways defines addition, and another way defines multiplication: in such wise that the complement of
∞ in N becomes a field.

1 Cf. [Von Staudt] pp. 166 et seq. and [Veblen & Young] §55.
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Fig. 2: Addition of Points on a Line in the Real Projective Plane.

Fig. 3: Multiplication of Points on a Line in the Real Projective Plane.

Of course both the analytic and the synthetic methods require a priori a projective plane. It turns
out that the projective plane may be dispensed with, and the quinary operator can be defined through a
compact set of axioms. Section (4) follows such a program.

(1.4) Circle A circle C embedded in a plane is another model for a meridian, which in some
respects is more illuminating than a straight line N . The connection between the two is the so called
‘‘stereographic projection’’, where the line is aligned tangent to the circle, a point P is designated on the
other side of the circle, and lines through P correspond points on C with points on N through intersection.
This correspondence then transfers the quinary operator on N induced by complete quadrilaterals to a
quinary operator on C. However this quinary operator on C can be obtained directly and more simply. If
one takes a throw on C, each of the pairs of points of the throw determines a line. The two lines intersect in
a point Q. If one draws a line through Q and a fifth point on C, that line intersects C in exactly one other
point (unless the line is tangent to C). This other point is the value of the quinary operator.
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Fig. 4: The Quinary Operator on a Circle.

Given a circle C in the plane, there are a number of other curious operators induced on C by the plane.
In fact each line N in the plane induces such a (trinary) operator κ as follows. Let ´

`
A,B,C `

´
be an ordered

triple on C, none of the points of which are on N . The line through A and C intersects N at a single point
K. The line through K and B intersects the circle at one other point2: this is by definition the value of κ at
´
`
A,B,C `

´
(we denote it in the figures below by bA,B,Cc). If one fixes B and lets A and C vary, one obtains

a binary operator which is, in fact, a group operator. When the line N intersects the circle C through two
points, the resulting group is isomorphic with the multiplicative group of non-zero real numbers. When the
line N is tangent to the circle C, the resulting group is isomorphic with the additive group of real numbers.
When the line N does not intersect C, the resulting group is isomorphic to the group of complex numbers
of modulus one.

Fig. 5: Libra Operator Induced on a Circle by an Exterior Line.

2 Unless the line is tangent to the circle, in which case κ
´
`
A,B,C `

´

≡B.
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Fig. 6: Libra Operator Induced on a Circle by an Interior Line.

Fig. 7: Libra Operator Induced on a Circle by a Tangent Line.

(1.5) Libras The trinary operators κ described in (1.3) are examples of what we shall call libra
operators. Libra operators satisfy two axioms and, as the examples κ suggest, these are closely related to
group binary operators. One can think of a libra as a group without a specific identity element, just as
one can think of an affine space as a vector space without an identity element. The name ‘‘libra’’ has been
adopted because the different libra operators may be thought of as defining different types of equilibria.3.

The operators κ, while curious, do not constitute a principal motive for treating libra operators here.
One such motive is that the quinary operators discussed in (1.2) and (1.3) are much more easily explained
and handled when the concept of a libra operator is available, as will be seen in Section (4). The fundamental
properties of libras are introduced in Section (3), and further properties given in Sections (5) and (7).

(1.6) Transformation Libras Many mathematical objects serve an important role as domains for
various families of functions or operators. In the case of a meridian, perhaps the most signal such family
is that consisting of what we shall term Möbius transformations. In its guise as a projective line equipped

3 This is explained in Section (12)
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with homogeneous coordinates ´
`
x, y`

´
, these transformations go under several names, such as homographic

transformations4, bi-linear transformations5, or linear fractional transformations, and are represented as as
quotients of linear terms:

(∀A,B,C,D∈F :AD 6=BC) ´
`
X,Y `

´
↪→ AX +B

CX +D
.

If A,B,C,D are points in F as above, we shall denote the corresponding transformation as

(
A B
C D

)
. Thus

if a point P in the meridian has homogeneous coordinates ´
`
X,Y `

´
we can use matrix notation to compute

the homogenous coordinates of the image:(
A B
C D

) P  has coordinates

[
A B
C D

] [
X
Y

]
= [AX +BY CX +DY ] . (1)

Of course the representation

(
A B
C D

)
of a Möbius transformation is only unique up to a constant factor of

the coefficients A, B, C and D. Consequently the family Γ
M of all such constitutes a three dimensional

object.

The matrix equality of (1) suggests the greater generality of viewing Möbius transformations not just
as functions from a meridian onto itself, but as a family Γ

M,N
 of functions from one meridian M onto

another meridian N . This prima facie rather naive suggestion proves to be fruitful, in that it leads to a
detailed understanding of the topological nature of Γ

M as a model of three dimensional projective space.
This serves as the other principal motive for exploiting libras, for Γ

M regarded rather as a family Γ
M,N


of functions from one meridian M onto another N , becomes a libra rather than a group. The development
of the structure of Γ

M,N
 is carried out in Section (8) as well as a characterization of precisely which

libras are isomorphic to such families.

Fig. 8: Section of Quadric Surface over the Real Field

(1.7) Quadric Surfaces Let S denote a three dimensional projective space over a field of charac-
teristic not equal to 2. A bijective projective mapping φ from S to its dual space consisting of the family P

4 Cf. [H. Cartan] §VI.2.4.
5 Cf. [E. C. Titsmarsh] §6.2 and [Saks & Zygmund] §I.14.6.
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of all planes in S, has an adjoint mapping φ∼ sending P to S and defined by

(∀ P∈P) {φ∼
P} ≡

⋂
p∈P

φ
p.

The mapping φ is called a polarity provided φ∼ ◦φ is the identity map on S. We shall say that a line K
is quadric relative to the polarity φ provided that, for each x∈K, K is a subset of the plane φ

x. If a
polarity has at least three pairwise disjoint quadric lines, we shall call it a quadric polarity, and the set of
all points x∈S such that x∈φ

x is called a quadric surface.

It is well-known that each quadric surface Q is a union of two disjoint families of lines C and R. In
fact each of these families is a partition of Q. Furthermore each pair of lines, one from C and one from R,
intersect at exactly one point — and each point on the quadric is the intersection of exactly one such pair
of lines. These families of lines are called reguli, and each line in a regulus is called a rule.6

It is also well-known that to each triple of pairwise non-intersecting lines in S corresponds exactly one
quadric polarity for which the three lines are rules in one of the reguli. A line in S is in the other regulus
precisely when it intersects each of the three defining lines of the first regulus.

(1.8) Involutions of Quadric Surfaces Suppose that Q is a quadric surface and that its reguli
are C and R. If P is a plane in S not tangent to Q, it intersects Q in a conic. This conic is a meridian
(being projectively equivalent to a circle), and so the map sending each X∈C to the intersection point of
X with P induces a projective structure on C. Furthermore it is independent of the particular P used in
inducing it. Thus C may be regarded as a meridian, and the same is true from R.

Fig. 9: Associating a Regulus to a Conic Section

Each point a of S which does not lie on Q induces a natural involution of Q: through each point x of
Q passes exactly one line also passing through a, and this line intersects Q in exactly one other point y
(unless the line is tangent to the quadric).7

6 Cf. [A. Seidenberg] §13.2.
7 These and related transformations of the quadric are examined in Sections (9) and (10).
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Fig. 10: Transformation of Quadric Surface Q by a Point a not on the Surface

Such a point a also induces a natural transformation of C onto R: through each rule X of C passes
exactly one plane on which a lies. The intersection of this plane with Q is the union of X with a rule Y of
the regulus R. What is more, the family of all such transformations thus described is precisely Γ

C,R.

Fig. 11: Transformation of Rules on a Quadric Surface Q by a Point a not on the Surface

A converse to this fact is also true: that ifM are N are isomorphic meridians, then the libra Γ
M,N

,
together with the cartesian product M×N , can be identified in a natural way with three dimensional
projective space, where M×N corresponds to a quadric surface. These facts are set forth in Section (10).

(1.9) Order, Arcs and Exponentials As might be guessed from its appearance in illustrations of
this introduction, the circle has proven to be the most useful meridian in the field of analysis. This is partly
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due to the fact that inherent in the circle is the notion of orientation, or direction, and partly due to the
fact that it is ”compact”, and so lends itself to the providence of existence theorems.

It turns out that the presence of an orientation comes from the existence of an ‘‘exponential’’ function,
which connects the structure of the family of involutions with a single fixed point to the structure of the
family of those with two fixed points. We investigate this in Section (11), and characterize circle meridians
as just those meridians which have ‘‘exponentials’’ of a certain type, and which are compact relative to the
topology of which the open sets are unions of the ‘‘arcs’’ induced by the exponentials.

(1.10) Apology The author freely admits that he is not familiar with much of the extensive literature
regarding projective geometry — and does not claim credit for any results contained herein which have been
obtained earlier and elsewhere. The aim of this paper is rather to illustrate the beauty and variety of what
we call here a meridian.

Due to the not inconsiderable amount of notation and terminology introduced, indices of notation and
terminology have been included at the end of the paper.
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2. The Quadriad Structure of a Meridian

(2.1) Permutation Notation Let Υ be a set {♠,♥ ,♦,♣} with four distinct elements. We shall
write q for the group of permutations of Υ. We denote the transpositions as follows:8

♠♥ ≡ {´
`
♠,♥`

´
, ´
`
♥,♠`

´
, ´
`
♦,♦`

´
, ´
`
♣,♣`

´
}, ♥♦ ≡ {´

`
♠,♠`

´
, ´
`
♥,♦`

´
, ´
`
♦,♥`

´
, ´
`
♣,♣`

´
},

♠♦ ≡ {´
`
♠,♦`

´
, ´
`
♥,♥`

´
, ´
`
♦,♠`

´
, ´
`
♣,♣`

´
}, ♥♣ ≡ {´

`
♠,♠`

´
, ´
`
♥,♣`

´
, ´
`
♦,♦`

´
, ´
`
♣,♥`

´
},

♠♣ ≡ {´
`
♠,♣`

´
, ´
`
♥,♥`

´
, ´
`
♦,♦`

´
, ´
`
♣,♠`

´
}, ♦♣ ≡ {´

`
♠,♠`

´
, ´
`
♥,♥`

´
, ´
`
♦,♣`

´
, ´
`
♣,♦`

´
},

and write q2 for the the collection of these six. We denote

♠♥♦♣ ≡ ♠♥ ◦ ♦♣ = ♦♣ ◦ ♠♥ = {´
`
♠,♥`

´
, ´
`
♥,♠`

´
, ´
`
♦,♣`

´
, ´
`
♣,♦`

´
},

♠♦♥♣ ≡ ♠♦ ◦ ♥♣ = ♥♣ ◦ ♠♦ = {´
`
♠,♦`

´
, ´
`
♥,♣`

´
, ´
`
♦,♠`

´
, ´
`
♣,♥`

´
},

♠♣♦♥ ≡ ♠♣ ◦ ♥♦ = ♥♦ ◦ ♠♣ = {´
`
♠,♣`

´
, ´
`
♥,♦`

´
, ´
`
♦,♥`

´
, ´
`
♣,♠`

´
},

and write q02 for the collection of these three.9 We denote

♠♥♦ ≡ ♥♦ ◦ ♠♦ = {´
`
♠,♥`

´
, ´
`
♥,♦`

´
, ´
`
♦,♠`

´
, ´
`
♣,♣`

´
}, ♠♦♥ ≡ ♠♦ ◦ ♥♦ = {´

`
♠,♦`

´
, ´
`
♥,♠`

´
, ´
`
♦,♥`

´
, ´
`
♣,♣`

´
},

♠♥♣ ≡ ♥♣ ◦ ♠♣ = {´
`
♠,♥`

´
, ´
`
♥,♣`

´
, ´
`
♦,♦`

´
, ´
`
♣,♠`

´
}, ♠♣♥ ≡ ♠♣ ◦ ♥♣ = {´

`
♠,♣`

´
, ´
`
♥,♠`

´
, ´
`
♦,♦`

´
, ´
`
♣,♥`

´
},

♠♦♣ ≡ ♦♣ ◦ ♠♣ = {´
`
♠,♦`

´
, ´
`
♥,♥`

´
, ´
`
♦,♣`

´
, ´
`
♣,♠`

´
}, ♠♣♦ ≡ ♦♣ ◦ ♠♦ = {´

`
♠,♣`

´
, ´
`
♥,♥`

´
, ´
`
♦,♠`

´
, ´
`
♣,♦`

´
},

♥♦♣ ≡ ♦♣ ◦ ♥♣ = {´
`
♠,♠`

´
, ´
`
♥,♦`

´
, ´
`
♦,♣`

´
, ´
`
♣,♥`

´
}, ♥♣♦ ≡ ♦♣ ◦ ♥♦ = {´

`
♠,♠`

´
, ´
`
♥,♣`

´
, ´
`
♦,♥`

´
, ´
`
♣,♦`

´
},

and write q1 for the collection of these eight. We denote

♠♥♦♣ ≡ ♠♣ ◦ ♠♦ ◦ ♠♥ = {´
`
♠,♥`

´
, ´
`
♥,♦`

´
, ´
`
♦,♣`

´
, ´
`
♣,♠`

´
},

♠♥♣♦ ≡ ♠♦ ◦ ♠♣ ◦ ♠♥ = {´
`
♠,♥`

´
, ´
`
♥,♣`

´
, ´
`
♦,♠`

´
, ´
`
♣,♦`

´
},

♠♦♥♣ ≡ ♠♣ ◦ ♠♥ ◦ ♠♦ = {´
`
♠,♦`

´
, ´
`
♥,♣`

´
, ´
`
♦,♥`

´
, ´
`
♣,♠`

´
},

♠♦♣♥ ≡ ♠♥ ◦ ♠♣ ◦ ♠♦ = {´
`
♠,♦`

´
, ´
`
♥,♠`

´
, ´
`
♦,♣`

´
, ´
`
♣,♥`

´
},

♠♣♥♦ ≡ ♠♦ ◦ ♠♥ ◦ ♠♣ = {´
`
♠,♣`

´
, ´
`
♥,♦`

´
, ´
`
♦,♠`

´
, ´
`
♣,♥`

´
},

♠♣♦♥ ≡ ♠♥ ◦ ♠♦ ◦ ♠♣ = {´
`
♠,♣`

´
, ´
`
♥,♠`

´
, ´
`
♦,♥`

´
, ´
`
♣,♦`

´
},

and write q0 for the collection of these six.
The remaining element of q is the identity permutation. We shall denote it by

♠♠ .

Each permutation p of Υ partitions Υ into the family of orbits of that permutation: we shall denote
that partition by p . For example we have

♠♥♦♣ = {{♠,♥}, {♦,♣}} and ♠♥♦ = {{♠,♥,♦}, {♣}}.

(2.2) Quadriads For a setM with at least three points, we writeMΥ for the set of functions from
Υ to M. We shall commonly express the values of elements t of MΥ using subscripts: t♠, t♥, t♦, and t♣.
We denote10

MΥ
2+ ≡ {t|Υ→M : #{t[ : [∈Υ} > 2},
MΥ

3 ≡ {t|Υ→M : #{t[ : [∈Υ} = 3}
and MΥ

4 ≡ {t|Υ→M : #{t[ : [∈Υ} = 4}.
The permutations of Υ act on the elements of MΥ

2+ through composition. For instance, for t∈MΥ
4 , we have

(t ◦ ♠♥♦♣ )♠ = t♥,

(t ◦ ♠♥♦♣ )♥ = t♠,

(t ◦ ♠♥♦♣ )♦ = t♣

and (t ◦ ♠♥♦♣ )♣ = t♦.

(2.3) Postulate I Suppose that the set MΥ
2+ is equipped with an equivalence relation ∼. We shall

8 For an ordered pair of points x and y we shall use the notation ´
`
x, y`

´
, and for the value of a function f

at an argument x we shall use the notation f
x, that we may reserve normal parentheses ( ) for groupings.

9 These three, together with the identity permutation of Υ, make up the so-called Klein Four Group.
10 We denote the cardinality of any set S by #S.
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postulate four properties for ∼. The first states that equivalence classes are invariant relative to each of the
four permutations of the Klein Four Group:

(∀ t∈MΥ
2+)(∀ x∈q02) t ◦ x ∼ t. (1)

(2.4) Definition Let 4 be in Υ and let {[, \, ]} consist of the other elements of Υ. If

(∀ t∈MΥ
2+)(∀A,B,C ∈M distinct)(∃! s∈MΥ

2+) s ∼ t, s[ = A, s] = B, s\ = C

we shall say that 4 complements ∼ on M.

(2.5) Theorem Suppose that 4 complements ∼ onM. Then any other 4́ ∈Υ also complements ∼
on M.

Proof. Let t be in MΥ
2+ and let A,B,C ∈M be distinct. Let 4́ ∈Υ be distinct from 4 and let [, \ and

] be such that Υ={4́ , [, \, ]}. It follows from (2.4) that there is a unique element s of MΥ
2+ such that

s[ ≡ A, if 4 6=[,
s\ ≡ B, if 46=\,
s] ≡ C, if 46=],

s4́ ≡

A, if 4=[
B, if 4=\
C, if 4=]

and s ∼ t. If y is the element of q02 that interchanges 4 and 4́ , then Postulate I ((2.4)) implies that
s ∼ s◦y. It follows that

t ∼ s◦y, (s◦y)[=a, (s◦y)\=b and (s◦y)]=c.

QED

(2.6) Definition Theorem (2.5) means that if any element of Υ complements ∼ onM, then all do.
In this case, we shall say that ∼ is complemented on M.

(2.7) Postulate II We postulate that the equivalence relation ∼ is complemented on M.

(2.8) Notation We shall denote by

M

the family of ∼-equivalence classes. For each triple ([, ], \) of distinct elements of Υ and each triple (A,B,C)
of distinct elements of M, it follows from Postulate II and Theorem (2.5) that there is a unique function[
A
[
B
]
C
\

]
which sends each m∈M to the unique x∈M such that

{´
`
[, A`

´
, ´
`
], B `

´
, ´
`
\, C `

´
, ´
`
4, X `

´
}∈m where Υ = {[, ], \,4}.

We shall write Mor(M,M) for the family of all such functions and define

Γ(M,∼) ≡ {φ ◦ θ−1 : φ, θ∈Mor(M,M)}. (1)

(2.9) Definitions and Notation We shall call elements of Γ(M,∼) projectivities.
For t∈MΥ

3 let t denote the subset {[, ]} of Υ such that t[= t].
We shall say that two elements t and s of MΥ

2+ are compatible if the relation

{´
`
t♠, s♠ `

´
, ´
`
t♥, s♥ `

´
, ´
`
t♦, s♦ `

´
, ´
`
t♣, s♣ `

´
}

is a bijection of {t♠, t♥, t♦, t♣} onto {s♠, s♥, s♦, s♣}. Evidently t and s are always compatible if they are
both in MΥ

4 , and they cannot be compatible if one of them is in MΥ
4 and one in MΥ

3 . If they are both in
MΥ

3 , then they are compatible precisely when t=s.

(2.10) Postulate III Our third postulate is that equivalent members of an element of M be related
by a single projectivity:

(∀ t, s∈MΥ
2+ compatible) t ∼ s⇐⇒ (∃! φ∈Γ(M,∼)) s = φ ◦ t. (1)

(2.11) Notation In the following theorem and elsewhere in the sequel we shall adopt the notation

(∀A,B,C,D∈M) 〈A,B,C,D〉 ≡ {´
`
♠, A`

´
, ´
`
♥, B `

´
, ´
`
♦, C `

´
, ´
`
♣, D`

´
}. (1)
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(2.12) Theorem11 Let A,B,C ∈M be distinct and R,S, T ∈M be distinct. Then there exists a
unique φ∈Γ(M,∼) such that

φ(A) = R, φ(B) = S, and φ(C) = T. (1)

Proof. We first establish the existence of such a φ satisfying

φ(A) = R, φ(B) = S, and φ(C) = T. (2)

Case ´
`
A,B,C `

´
=´
`
R,S, T `

´
: Let φ be the identity function on M.

Case ´
`
A,B,C `

´
=´
`
R, T, S `

´
: Postulate I implies that 〈A,A,B,C〉 ∼ 〈A,A,C,B〉, whence follows from

Postulate III the existence of α∈Γ(M,∼) such that α
A=A, α

B=C and α
C=B. Evidently (2) holds.

Cases ´
`
A,B,C `

´
=´
`
T, S,R`

´
and ´

`
A,B,C `

´
=´
`
S,R, T `

´
: Proofs similar to that of the case ´

`
A,B,C `

´
=´
`
R, T, S `

´
.

Case ´
`
A,B,C `

´
= ´

`
S, T,R`

´
: As above, we choose α∈Γ(M,∼) such that α

A=A, α
B=C and α

C=B.
Postulate I implies that 〈B,B,C,A〉 ∼ 〈B,B,A,C〉 whence follows from Postulate III the existence of
β∈Γ(M,∼) such that β

B = B, β
C = A and β

A = C. Let X ∈M be distinct from A, B, and C.
Postulate III implies that

〈A,B,C,X〉 ∼ 〈α
A, αB, αC, αX〉 = 〈A,C,B, α

X〉 ∼ 〈βA, βC, βB, βαX〉 =

〈C,A,B, β ◦ α
X〉 = 〈S, T,R, β ◦ α

X〉.
Postulate III now implies that there exists φ such that 〈φ

A, φB, φC, φX〉=〈R,S, T, β◦αX〉, whence
(2) holds.

Case ´
`
A,B,C `

´
=´
`
T,R, S `

´
: The proof is similar to that of the case ´

`
A,B,C `

´
=´
`
S, T,R`

´
.

Now we demonstrate the uniqueness of φ. Let θ be another element of Γ(M,∼) such that θ
A=R,

θ
B=S, and θ

C=T . Let X be any element of M not in {A,B,C}. We have by Postulate III

〈R,S, T, φ
X〉 = 〈φ(

A, φB, φC, φX〉 ∼ 〈A,B,C,X〉 ∼ 〈θA, θB, θC, θX〉 = 〈R,S, T, θ
X〉.

QED

(2.13) Notation Each element of MΥ
3 is in exactly one of the following sets:12

♠♥ ♦♣ ≡ {q∈MΥ
3 : q∈{{♠,♥}, {♦,♣}}},

♠♦ ♥♣ ≡ {q∈MΥ
3 : q∈{{♠,♦}, {♥,♣}}},

♠♣ ♥♦ ≡ {q∈MΥ
3 : q∈{{♠,♣}, {♥,♦}}}.

(2.14) Theorem Each of the sets ♠♥ ♦♣ , ♠♦ ♥♣ and ♠♣ ♥♦ is in M.
Proof. Let x and y be in ♠♥ ♦♣ . Define

x́ ≡
{
x if x = {♠,♥},
x ◦ ♠♦♥♣ if x = {♦,♣}, and ý ≡

{
y if x={♠,♥},
y ◦ ♠♦♥♣ if x={♦,♣}.

Thus x́ and ý are compatible.
By the fundamental theorem there exists a unique φ∈Γ(M,∼) such that φ

x́♥= ý♥, φ
x́♦= ý♦,

and φ
x́♣= ý♣. By construction we have x́♠= x́♥ and ý♠= ý♥. It follows that ý =φ◦ x́ . By Postulate III we

have ý ∼ x́ . Since x ∼ x́ and y ∼ ý by Postulate I, it follows that x ∼ y. Thus ♠♥ ♦♣ is a subset of some
element of M.

To show the reverse inclusion, we consider an element x of ♠♥ ♦♣ , an element z of MΥ
2+ equivalent to

x, and deduce that z must be in ♠♥ ♦♣ . Choose [, ], \∈Υ such that z[, z] and z\ are distinct. If x♠=x♥ and
{♠,♥} ⊂ {[, ], \}, or if x♦=x♣ and {♦,♣} ⊂ {[, ], \}, let x́ ≡ x◦♠♣♦♥ — else let x́ ≡ x. Then #{x́ [, x́ ], x́ \}=3

and x́ is in ♠♥ ♦♣ . The fundamental theorem implies that there exists φ∈Γ(M,∼) such that

φ(x́ )[ = z[, φ(x́ )] = z], and φ(x́ )\ = z\. (1)

Let 4 be such that {[, ], \,4}=Υ. Postulate II implies that z4 is the unique element of M such that

{([, z[), (], z]), (\, z\), (4, z4)} ∼ x́ . (2)

Postulate III implies
x́ ∼ φ ◦ x́ = {([, z[), (], z]), (\, z\), (4, φ(x́4))}. (3)

11 We shall refer to this as the fundamental theorem.
12 Recall that for t∈MΥ

3 , t is the subset {[, ]} of Υ such that t[= t].
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From (2) and (3) follows that z4=φ(x́4). From this and (1) follows that z=φ◦ x́ .

Since, by Postulate I, x́ is in ♠♥ ♦♣ , either x́♠= x́♥ or x́♦= x́♣. Consequently, either z♠=z♥ or z♦=z♣.

Thus z is in ♠♥ ♦♣ . It has now been demonstrated that ♠♥ ♦♣ is in M.

That ♠♦ ♥♣ and ♠♣ ♥♦ are in M, can be shown by analogous arguments. QED

(2.15) Theorem The family Γ(M,∼) is a group of transformations of M.

Proof. Let φ and θ be in Γ(M,∼) and let t be an element 〈a, b, c, d〉 ofMΥ
4 . From Postulate III follows

t ∼ θ ◦ t ∼ φ ◦ θ ◦ t.
From Postulate III follows that there exists a unique γ∈Γ(M,∼) such that

γ ◦ t = φ ◦ θ ◦ t.
Let X be any element of M and set s ≡ 〈a, b, c, x〉. As above we can find δ∈Γ(M,∼) such that

δ ◦ s = φ ◦ θ ◦ s. (1)

We have δ(a)=δ(s♠)=φ◦θ(s♠)=φ◦θ(a)=φ◦θ(t♠)=γ(t♠)=γ(a). Similarly we have δ(b)=γ(b) and δ(c)=γ(c).
The fundamental theorem implies that γ=δ. It follows that

γ(x) = δ(x) = δ(s♣)
by (1)

φ ◦ θ(s♣) = φ ◦ θ(x).

Thus the element γ of Γ(M,∼) is just the composition φ◦θ.
By definition there exist α, β∈Mor(M,M) such that φ=α ◦ β−1. Thus φ−1=β ◦α−1 and so is in

Mor(M,M). We have shown that Γ(M,∼) is a group. QED

(2.16) Notation Recall that for distinct A,B,C ∈M the function
[
A
♥
B
♦
C
♣

]
sends each element m of

M to that single element T ofM such that 〈T,A,B,C〉∈m. If A, B and C are distinct elements ofM and
U , V and W are distinct elements of M we apply the fundamental theorem (2.12) to obtain a unique
element

[
U
A
V
B
W
C

]
of Γ

M such that[
U

A

V

B

W

C

]A = U,

[
U

A

V

B

W

C

]B = V, and

[
U

A

V

B

W

C

]C = W. (1)

(2.17) Theorem Let M satisfy Postulates I, II and III, and suppose that M has at least three
distinct points. Then

Γ(M,∼) = {φ|M →M a bijection : (∀ t∈M) t ∼ φ◦t}. (1)

Proof. Suppose first that φ in Γ(M,∼). Let t∈M and choose A,B,C,D∈M such that 〈A,B,C,D〉 = t.
Since {A,B,C,D} has at least three elements, the fundamental theorem implies that φ is the only element
of Γ(M,∼) of which the composition with t is φ◦t=〈φ

A, φB, φC, φD〉. It follows from Postulate III
that t ∼ φ◦t.

Now we suppose instead that φ is in the right-hand set of (1). Let A,B, and C be distinct elements
of M. Let D≡φ

A, E≡φB and F≡φ
C. Since

[
D
A
E
B
F
C

]
is in Γ(M,∼), we know from the preceding

paragraph that, for generic X ∈M, 〈A,B,C,X〉 ∼ 〈D,E, F,
[
D
A
E
B
F
C

]X〉. But by assumption we have
〈A,B,C,X〉 ∼ 〈D,E, F, φ

X〉, which thus implies

〈D,E, F,
[
D

A

E

B

F

C

]X〉 ∼ 〈D,E, F, φX〉.
By Postulate II ((2.7) and (2.6)), it follows that φ

X =
[
D
A
E
B
F
C

]X. Hence φ is just
[
D
A
E
B
F
C

]
and so is in

Γ(M,∼). QED

(2.18) Theorem For distinct A,B,C ∈M,
[
A
♥
B
♦
C
♣

]
is the unique element of Mor(M,M) which

takes ♠♥ ♦♣ to A, ♠♦ ♥♣ to B, and ♠♣ ♥♦ to C.

For α, β, γ∈Mor(M,M), the function γ◦β−1◦α is again in Mor(M,M).

Proof. By definition, 〈
[
A
♥
B
♦
C
♣

] ♠♥ ♦♣ , A,B,C〉 is in ♠♥ ♦♣ . Since B 6=C we have A=
[
A
♥
B
♦
C
♣

] ♠♥ ♦♣ .
That B=

[
A
♥
B
♦
C
♣

] ♠♦ ♥♣ , and C =
[
A
♥
B
♦
C
♣

] ♠♣ ♥♦  follow from analogous reasoning.

Evidently we have [
U

R

V

S

W

T

]
=

[
U

♥

V

♦

W

♣

]
◦
[
R

♥

S

♦

T

♣

]−1

. (1)
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If there were another element φ of Mor(M,M) distinct from
[
A
♥
B
♦
C
♣

]
which sent ♠♥ ♦♣ to A, ♠♦ ♥♣

to B and ♠♣ ♥♦ to C, then
[
A
♥
B
♦
C
♣

]
◦φ−1 would be an element θ of Γ(M,∼) distinct from the identity

transformation. But this would be absurd since θ would leave A, B, and C fixed, and the fundamental
theorem would be violated. This shows the uniqueness of

[
A
♥
B
♦
C
♣

]
.

Suppose that α sends ♠♥ ♦♣ , ♠♦ ♥♣ , and ♠♣ ♥♦ respectively to A, B and C respectively, that β sends
them to R, S and T respectively, and that γ send them to U , V and W respectively. Then

α =

[
A

♥

B

♦

C

♣

]
and γ ◦ β−1 =

[
U

R

V

S

W

T

]
. (2)

Let

X ≡
[
U

R

V

S

W

T

]A, Y ≡
[
U

R

V

S

W

T

]B, and Z ≡
[
U

R

V

S

W

T

]C.
From the fundamental theorem follows that[

X

A

Y

B

Z

C

]
=

[
U

R

V

S

W

T

]
. (3)

Thus

γ ◦ β−1 ◦ α by (2)
[
U

R

V

S

W

T

]
◦
[
A

♥

B

♦

C

♣

]
by (3)

[
X

A

Y

B

Z

C

]
◦
[
A

♥

B

♦

C

♣

]
=

[
X

♥

Y

♦

Z

♣

]
.

This demonstrates the second part of Theorem (2.18). QED

(2.19) Theorem Let x be a permutation of Υ. If t ∼ s in MΥ
2+, then t◦x ∼ s◦x as well.

Proof. If t and s are compatible, by Postulate III, s=φ◦t for some φ∈Γ(M,∼) and so s◦x=φ◦t◦x ∼ t◦x,
again by Postulate III.

If t and s are incompatible, then Theorem (2.18) implies that both t and s are in the same element of
A ≡ { ♠♥ ♦♣ , ♠♦ ♥♣ , ♠♣ ♥♦ }. The permutation x evidently takes each element of A to another element of
A. It follows that t◦x ∼ s◦x. QED

(2.20) Notation For t∈MΥ
2+ we shall write t for the element of M of which t is a member.

(2.21) Corollary and Notation Each permutation x of Υ induces a well-defined bijection of M
as follows:

x|M 3 t ↪→ t ◦ x ∈M. (1)

Proof. This follows from applying (2.19) to (2.20). QED

(2.22) Notation We shall write Γ(M) for the set {α−1◦β : α, β∈Mor(M,M)}.

(2.23) Theorem The family Γ(M) is a group under composition, and is isomorphic to Γ(M,∼).
Proof. For any θ∈Mor(M,M) the function

Γ(M,∼) 3 φ ↪→ θ−1 ◦ φ ◦ θ ∈ Γ(M) (1)

is bijective and preserves the composition operator: thus it is an isomorphism of groups. QED

(2.24) Corollary (∀A,B,C∈M distinct)(∀R,S,T∈M distinct)

(∃! φ∈Γ(M)) φ(A) = R, φ(B) = S, and φ(C) = T. (1)

Proof. This follows from applying (2.23) to the fundamental theorem (2.12). QED

(2.25) Discussion It is a direct consequence of Postulate I that, for each x∈q02, x is the identity
transformation.

For q2 and q0 we have

♠♥ = ♦♣ = ♠♦♥♣ = ♠♣♥♦ , ♠♦ = ♥♣ = ♠♥♦♣ = ♠♣♦♥ and ♠♣ = ♥♦ = ♠♥♣♦ = ♠♦♣♥ .

Furthermore
♠♥ leaves ♠♥ ♦♣ fixed and interchanges ♠♦ ♥♣ with ♠♣ ♥♦ ,
♠♦ leaves ♠♦ ♥♣ fixed and interchanges ♠♥ ♦♣ with ♠♣ ♥♦

and ♠♣ leaves ♠♣ ♥♦ fixed and interchanges ♠♥ ♦♣ with ♠♦ ♥♣ .
For q1 and we have

♠♥♦ = ♠♣♥ = ♥♣♦ = ♠♦♣ and ♠♦♥ = ♠♥♣ = ♥♦♣ = ♠♣♦ .
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Specifically
♠♥♦ sends ♠♥ ♦♣ to ♠♣ ♥♦ to ♠♦ ♥♣ and then back to ♠♥ ♦♣

and
♠♦♥ sends ♠♥ ♦♣ to ♠♦ ♥♣ to ♠♣ ♥♦ and then back to ♠♥ ♦♣ .

(2.26) Definition One consequence of the fundamental theorem is that no projectivity, other
than the identity transformation, can have more than two fixed points. The fundamental theorem also
implies that every two points are fixed under some transformation, but per se it does not insure that there are
projectivities with a single fixed point. We shall call a projectivity with a single fixed point a translation13.

(2.27) Example Thus far nothing has been postulated about M which implies that M has more
than 3 points. In fact, if A, B and C are any three distinct points, then the sets M≡{A,B,C} and
M≡{ ♠♥ ♦♣ , ♠♦ ♥♣ , ♠♣ ♥♦ } satisfy Postulates I through III. In this simplest of all cases it follows from
the fundamental theorem that Γ(M,∼) (as well as Mor(M,M) and Γ(M) ) have exactly 6 members.
Specifically here we have

Γ(M) = {♠♠ , ♠♥ , ♠♦ , ♠♣ , ♠♥♦ , ♠♦♥}.

The transformations ♠♥ ♠♦ , and ♠♣ are translations. This is however atypical, and our fourth postulate
infra will invalidate this example.

(2.28) Notation and Definition For any positive integer n, we write Γn∼ (M) for the set of

φ∈Γ(M,∼) such that

n copies︷ ︸︸ ︷
φ◦. . .◦φ equals the identity transformation ι (and does not for any smaller positive

n) — Γn(M) is defined analogously. An element of Γ 2
∼ (M) will sometimes be referred to as an involution.

The identity transformation ♠♠ is the sole member of Γ 1(M). The fundamental theorem provides

numerous elements of Γ 2(M): in particular ♠♥ , ♠♦ , and ♠♣ . The transformations ♠♥♦ and ♠♦♥ are in
Γ 3(M), again by the fundamental theorem.

(2.29) Theorem Let A, B, C and D be four distinct points of M. Then there exists φ∈Γ 2
∼ (M)

such that φ
A=B and φ

C=D.
Proof. By Postulate I we have 〈A,B,C,D〉 ∼ 〈B,A,D,C〉 and by Postulate III there exists φ∈Γ(M,∼)

such that φ
A=B, φ

B=A, φ
C=D and φ

D=C. Since φ◦φ agrees with the identity element of Γ(M,∼)
on A, B and C, it follows from the fundamental theorem that it is the identity: that φ is in Γ 2

∼ (M). QED

(2.30) Theorem Let φ be an element of Γ(M,∼) and let A,B∈M distinct be such that φ
A=B

and φ
B=A. Then φ is in Γ 2

∼ (M).
Proof. IfM has only three points, then the conclusion follows from Example (2.27). We presume then

that M has at least four points and that φ 6∈ Γ 2
∼ (M). Then there exists C,D∈M distinct from A and B

such that φ
C=D and φ

D 6=C. By (2.29) there exists θ∈Γ 2
∼ (M) such that θ

A=B and θ
C=D. From

the fundamental theorem (2.12) follows that θ=φ, which is absurd. QED

(2.31) Theorem Let A,B,C∈M be distinct. Then there exists θ∈Γ 2(M) such that θ
A = C and

θ(
B = B.

Proof. By (2.24) there exists φ∈Γ(M) such that

φ(
 ♠♥ ♦♣  = A, φ(

 ♠♦ ♥♣  = B, and φ(
 ♠♣ ♥♦  = C.

The element ♠♦ of Γ(M) fixes ♠♦ ♥♣ and interchanges ♠♥ ♦♣ and ♠♣ ♥♦ . Thus we may let θ ≡ φ◦♠♦◦φ−1.
QED

(2.32) Corollary Let A,B,C ∈M be distinct. Then there exists θ∈Γ 2
∼ (M) such that θ

A=C and
θ
B=B.

Proof. Apply (2.23) to (2.31). QED

(2.33) Theorem Let φ be an element of Γ(M,∼) not in Γ 2
∼ (M). Then φ is the composition of two

involutions. In particular, if C ∈M is such that φ
C 6=C and if β∈Γ(M,∼) satisfies

β
φ−1C = φ

C, βφC = φ−1C and β
C=C, (1)

13 An element of Γ(M) with a single fixed point will also be called a translation.
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then the transformations β and α≡φ◦β are in Γ 2
∼ (M) and φ=α◦β.

Proof. That β is in Γ 2
∼ (M) follows from (2.30) and (2.33.1). We have

α
C = φ

βC = φ
C and α

φC = φ
βφC = φ

φ−1C = C

which with (2.30) implies that α is in Γ 2
∼ (M). That φ=α◦β follows from the definition of α. QED

(2.34) Theorem Let φ, θ∈Γ 2
∼ (M) and P,Q∈M be such that φ and θ agree on both P and Q.

Suppose that P is distinct from both Q and φ
Q. Then φ=θ.

Proof. Let T ∈M be distinct from P and Q.

We first consider the case wherein both P and Q are both left fixed by φ. We have φ
T  6=T by definition

of Γ 2
∼ (M). It follows that 〈P,Q, T, φ

T 〉∈MΥ
4 . Postulate I implies that 〈T, φ

T , P,Q〉 ∼ 〈P,Q, T, φT 〉,
and so Postulate III implies that there exists µ∈Γ(M,∼) such that

µ
T  = P, µ

φT  = Q, µ
P  = T, and µ

Q = φ
T .

Similarly, there exists ν∈Γ(M,∼) such that

ν
T  = P, ν

θT  = Q, ν
P  = T, and ν

Q = θ
T 

Both the transformations µ−1◦φ◦µ and ν−1◦θ◦ν evidently interchange P and Q and leave T fixed. Thus the
fundamental theorem implies that µ−1◦φ◦µ=ν−1◦θ◦ν. Consequently they have the same fixed points.
The fixed points of the first are t and φ

T ; those of the second are T and θ
T . Hence φ

T =θT . Since
T was taken arbitrarily, we have φ=θ.

Now we consider the case wherein φ
P  6=P . Then φ and θ agree not only on P and Q, but also

θ
φP  = θ

θP  = P = φ
φP .

By the fundamental theorem they must be identical.

The demonstration of the remaining case, wherein φ
Q6=Q, is analogous. QED

(2.35) Theorem If θ∈Γ 2
∼ (M) is distinct from φ∈Γ 2

∼ (M) but has a fixed point in common with φ,
then φ◦θ is a translation.14

Proof. Choose P ∈M such that φ
P =θP =P and suppose that Q∈M satisfies φ◦θ

Q=Q. Then
φ
Q=θQ. If Q were distinct from P , then Theorem (2.24) would imply the absurdity that φ=θ. QED

(2.36) Discussion and Definition We have yet to introduce the fourth postulate for M and ∼.
It will be closely connected with the existence of what we call harmonic pairs and quadric cycles.

An element t of MΥ
4 will be said to be a quadric cycle provided their exists φ∈Γ(M,∼) such that

φ ◦ t = t ◦ ♠♥♦♣ .
In this case the transformation φ must be in Γ 4

∼ (M) because φ◦φ◦φ◦φ evidently leaves t♠, t♥, t♦, and t♣
all fixed.

A ordered quadruple ´
`
A,B,C,D`

´
such that B=φ

A, C =φ
B, D=φ

C, and A=φ
D is a φ-orbit.

Clearly, necessary and sufficient conditions for ´
`
A,B,C,D`

´
to be a φ-orbit are for ´

`
B,C,D,A`

´
, ´
`
C,D,A,B `

´
,

and ´
`
D,A,B,C `

´
to be φ-orbits. Replacing φ by its inverse φ−1, we see also that ´

`
A,B,C,D`

´
is a φ-orbit

if and only if ´
`
D,C,B,A`

´
is a φ−1-orbit. If T is a point in a quadruple φ-orbit, we shall say that T and

φ◦φ
t are symmetric orbit points. Obviously the set of orbit points of an orbit is a union of two pairs

of symmetric orbit points. We shall say that a pair {´
`
A,C `

´
, ´
`
B,D`

´
} is a harmonic pair if A and C are

symmetric orbit points, and if B and D are symmetric orbit points, both with respect to a common element
φ of Γ(M,∼) (which φ is necessarily in Γ 4

∼ (M)).

14 Cf. (2.23).
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Fig. 12: A Quadric Cycle ´
`
A,B,C,D`

´
and Harmonic Pairs {´

`
A,C `

´
, ´
`
B,D`

´
} on the Circle

(2.37) Theorem Let A, B, C and D be distinct elements of M. The the following statements are
pairwise equivalent:

(i) 〈A,B,C,D〉 is a quadric cycle;
(ii) {´

`
A,C `

´
, ´
`
B,D`

´
} is a harmonic pair;

(iii) (∀ φ∈Γ(M,∼)) {´
`
φ
A, φC`

´
, ´
`
φ
B, φD`

´
} is a harmonic pair;

(iv) (∃ φ∈Γ 2
∼ (M)) φ

A=A, φB=D and φ
C=C;

(v) (∃ α, β∈Γ 2
∼ (M)) α

A=A, αC=C, βB=B, βD=D and α◦β=β◦α.
Furthermore, if {´

`
A,C `

´
, ´
`
B,D`

´
} is a harmonic pair, then

(vi) (∃ θ∈Γ(M,∼) a translation) θ
A=A, θ−1C=B, and θ

C=D.
Proof. (i)⇐⇒(ii): This follows directly from the definitions.

(ii)⇐⇒(iii): That (iii) implies (ii) follows when α is the identity transformation. Suppose that (ii) holds
and that φ∈Γ(M,∼). Since (i) and (ii) are equivalent, there exists θ∈Γ(M,∼) such that

θ ◦ 〈A,B,C,D〉=〈A,B,C,D〉 ◦ ♠♥♦♣ .
Thus

(φ ◦ θ ◦ φ−1) ◦ 〈φ
A, φB, φC, φD〉 = φ ◦ θ ◦ 〈A,B,C,D〉 =

φ ◦ 〈A,B,C,D〉 ◦ ♠♥♦♣ = 〈φ
A, φB, φC, φD〉 ◦ ♠♥♦♣ ,

which means that 〈φ
A, φB, φC, φD〉 is a quadric cycle. Since (i) and (ii) are equivalent, it follows

that {´
`
φ
A, φC`

´
, ´
`
φ
B, φD`

´
} is a harmonic pair.

(i)=⇒(iv): Let η∈Γ 4
∼ (M) be such that η◦ t = t◦ ♠♥♦♣ . By (2.29) there exists θ∈Γ 2

∼ (M) such that
θ
A=D and θ

B = C. Then

η ◦ θ
A = θ

D = A, η ◦ θ
B = η

C = D, η ◦ θ
C = η

B = C, and η ◦ θ
D = η

A = B.

Letting φ≡ η◦θ, we see from (2.30) that φ is an involution.
(iv)=⇒(v): Applying (iv) twice we obtain α in Γ 2

∼ (M) such that

α
A = A, α

C=C, αB=D.
Applying (2.32) we choose β∈Γ 2

∼ (M)

β
A = C, β

B = B, and β
C = A.

Then

α ◦ β
A = α

C = C and α ◦ β
C = α

A = A

which by (2.30) implies that

α ◦ β

16



is an involution: that is, α◦β=β◦α.
(v)=⇒(i). We let α and β be as in (v). Since α is not the identity, the fundamental theorem

guarantees that α cannot fix B. However

β
αB = α

βB = α
B.

The fundamental theorem also guarantees that β only fixes B and D — consequently

α
B = D =⇒ α

D = B. (1)

A By (2.29) there exists θ∈Γ 2
∼ (M) such that θ

A=D and θ
B = C. Letting φ≡α◦θ we have

φ
A = α ◦ θ

A = α
D by (1)

B, φ
B = α ◦ θ

B = α
C by (v)

C,

φ
C = α ◦ θ

C = α
B by (1)

D and φ
D = α ◦ θ

D = α
A by (v)

A,

which implies (i).
We have now shown that (i) through (v) are pairwise equivalent. It but remains to show that (iv)

implies (vi). By (2.32) there exists α∈Γ 2
∼ (M) such that α

A=A, α
C=D, and α

D=C. Letting θ≡α◦φ
we have

θ
A = α ◦ φ

A by (iv)
α
A = A

and
θ
B = α ◦ φ

B by (iv)
α
D = C, and θ

C = α ◦ φ
C by (iv)

α
C = D.

From (2.35) follows that θ is a translation. QED

(2.38) Postulate IV Whenever a translation τ on M and an involution α on M agree on at least
two points, including the fixed point of τ, then the composition τ◦α is an involution.

(2.39) Definition An equivalence relation ∼ on a set M satisfying all four postulates (2.3), (2.7),
(2.10) and (2.38), will be called a meridian equivalence relation for M.

The set M will be called the intrinsic meridian model.

(2.40) Theorem Let ∼ be a meridian equivalence relation. Then the following hold:

(i) (∀A,C ∈M distinct)(∀ τ a translation: τ
A=A) {A, τ−1C, C, τC} is a quadric cycle;

(ii) (∀ τ, θ translations)(∀A,X ∈M:A=τ
A=θA6=τX=θX) τ=θ;

(iii) (∀A,B,C ∈M distinct)(∃!D∈M) {A,B,C,D} is a quadric cycle;
(iv) (∀ φ∈Γ 2

∼ (M), B∈M:φ
B=B)(∃!D∈M) D 6=B and φ

D=D.
Proof. (i): By (2.32) there exists α∈Γ 2

∼ (M) such that

α
τ−1C = C and α

A = A. (1)

By Postulate IV (2.38), τ◦α is an involution. By (1), we have

τ ◦ α
A = A, τ ◦ α

τ−1C = τ
C and τ ◦ α

C = τ
τ−1C = C (2)

Since τ◦α is an involution, we also have τ◦α
τC=τ−1C. This, with (2), and in view of and (2.37.i) and

(2.37.ii), implies that {A, τ−1C, C, τC} is a quadric cycle.
(ii): Let C≡ τ

X and choose α as in (1). As above, we have

θ ◦ α
A = A, θ ◦ α

θ−1C = θ
C, θ ◦ αC = θ

θ−1C = C and θ◦α
θC=θ−1C

which can be rewritten as

θ ◦ α
A = A, θ ◦ α

X = θ
C, θ ◦ αC = C and θ◦α

θC=X. (3)

Since (1) can be rewritten as

τ ◦ α
A = A, τ ◦ α

X = τ
C, τ ◦ αC = C and τ◦α

τC=X, (4)

it follows from the fundamental theorem that τ◦α = θ◦α. Thus τ = θ.
(iii): Apply (2.32) to choose α, β∈Γ 2

∼ (M) such that

α
A = β

A = A, α
B = C and β

C = C. (5)

By (2.35) we know that β◦α is a translation τ. We have from (5) that

τ
A = a and τ

B = C
by (i)⇒ {A,B,C, τ

C} is a quadric cycle. (6)
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Suppose that D is any element of M such the {A,B,C,D} is a quadric cycle. By (2.37.vi) there exists a
translation θ such that

θ
A = a, θ

B = C and θ
C = D. (7)

From (6), (7) and (ii) it follows that τ=θ. Consequently D=τ
C.

(iv): Let A∈M be distinct from B. If φ
A=A we are done, so we shall presume that φ

A 6=A. We
let C≡φ

A and apply (iii) to obtain D∈M such that {A,B,C,D} is a quadric cycle. By (2.37.iv) there
exists ρ∈Γ 2

∼ (M) such that ρ
A=C, ρ

B=B, and ρ
D=D. By the fundamental theorem we have ρ=φ.

It follows that φD=D. That D is unique follows from the fundamental theorem.QED

(2.41) Notation It follows from Theorem (2.40.iv) than each of the transformations15 ♠♥ , ♠♦ and
♠♣ have fixed points other than ♠♥ ♦♣ , ♠♦ ♥♣ and ♠♣ ♥♦ , respectively. We shall denote these other fixed
points by ♠♥‡♦♣ , ♠♦‡♥♣ and ♠♣‡♥♦ , respectively.

(2.42) Example The elements ♠♥‡♦♣ , ♠♦‡♥♣ and ♠♣‡♥♦ may not be distinct. Suppose that
M has exactly four elements A, B, C and D. Let ∼ be the equivalence relation on MΥ

2+ of which the
corresponding partition has the following four elements:

♠♥ ♦♣ , ♠♦ ♥♣ , ♠♣ ♥♦ and MΥ
4 .

Then
M={ ♠♥ ♦♣ , ♠♦ ♥♣ , ♠♣ ♥♦ , ♠♥‡♦♣ }

and
{ ♠♥‡♦♣ }={ ♠♦‡♥♣ }={ ♠♣‡♥♦ }=MΥ

4 .

(2.43) Theorem Let ∼ be a meridian equivalence relation. The following statements hold:
(i) ♠♥‡♦♣ ={t∈MΥ

4 : {{t♠, t♥}, {t♦, t♣}} is a harmonic pair};
(ii) ♠♦‡♥♣ ={t∈MΥ

4 : {{t♠, t♦}, {t♥, t♣}} is a harmonic pair};
(iii) ♠♣‡♥♦ ={t∈MΥ

4 : {{t♠, t♣}, {t♥, t♦}} is a harmonic pair}.
Proof. Denote by X the set {t∈MΥ

4 : {{t♠, t♥}, {t♦, t♣}} is a harmonic pair}. Let r, s∈X . By the
fundamental theorem there exist δ∈Γ(M,∼) such that

δ(r♠) = s♠, δ(r♥) = s♥, and δ(r♦) = s♦.

From Theorem (2.37.iii) follows that

{{s♠, s♥}, {s♦, δ(r♣)}} is a harmonic pair.

From the uniqueness part of Theorem (2.38.iv) follows that r♣=s♣ and so by Postulate III it follows that
r ∼ s. Thus X is a subset of a single member Y of M.

Let {{A,C}, {B,D}} be a harmonic pair. Then 〈A,B,C,D〉∈X, whence 〈A,B,C,D〉 =Y. We have

♠♥
 〈A,B,C,D〉  = ( 〈A,B,C,D〉 ◦ ♠♥ ) = 〈C,B,A,D〉 .

Since {{C,A}, {B,D}} is a harmonic pair, it follows that 〈C,B,A,D〉 is in X, and so 〈C,B,A,D〉 =Y. We

shave shown that ♠♥ leaves Y fixed. Thus, by definition, Y= ♠♥‡♦♣ . Hence X ⊂ ♠♥‡♦♣ .
Let t be in ♠♥‡♦♣ . By Postulate III there exists θ∈Γ(M,∼) such that t=θ◦〈A,B,C,D〉. From Theorem

(2.37.iii) follows that {{t♠, t♥}, {t♦, t♣}} is a harmonic pair. Thus t is in X. We have demonstrated that
X= ♠♥‡♦♣ .

The establishment of (ii) and (iii) is analogous to that of (i). QED

(2.44) Corollary Let ∼ be a meridian equivalence relation. If any two elements of the set
{ ♠♥‡♦♣ , ♠♦‡♥♣ , ♠♣‡♥♦ } are distinct, then all three are.

Proof. Suppose for instance that ♠♥‡♦♣ 6= ♠♦‡♥♣ are distinct: that

{t∈MΥ
4 : {{t♠, t♥}, {t♦, t♣}} is a harmonic pair}6={t∈MΥ

4 : {{t♠, t♦}, {t♥, t♣}} is a harmonic pair}. (1)

Applying ♠♥ to (1) we obtain

{t∈MΥ
4 : {{t♠, t♥}, {t♦, t♣}} is a harmonic pair}6={t∈MΥ

4 : {{t♠, t♣}, {t♥, t♦}} is a harmonic pair} (2)

15 Cf. (2.21.1).
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and applying ♠♦ to (1) we obtain

{t∈MΥ
4 : {{t♠, t♣}, {t♥, t♦}} is a harmonic pair}6={t∈MΥ

4 : {{t♠, t♦}, {t♥, t♣}} is a harmonic pair}. (3)

Thus (2) and (3) yield ♠♥‡♦♣ 6= ♠♣‡♥♦ and ♠♣‡♥♦ 6= ♠♦‡♥♣ . QED

(2.45) Theorem Let ∼ be a meridian equivalence relation. Let P be in M and let α, β, γ∈Γ 2
∼ (M)

agree on P . Then α◦β◦γ either is the identity transformation or is in Γ 2
∼ (M).

Proof. For α◦β◦γ to be in Γ 2
∼ (M) is equivalent to

α ◦ β ◦ γ = γ ◦ β ◦ α.
If α=β or β=γ the above equation is trivial, so we will suppose that α6=β 6=γ. Let Q be such that α

Q 6=βQ.
By Theorem (2.29) there exists δ∈Γ 2

∼ (M) such that δ
P =P and δ(α◦β

Q)=γQ. By Theorem (2.35) β◦α
and γ◦δ are translations. Since they agree on P and both take on the value Q at α◦β

Q, it follows from
Theorem (2.40.ii) that β◦α=γ◦δ. From this follows that γ◦β◦α=δ, which means in particular that γ◦β◦α
is in Γ 2

∼ (M): it is its own inverse α◦β◦γ. QED

(2.46) Theorem Let ∼ be a meridian equivalence relation. Let A,B,C,D∈M be such that
{A,D} ∩ {B,C} = ∅. Then there exists a unique element

[
A
D
B
C

]
of Γ 2

∼ (M) such that[
A

D

B

C

]A = D and

[
A

D

B

C

]B = C. (1)

Proof. If A 6=D and B 6=C, this is just (2.29). If #{A,B,C,D} = 3, then this is just (2.32). If A=D
and B=C, and if E is any distinct third point, it follows from (2.40) (iii) that there exists M ∈M such that
{´
`
A,B `

´
, ´
`
E,M `

´
} is a harmonic pair. From (iii) of (2.40) follows that there exists a unique

[
A
D
B
C

]
∈Γ 2

∼ (M)
such that (1) holds. QED

(2.47) Discussion We could as this point enter further into the the description and classification
of the elements of Γ(M,∼). However there is an alternate characterization of the meridian equivalence
relation which seems a more appropriate setting for that program. We shall set the foundation for this
characterization in the next section.

(2.48) Historical For each quadriad t∈MΥ
2+ we can form the pair Wurf

t≡{´
`
t♥, t♦ `

´
, ´
`
t♠, t♣ `

´
} of

ordered pairs. We note that

(∀ s, t∈MΥ
2+) Wurf

s = Wurf
t⇐⇒ s = t◦ ♠♥♦♣

Because of Postulate I it follows that, whenever Wurf
s=Wurf

t, then s ∼ t. This means that in obtaining
M we could alternatively have placed an equivalence relation on the family

W"urfe ≡ {{´
`
A,B `

´
, ´
`
C,D`

´
} : A,B,C,D∈M and #{A,B,C,D} > 2}.

This is the program followed by Karl Von Staudt in [Von Staudt] pp. 166 et seq. and later by Veblen and
Young in [Veblen & Young] §55. The latter authors used the terms throws for what Von Staudt called Würfe
and marks for the (equivalence class) elements of M. None of these authors however begins with a system
of postulates as was done here.
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3. Libras (Part I)

(3.1) Introduction The meridian equivalence relation appears naturally out of a particular algebraic
operation. Its introduction will be much simplified if we bring to hand a more fundamental notion which,
since it presently seems to be nowhere in print, requires introduction here. The basic notion behind it is a
set of scales — hence the appellation: ‘‘libra’’. For brevity however, we shall take a short cut past the scales,
leaving those for the appendix: Section (12).

(3.2) Definitions Let L be a set and b, , c|L×L×L → L a trinary operator on L for which the
following holds:

(∀ a, b ∈ L) ba, a, bc = b = bb, a, ac (1)

and

(∀ a, b, c, d, e ∈ L) bba, b, cc, d, ec = ba, b, bc, d, ecc. (2)

Then b, , c will be said to be a libra operator and L, relative to b, , c, a libra.
A subset B of a libra will be said to be balanced provided ba, b, cc is in B whenever a, b, c∈B.

(3.3) Theorem Let b, , c|L×L×L→ L be a libra operator on a set L. Then

(∀ a, b, c, d, e∈L) ba, bd, c, bc, ec = bba, b, cc, d, ec. (1)

Proof. We have

a
by (3.2.1) ba, b, bc by (3.2.1) ba, b, bc, c, bcc by (3.2.1) ba, b, bbc, d, dc, c, bcc by (3.2.2)

(2)
bba, b, bc, d, dcc, c, bc by (3.2.2) bbba, b, cc, d, dc, c, bc by (3.2.2) bba, b, cc, d, bd, c, bcc

whence follows

ba, bd, c, bc, ec by (2) bbba, b, cc, d, bd, c, bcc, bd, c, bc, ec by (3.2.2)

bba, b, cc, d, bbd, c, bc, bd, c, bc, ecc by (3.2.1) bba, b, cc, d, ec.

QED

(3.4) Convention The various compositions of libra operators with libra operators, in view of
(3.2.1), (3.2.2) and (3.3.1), may be greatly simplified: we define

ba, b, c, d, ec ≡ bba, b, cc, d, ec = ba, bd, c, bc, ec. (1)

Each such composition may be converted to a form

ba1, a2, ba3, a4, b · · · ban−2, an−1, anc · · · ccc (2)

for n a positive odd integer. We shall at times adopt the abbreviation

ba1, a2, · · · , anc (3)

for (2).

(3.5) Example Let A be an affine space over a field F . Then the translations of A form a vector
space V over F . The translation of a point a ∈ A by a vector v ∈ V is denoted by v+a. To any two distinct
points a, b ∈ A corresponds a unique vector (which we denote by b− a) such that (b− a) + a = b. Then

ba, b, cc ≡ (a− b) + c (∀ a, b, c ∈ L)

defines a libra operator. We have d = ba, b, cc precisely when the points a, b, c and d describe the points of
a parallelogram.16

(3.6) Example Given two sets X and Y of equal cardinality we shall write J(X,Y ) for the set of
all bijections of X onto Y . The set J(X,Y ) is a libra under the canonical libra operator

(∀ f, g, h ∈ J(X,Y )) bbf, g, hcc ≡ f ◦ g−1 ◦ h. (1)

Any balanced subset of J(X,Y ) will be called a libra of operators from X to Y .

16 Taken in clockwise, or counter-clockwise order.
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The family Mor(M,M) of (2.8.1) is a balanced subset of J(M,M), and so is a libra of operators from
M to M.

Fig. 13: Affine Libra Operator

(3.7) Theorem Let b, , c be a libra operator on a libra L and let e an element of L. Then the binary
operation x · y ≡ bx, e, yc is a group operation on L, relative to which e is the identity and

(∀ x ∈ L) be, x, ec is the inverse of x.

Proof. For x, y, z∈L

(x · y) · z = bbx, e, yc, e, zc by (3.2.2) bx, e, by, e, zcc = x · (y · z),

x · e = bx, e, ec by (3.2.1)
x

by (3.2.1) be, e, xc = e · x,

x · be, x, ec = bx, e, be, x, ecc by (3.2.2) bbx, e, e, c, x, ec by (3.2.1) bx, x, ec by (3.2.1)
e

and

be, x, ec · x = bbe, x, ec, e, xc by (3.2.2) be, x, be, e, xcc by (3.2.1) be, x, xc by (3.2.1)
e.

QED

(3.8) Theorem Let G be a group with binary operation ·. Define the trinary operator b, , c by

ba, b, cc ≡ a · b−1 · c
for all a, b, c∈G. Then b, , c is a libra operator.

Proof. For r, s, t, u, v∈G,

br, s, sc = r · s−1 · s = r = s · s−1 · r = bs, s, rc
and

bbr, s, tc, u, vc = (r · s−1 · t) · u−1 · v = r · s−1 · (t · u−1 · v) = br, s, bt, u, vcc.

QED

(3.9) Definition The libra operator defined in (3.8) will the called the group libra operator.

(3.10) Definition A function f from one libra L1 to another libra L2 which preserves the libra
operator is called a libra homomorphism. Thus a libra homomorphism f is characterized by

(∀ a, b, c∈L1) bf
a, fb, fcc = f

ba, b, cc. (1)

A libra homomorphism which is bijective is a libra isomorphism.

(3.11) Theorem Let G and H be two groups, and let f be a group homomorphism from G to H.
Then f is also a homomorphism of libras.

Proof. For a, b, c∈G we have

bf
a, fb, fcc = f

a · fb−1 · f
c = f

a · b−1 · c
 = f

ba, b, cc.
QED

(3.12) Definitions and Notation A libra L will be called abelian if ba, b, cc=bc, b, ac for all
a, b, c∈L. Evidently L is abelian if and only if each of its corresponding groups is abelian.
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For a, b∈L we define the functions

aπb|L 3 x ↪→ ba, x, bc ∈ L, aρb|L 3 x ↪→ bx, a, bc ∈ L, and aλb|L 3 x ↪→ ba, b, xc ∈ L.
The functions aρb and aλb, respectively, are called right translations and left translations, respectively.
When L is abelian, left translations are right translations, and vice versa, and so in this case we simply call
them translations. When L is abelian, the functions aπb are called (inner) involutions.

(3.13) Theorem Let b, , c be an abelian libra operation on a set L. Let Π
L denote the set of

inner involutions on L. Then
(i) each function in Π

L is its own inverse;
(ii) (∀ a, b∈L)(∃! f ∈Π

L) f
a=b;

(iii) (∀ f, g, h∈Π
L) f ◦g◦h∈Π

L.
Proof. For r, s, t, u, v, w, x∈L

rπs ◦ rπs
x = br, br, x, sc, sc = br, bs, x, rc, sc by (3.3.1) br, r, x, s, sc by (3.2.1)

x,

rπs
r = br, r, sc by (3.2.1)

s,

and, if we let a≡ br, u, vc and b≡ bw, t, sc,

rπs ◦ tπu ◦ vπw
x = br, bt, bv, x, wc, uc, sc by (3.3.1) br, bbt, w, bx, v, uccc, sc by (3.3.1)

br, bx, v, uc, bw, t, scc = br, u, v, x, w, t, sc = bbr, u, vc, x, bw, t, scc = aπb.

It remains only to show that rπs is the only element of Π
L which sends r to s. Suppose that tπu is

another such. Then s=bt, r, uc, whence, for each x∈L,

rπs
x = br, x, sc = br, x, bt, r, ucc by (3.3.1) br, br, t, xc, uc =

br, bx, t, rc, uc by (3.3.1) bbr, r, tc, x, uc by (3.2.1) bt, x, uc = tπu
x.

QED

(3.14) Corollary Relative to the trinary operator

Π
L×ΠL×ΠL 3 (´

`
f, g, h`

´
↪→ f ◦ g ◦ h ∈ Π

L,
Π

L is a libra itself.
Proof. This follows from (3.13.i) and (3.13.iii). QED

(3.15) Theorem Let Π be a family of bijections of a set S such that
(i) each function in Π is its own inverse;
(ii) (∀ a, b∈S)(∃! f ∈Π) f

a=b;
(iii) (∀ f, g, h∈Π) f ◦g◦h∈Π.

Let T ≡ {f ◦g : f, g∈Π}. Then
(iv) (∀ f, g, h, k∈Π:(∃ s∈S) f ◦g

s=h◦ks) f ◦g=h◦k;
(v) (∀ a, b∈S)(∃! aτb∈T) aτb

a=b;
(vi) T is an abelian group under composition.

Proof. If f ◦g
s=h◦ks, then h◦f ◦g

s=ks and so (iii) and (ii) imply that h◦f ◦g=k. Thus (iv)
holds.

Let f be the function in Π which leaves a fixed and let g be the one which sends a to b. Then g◦f
a=b.

That g◦f is unique with this property follows from (iv), which proves (v).
For f, g, h, k∈Π we have (f ◦g)◦(h◦k)=(f ◦g◦h)◦k which is in T by (iii). That f ◦f is the identity

function ι follows from (i). For f, g∈Π, we have (f ◦g)◦(g◦f)=ι by (i).17 Thus T is a group.

For f, g, h, k∈Π we have (f ◦g◦h)
−1

=h◦g◦f . By (i) and (iii) this implies that

f ◦ g ◦ h = h ◦ g ◦ f.
Consequently

(f ◦ g) ◦ (h ◦ k) = (f ◦ g ◦ h) ◦ k = (h ◦ g ◦ f) ◦ k = h ◦ (g ◦ f ◦ k) = h ◦ (k ◦ f ◦ g) = (h ◦ k) ◦ (f ◦ g)

which proves (vi). QED

17 By ι we mean the identity function.
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(3.16) Definition A family Π of operators of a set S satisfying conditions (i), (ii) and (iii) of (3.15)
will be said to be an inner involution libra on S.

(3.17) Theorem . Let Π be an inner involution libra on family of bijections of a set C: i. e. the
following hold

(i) each function in Π is its own inverse;
(ii) (∀ a, b∈C)(∃! f ∈Π) f

a=b;
(iii) (∀ f, g, h∈Π) f ◦g◦h∈Π.

For all a, b, c∈C we denote by aφc the function in Π which sends a to c, and define ba, b, cc ≡ aφc
b.

Then b, , c is an abelian libra operator on C and, for each x∈C

Π 3 π ↪→ π
x ∈ C is a libra isomorphism. (1)

Proof. Let a, b and c be generic elements of C. We have

ba, a, bc = aφb
a = b and ba, b, bc = aφb

b = a

by definition, which is just (3.2.1).
Let a, b, c, d and e be generic elements of C. Let T be as in (3.15). For all x, y∈C, let xτy be as in

(3.15.v). It follows from (3.15) that

(∀ x∈C) aφx ◦ bφx
b = a =⇒ (∀ x∈C) aφx ◦ bφx = bτa (2)

and

(∀ x∈C) xφe ◦ xφd
d = e =⇒ (∀ x∈C) xφe ◦ xφd = dτe. (3)

Letting u≡ bτa
c and v≡ dτe

c, we have

bba, b, cc, d, ec = baφc ◦ bφc
c, d, ec by (2) bbτa

c, d, ec = bu, d, ec =

uφe ◦ uφd
u by (3)

dτe
u = dτe ◦ bτa

c by (3.15.vi)
bτa ◦ dτe

c = bτa
v by (2)

aφv ◦ bφv
v =

ba, b, vc = ba, b, dτe
cc by (3) ba, b, cφe ◦ cφd

cc = ba, b, bc, d, ecc

which establishes (3.2.2).
Let x be in C and α, β and γ in Π. Let c≡γ

x, b≡βc and a≡α
b. Then α=aφb, β=bφc and γ=cφx.

We have

bbα, β, γcc
x=α◦β◦γx=aφb◦bφc◦γ=cφxx=

a=ba, x, b, b, x, c, c, x, xc=bba, x, bc, bb, x, cc, bc, x, xcc=baφb
x, bφcx, cφxxc=bαx, βx, γxc.

QED

(3.18) Example Let P be the real projective plane, let C be some conic in P and let N be some
line in P . Each point q∈N not on C corresponds to an involution x̂ on C defined as in the figure below:

Fig. 14: Involution of a Circle by a Point on a Line.
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In the next figure we take three points a, b and c in N and find the element ba, b, cc of N such that

ba, b, cĉ = â◦b̂◦ĉ, by picking points x and y on C at random, and checking that the results are the same for
each.

Fig. 15: Libra Operator Induced on a Line by a Circle.
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4. Meridians

(4.1) Definition Let M be a set with at least four elements, and define

M(5) ≡ {´
`
A,B,C,D,E `

´
∈M×M×M×M×M : {A,E} 6= {B,D}}.

Suppose that a quinary operation

M(5) 3 ´
`
A,B,C,D,E `

´
↪→

A B
C

D E
∈M

satisfies, for all (∀ ´
`
A,B,C,D,E `

´
, ´
`
R,S, T, U, V `

´
∈M(5))

A B
C

D E
=
E B
C

D A
=
B A
C

E D
, (1)

A B
C

D E
= F if F ∈ {A,E} ∩ {B,D}, (2)

A B
A

D E
= E if {A,E} ∩ {B,D} = ∅, (3)

A B
C

D E
B

R
D S

=

A B
C

D
E B
R

D S

, (4)

and

A B
R

D E

A B
S

D E

A B
T

D E

A B
U

D E

A B
V

D E

=

A B
R S
T

U V
D E

. (5)

Then we shall say that the quinary operator is a meridian operator and that M, relative to [·····], is a
meridian.18

Condition (1) is an abelian or commutative condition, which immediately implies several others: to wit

A B
C

D E
=
A D
C

B E
=
B E
C

A D
=
E D
C

B A
=
D A
C

E B
=
D E
C

A B
. (6)

18 meridian. . . 4.[Ellipt. for meridian circle or line.] a. Astr. (More explicitly celestial m.) The great
circle (of the celestial sphere) which passes through the celestial poles and the zenith of any place on the
earth’s surface ([Oxford Eng. Dict.]).
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Condition (3) is reminiscent of (3.2.1) and condition (4) is reminiscent of (3.2.2). Applying the commutative
conditions (1) and (6) to (2), (3) and (4), we obtain as well

E B
A

D A
=
A E
D

D B
=
A B
B

E C
= E =

E B
C

E D
=
E E
C

B D
=
A E
C

D E
(7)

and

A
A B
C

D E
R

S E

=

A B
C

A D
R

S E
E
. (8)

If M and N are two meridians and f |M → N satisfies

(∀A,B,C,D,E ∈M(5)) f(
A B
C

D E
) =

f
A f

B
f
C

f
D f

E ,

then f is a homomorphism of meridians. Condition (4) just states that each mapping

M3 X ↪→
A B
X

D E
∈M

is a homomorphism of meridians. The next theorem shows that each mapping M3 X ↪→
X B
C

D E
∈M is as

well.

To assist in the the proof of that theorem and elsewhere we define, for B and D fixed inM, the auxiliary

trinary operator
B
,,

D

on {x ∈M : B 6=X 6=D} by

B
A,C,E

D

=
A B
C

D E
. (9)

It follows from (2) and (3) that it is a libra operator — from (1) follows that it is abelian.

(4.2) Theorem Let [·····] be a meridian operator on a set M. For ´
`
R,S, T, U, V `

´
∈ M(5) and

B,C,D,E∈M

R B
C

D E

S B
C

D E

T B
C

D E

U B
C

D E

V B
C

D E

=

R S
T

U V
B

C
D E

.
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Proof. Upon replacing E by C, (4.1.5) implies

A B
R

D C

A B
S

D C

A B
T

D C

A B
U

D C

A B
V

D C

=

A B
R S
T

U V
D C

.

Applying (4.1.5) once more we have

A B
A B
R

D C
D E

A B
A B
U

D C
D E

A B
A B
T

D C
D E

A B
A B
S

D C
D E

A B
A B
V

D C
D E

=

A

D

A B
R S
T

U V
D C

B

E

.

Abbreviating the libra notation
B
,,

D

of (4.1.9) to b, , c, the above becomes

bA, bA,R,Cc, Ec

bA, bA,U,Cc, Ec
bA,bA,T,Cc,Ec

bA, bA,S,Cc, Ec

bA, bA, V,Cc, Ec

.

= bA,bA,
R S
T

U V
,Cc,Ec

which by (3.3.1), (3.2.1) and the fact that b, , c is abelian, reduces to

bR,C,Ec

bU,C,Ec
bT,C,Ec

bS,C,Ec

bV,C,Ec

.

= b
R S
T

U V
,C,Ec

which is just the equality we set out to establish, but in libra operator notation. QED

(4.3) Theorem Let [·····] be a meridian operator on a set M. For (R,B,C,D, S) ∈M(5) and A,E ∈M
such that {A,E}6={B,D}, we have

A B
R

D C
B

S
D E

=

A B
R B
C

D S
D E

.

Proof. From Theorem (3.3) we have
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A B
R

D C
B

S
D E

=
B B

A,R,C
D

,S,E
D

=
B
A,

B
S,C,R

D

,E
D

=
B
A,

B
R,C,S

D

,E
D

=

A B
R B
C

D S
D E

.

QED

(4.4) Definition and Notation Let X be any set and Π a family of self-inverse bijections of X
such that

(∀A,B,D,E ∈ X :{A,E} ∩ {B,D} = ∅)(∃! A↔EB↔D ∈ Π)
A↔E
B↔D

A = E and
A↔E
B↔D

B = D; (1)

(∀A ∈ X )(∀ α, β, γ ∈ Π: α
A = β

A = γ
A) α ◦ β ◦ γ ∈ Π; (2)

(∀ α, β ∈ Π) α ◦ β ◦ α ∈ Π. (3)

In this case we shall say that Π is a meridian family of involutions of the set X .

(4.5) Theorem Let M be a set and let Π be a meridian family of involutions of M. For
(A,B,C,D,E) ∈M(5) define

A B
C

D E
≡


A↔E
B↔D

C, if {A,E} ∩ {B,D} = ∅;
A, if A=B or A=D;
E, if E =B or E =D.

Then [·····] is a meridian operator on M.

Proof.
(4.1.1)⇒ For ´

`
A,B,C,D,E `

´
∈M(5) we have

A B
C

D E
=

A↔E
B↔D

C =
E↔A
B↔D

C =
E B
C

D A

and
A B
C

D E
=

A↔E
B↔D

C =
B↔D
A↔E

C =
B A
C

E D
.

(4.1.2)⇒ Follows directly from the definition of [·····].
(4.1.3)⇒ Let B and D be in M, and let ΠB,D≡{ A↔EB↔D : A,E∈M and {A,E} ∩ {B,D} = ∅}. Let

MB,D≡{X ∈M : B 6=X 6=D}. It follows from (4.4) that, if we replace Π in (3.17) by ΠB,D and C in (3.17)
by MB,D, then (i), (ii) and (iii) of (3.17) are satisfied. By (3.17), the operator

MB,D×MB,D×MB,D 3 ´
`
A,C,E `

´
↪→ bA,C,Ec≡ A↔E

B↔D
C ∈MB,D (1)

is a libra operator. Consequently,

(∀A,E∈MB,D)
A B
A

D E
= bA,A,Ec by (3.2.1)

E

which is (4.1.3).
(4.1.4)⇒ For A,C,E,R, S∈MB,D we have

A B
C

D E
B

R
D S

by (1) bbA,C,Ec, R, Sc by (3.2.2) bA,C, bE,R, Scc by (1)

A B
C

D
E B
R

D S

.
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(4.1.5)⇒ From (4.4.3) follows that, for all α, β∈Π, α◦β◦α is in Π. Letting α≡ A↔E
B↔D and β≡ R↔V

S↔U , we
obtain

α◦β◦α
 A B

R
D E

 = α◦β◦α◦α
R = α◦β

R = α
V  =

A B
V

D E

and

α◦β◦α
 A B

S
D E

 = α◦β◦α◦α
S = α◦β

S = α
U =

A B
U

D E

whence follows that

α◦β◦α =

A B
R

D E
↔
A B
V

D E

A B
S

D E
↔
A B
U

D E

. (2)

Consequently

A B
R

D E

A B
S

D E

A B
T

D E

A B
U

D E

A B
V

D E

=

A B
R

D E
↔
A B
V

D E

A B
S

D E
↔
A B
U

D E

αT  by (2)
α◦β◦α◦α

T  = α◦β
T  =

A B
R S
T

U V
D E

which is (4.1.5). QED

(4.6) Definition and Notation Let [·····] be a meridian operator for a meridian M. We define

(∀A,B,D,E∈M:{A,E} ∩ {B,D}=∅) A↔E
B↔D |M 3 X ↪→

A B
X

D E
∈M

and for B,C,D,E ∈M such that E /∈ {B,D}

BlE
D↗C
|M 3 X ↪→

X B
C

D E
∈M.

Functions of the form
A↔E
B↔D are called meridian involutions and functions of the form AlE

B↗D
are called

meridian lations. We shall write Π
M for the family of all meridian involutions and Λ

M for the
family of all meridian lations. We write Γ

M for the smallest balanced subset of J(M,M) containing
Λ
M ∪ΠM as a subset.

(4.7) Theorem Let M be a meridian and [·····] its meridian operator. Then, for M,B,C,D,E∈M
such that {B,C} ∩ {D,M} = ∅ and {B,E} ∩ {D,M} = ∅,

MlE
D↗C

= B↔E
D↔M ◦ B↔C

D↔M .

Proof. For X ∈M we have
B↔E
D↔M ◦ B↔C

D↔M
X =

D
B,

D
B,X,C

M

,E
M

=
D
X,C,E

M

= MlE
D↗C

X.
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QED

(4.8) Corollary The smallest balanced subset of J(M,M) containing Π
M as a subset is Γ

M.
(4.9) Theorem Let M be a meridian and [·····] its meridian operator. Then Π

M is a meridian
family of involutions on M.

Proof. Let φ∈Π
M. Then φ=

A↔E
B↔D for some A,B,D,E∈M. From Theorem (4.3) and (4.1.3) we

have for X ∈M

φ ◦ φ
X =

A B
A B
X

D E
D E

=
A B
A

D X
B

E
D E

=
X B
E

D E
= X

which establishes that φ is self-inverse.

Let A,B,D,E∈M satisfy {A,E} ∩ {B,D}=∅. From (4.1.3) and (4.1.6) we know that
A↔E
B↔D

A=E
and

A↔E
B↔D

B=D. Suppose that φ
A=E and φ

B=D for some other φ∈Π
M. Choose R,S, U, V ∈M

such that φ=
R↔V
S↔U . We need to show that φ=

A↔E
B↔D so, without loss of generality, we may suppose that

S 6∈ {A,B,D,E}. As we are dealing with an involution, since φ
U=S, it follows that U 6∈ {A,B,D,E} as

well. We have

S
A,A,E

U

= E and
S
R,A,V

U

=
R↔V
S↔U

A = φ
A = E.

By (3.13.ii) it follows that
S
A,X,E

U

=
S
R,X,V

U

for all X ∈M. This just means that φ=
R↔V
S↔U =

A↔E
S↔U . So it

will suffice in proving (4.4.1) to show that
A↔E
S↔U =

A↔E
B↔D . We have

A
B,B,D

E

= D and
A
S,B,U

E

=
A↔E
S↔U

B = φ
B = D

and so by (3.13.ii) it follows that
A
B,X,D

E

=
A
S,X,U

E

for all X ∈M. This means that
A↔E
B↔D =

A↔E
S↔U . It follows

that φ=
A↔E
B↔D , and so (4.4.1) is verified.

Let A, α, β, and γ be as in the hypothesis to (4.4.2). Let B∈M be distinct from A. We define D ≡ α
A,

E ≡ α
B, M ≡ βB, and N ≡ γ

B. By (4.4.1) we know that

α =
B↔E
A↔D , β =

B↔M
A↔D , and γ =

B↔N
A↔D .

For X ∈M we have

β ◦ γ
X =

B A
B A
X

D N
D M

=
A
B,

A
B,X,N

D

,M
D

=
A A

B,B,X
D

,N,M
D

=
A
X,N,M

D

whence follows that

α ◦ β ◦ γ
X =

B↔E
A↔D (

A
X,N,M

D

) =
A
B,

A
X,N,M

D

,E
D

=
A
B,X,

A
N,M,E

DD

.

If C≡
A
N,M,E

D

, this just means that α ◦ β ◦ γ= B↔C
A↔D , whence follows the conclusion of (4.4.2).

Let α and β be in Π
M. Then there exist A,B,D,E,R, S, U, V ∈M such that α=

A↔E
B↔D and β=

R↔V
S↔U .
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By (4.1.5), for X ∈M,

A↔E
B↔D ◦ R↔V

S↔U
X =

A B
R S
X

U V
D E

=

A B
R

D E

A B
S

D E

A B
X

D E

A B
U

D E

A B
V

D E

.

Setting D≡
A B
R

D E
, N ≡

A B
S

D E
, P≡

A B
U

D E
, Q≡

A B
V

D E
and Y ≡α

X we obtain

α ◦ β
X =

M N
Y

P Q
=

M↔Q
N↔P ◦ α

X.

It follows that α◦β◦α= M↔Q
N↔P , which establishes (4.4.3). QED

(4.10) Theorem Let ∼ be a meridian equivalence relation for a set M. For (A,B,C,D,E) in
M(5) such that {A,E}6={B,D} let

A B
C

D E
≡


[
A
D
B
C

]C if {A,E} ∩ {B,D} = ∅,
[
A
D
B
C

]
∈Γ 2

∼ (M),
[
A
D
B
C

]A = E, and
[
A
D
B
C

]B=D;
A if A∈{B,D};
E if E∈{B,D}

(where
[
A
D
B
C

]
is as in Theorem (2.46)). Then [·····] is a meridian operator, relative to which Π

M=Γ 2
∼ (M)

and Γ
M=Γ(M,∼).
Proof. Let Π ≡ Γ 2

∼ (M) in Theorem (4.5). Then condition (4.4.1) holds by the definition of Γ 2
∼ (M),

(4.4.2) holds by Theorem (2.45), and (4.4.3) holds since Γ(M,∼) is a group19. It follows from Theorem (4.5)
that [·····] is a meridian operator on M.

That Π
M=Γ 2

∼ (M) follows from Theorem (4.9).
From (2.33) follows that Γ(M,∼) ⊂ Γ

M. Thus (2.15) implies that Γ
M=Γ(M,∼). QED

(4.11) Theorem Suppose that we have a meridian operator [·····] on a set M with at least four
elements. Let 0, 1, and ∞ be three distinct elements of M. For X,Y,R, S∈M, none of which equals ∞,
define

X + Y ≡
X ∞
0

∞ Y
, and R · S ≡

S 0
1
∞ R

. (1)

Then F ≡ {X ∈M : x 6=∞}, relative to these two binary operators, is a field with additive identity 0 and
multiplicative identity 1.

For (R,S, U, V )∈F with R · V 6=S · U , let

(∀X ∈M)

(
R S
U V

) X ≡
{ R·X+S
U ·X+V if X ∈F ;
R
U if X = ∞

(2)

where the value in either case is ∞ when the denominator is 0. Define

Γ(0,1,∞)

M ≡ {
(
R S
U V

)
: (R,S, U, V )∈F with R · V 6=S · U}. (3)

19 Cf. (2.13).
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Then Γ(0,1,∞)

M = Γ
M. (4)

Proof. Since
oo
,,,

oo

is an abelian libra operator, it follows from Theorem (3.7) that + is an abelian
group operator with identity 0. Since

o
,,,

oo

is an abelian libra operator, it follows from Theorem (3.7) that
· is an abelian group operator with identity 1. It remains to show the distributive law. We shall adopt the
common practice of suppressing the “dot” in products.

For A,B,C ∈M such that B 6=∞6=C and ∞6=A 6=0, Theorem (4.2) and both (4.1.2) and (4.1.6) imply

A(B + C) =

B ∞
0
∞ C

0

1
∞ A

=

B 0
1
∞ A

∞ 0
1

∞ A

0 0
1
∞ A

∞ 0
1
∞ A

C 0
1

∞ A

=
AB ∞

0
∞ AC

= AB +AC.

Thus F is a field.

Our next task is to show that Γ(0,1,∞)

M ⊂ ΓM. (5)

A function of the form F 3 X ↪→ AX+B ∈ F , for A,B∈F is called an affine function – this function is the

restriction to F of

(
A B
0 1

)
. Consequently we shall call functions of the type

(
R S
0 V

)
affine elements

of Γ(0,1,∞). We shall call the function

(
0 1
1 0

)
the inversion of Γ(0,1,∞). Suppose

(
R S
U V

)
is not affine.

Then we may choose D∈F such that DU =R, after which we choose A∈F such that S =DV + A. We now
evidently have (

R S
U V

)
=

(
A D
0 1

)
◦
(
0 1
1 0

)
◦
(
U V
0 1

)
.

Thus, if we can show that affine elements of Γ(0,1,∞) and the inversion are in Γ
M, we will have demon-

strated (5). The equality

(∀X ∈M)

(
R S
0 1

) X =

X 0
1
∞ R

∞

0
∞ S

= ∞lS
∞↗0

◦ 0lR
∞↗1

X

shows that affine functions are in Γ
M. To show that the inversion is in Γ

M, it will suffice to show that

it equals
0↔1
∞↔1 . By definition, 1

X is the unique element whose product with X is 1. But

X · 0↔1
∞↔1

X = X ·
1 0
X
∞ 1

=

X 0
1

∞
1 0
X
∞ 1

=
∞
X,1,

∞
1,X,1

00
=
∞
X,1,1,X,1

0
= 1.

Thus 1
X =

0↔1
∞↔1

X, and so (5) holds.

To complete the proof of (4), it will suffice to show the opposite inclusion to that in (5). In view of
(4.8), that will follow once we have shown that each element of Π

M is in Γ(0,1,∞)

M. We consider then

A↔D
B↔C for generic A,B,C,D∈M such that {A,B} ∩ {C,D} = ∅. We consider several cases serially:
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Case: A=D = ∞ or B=C = ∞. Without loss of generality we presume A=D = ∞. We have(
1 C -B
0 1

) ∞ = ∞ and

(
1 C -B
0 1

) B = B+C -B = C =⇒
(
1 C -B
0 1

)
=

A↔D
B↔C .

Case: #{X ∈{A,B,C,D} : X = ∞} = 1. Without loss of generality we presume that A=∞. We have(
D CB -CD -DB
1 -D

) ∞ = D and

(
D CB -CD -DB
1 -D

) B =
DB+CB -CD -DB

B -D
= C =⇒(

D CB -CD -DB
1 -D

) ∞ =
A↔D
B↔C .

Case: ∞ 6∈ {A,B,C,D}. We have(
AD -BC (A -B -C+D)AD+(BC -AD)(A+D)

A-B -C+D BC -AD

) A = D and(
AD -BC (A-B -C+D)AD+(BC -AD)(A+D)

A -B -C+D BC -AD

) B = C =⇒

(
AD -BC (A-B -C+D)AD+(BC -AD)(A+D)

A-B -C+D BC -AD

)
=

A↔D
B↔C .

It follows that (4) holds. QED

(4.12) Theorem Let M be a meridian (relative to a meridian operator [·····] with at least four
elements. Let 0, 1,∞∈M be distinct, and we shall adopt the notation of Theorem (4.11). The cross-ratio
relative to (0, 1,∞) is defined by (∀A,B,C,D∈M:#{A,B,C,D} > 2)

[[
A B
C D

]]
(0,1,∞)

≡



(C−A)·(D−B)
(C−B)·(D−A) , if ∞ 6∈ {A,B,C,D}, C 6=B and D 6=A;

∞, if C =B or D=A;
0, if C = A = ∞ or D = B = ∞;
1, if C = D = ∞ or B = A = ∞;
D−B
C−B , if A = ∞ and ∞ 6∈ {B,C,D} and C 6=B;
C−A
D−A , if B = ∞ and ∞ 6∈ {A,C,D} and D 6=A;
D−B
D−A , if C = ∞ and ∞ 6∈ {A,B,D} and D 6=A;
C−A
C−B , if D = ∞ and ∞ 6∈ {A,B,C} and C 6=B.

(1)

Define ∼ on MΥ
2+ by

(∀ t, s∈MΥ
2+) t ∼ s⇐⇒

[[
tt♥ tt♠
tt♣ tt♦

]]
(0,1,∞)

=

[[
ss♥ ss♠
ss♣ ss♦

]]
(0,1,∞)

. (2)

Then
(i) ∼ is a meridian equivalence relation for M;
(ii) Γ

M=Γ(M,∼);
(iii) Π

M=Γ 2
∼ (M);

(iv) (∀A,B,C ∈M distinct)(∀R,S, T ∈M distinct)(∃! α∈Γ
M) α

A=R, αB=S and α
C=T ;

(v) ∼ is independent of the choice of 0, 1,∞∈M distinct.
Proof. That Postulate I (2.3) holds is immediate from the definition. It also follows from the definition

of ∼ that each element X∈M is of the form

RM ≡ {t∈MΥ
2+ :

[[
t♥ t♠
t♣ t♦

]]
(0,1,∞)

= R} (3)

for some R∈M. Solving the equation in (1) for t♦, we obtain

t♦ =

(
t♥ · (t♠ − t♣) t♠ · (t♣ − t♥)

t♠ − t♣ t♣ − t♥

) R. (4)

It follows that
Mor(M,M) = {M 3 RM ↪→ α

R ∈M : α∈Γ
M}. (5)
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From (5)) and (2.8.1) follows that

Γ(M,∼) = {α ◦ β : α, β∈Γ
M} = Γ

M
which establishes (ii), as well as Postulate II (2.7) and Postulate III (2.10). That (iii) holds is now evident
from (ii) and the definitions of Π

M and Γ 2
∼ (M).

That (iv) holds follows from the fundamental theorem (2.12). This fundamental theorem (iv)
along with Postulate III implies (v).

Let τ∈Γ
M be a translation in the sense of (2.26). Let α be any element of Γ 2

∼ (M) which agrees with
τ at its fixed point, and at some other point. In view of (v) we can choose 0, 1 and ∞ such that

α
∞ = τ

∞ = ∞, α
0 = τ

0 = 1. (6)

Choose R,S, T, U ∈M such that τ =

(
R S
T U

)
. That τ

∞=∞ implies that T =0 so that we may, and shall

presume that U =1. Thus

τ
0 = R · 0 + S = 1 =⇒ S =1.

The equation RX + 1 = X has the solution −1
R−1 if R 6=1. But τ, being a translation, fixes only ∞. Thus R

must be 1:

τ =

(
1 1
0 1

)
.

The transformation α being an involution, must be of the form

(
A B
C −A

)
for A,B,C ∈M. We have

∞ = α
∞ =⇒ B = 0

and

1 = α
0 =

(
A B
0 −A

) 0 =
B

−A
.

Thus we may take A = −1 and B = 1. We have

τ ◦ α =

(
1 1
0 1

)
◦
(
−1 1
0 1

)
=

(
−1 2
0 1

)
which last is evidently an involution. This establishes the validity of Postulate IV (2.38). QED

(4.13) Theorem Let (F ,+, ·) be a field with additive identity 0 and multiplicative identity 1. Let
∞ any point not in F and let M≡{∞} ∪ F . For (R,S, U, V )∈F with RV 6=SU , let

(∀X ∈M)

(
R S
U V

) X ≡
{ R·X+S
U ·X+V if X ∈F ;
R
U if x=∞

(1)

where the value in either case is ∞ when the denominator is 0. Let

Π
M ≡ {

(
R S
U V

)
: R+ V = 0 and RV 6=SU}.

Then Π
M is a meridian family of involutions on M.

Proof. For R,S, U ∈M such that SU +R2 6=0(
R S
U −R

)
◦
(
R S
U −R

)
=

(
R2 + SU RS −RS
UR−RU US +R2

)
=

(
1 0
0 1

)
which shows the mapping is its own inverse.

Let A, B, D and E be as in the hypothesis to (4.4.1). For R,S, U,X, Y ∈M such that SU +R2 6=0, the

equation

(
R S
U −R

) X=Y resolves into
U = 0 if X =∞=Y ;
R=UY if X = ∞ and Y ∈F ;
UXY =R(X + Y ) + S if X,Y ∈F .

Without loss of generality we need consider just the following cases: A=E =∞ with B,D∈F ; A=∞=B with
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D,E∈F ; and A,B,D,E∈F . The solution is
R↔↩R
S↔U whereR=1, U =0, S = − (B +D) if A = E = ∞ with B,D∈F ;

R=E, U = 1, S =BD − E(B +D) if A = ∞ with B,D,E∈F ;
R=AE −BD, U =A+ E −B −D, S = AU −R(A+ E) if A,B,D,E∈F .

Furthermore these solutions are unique up to a constant factor, which would not change the value of
R↔↩R
S↔D .

This establishes (4.4.1).
Let A, α, β, and γ be as in the hypothesis to (4.4.2), and let B ≡ α

A. From (4.4.1) there exists
δ∈Π

M such that δ
A=1, δ(1)=A, δ(−1)=B, and δ

B= − 1. Then δ ◦ α ◦ δ, δ ◦ β ◦ δ, and δ ◦ γ ◦ δ all

interchange 1 with −1. Direct calculation shows that there exist M,N,O, S∈F such that α=

(
M S
−S −M

)
,

B=

(
N S
−S −N

)
, and B=

(
O S
−S −O

)
. Direct calculation also shows

α ◦ β ◦ γ =

(
MNO(N −M −O)S2 S(MN +ON −MO)− S3

−S(MN +ON −MO) + S3 −MNO(N −M −O)

)
which is in Π(L). This establishes (4.4.2).

Let α and β be as in the (4.4.3). Choose A,B,D,R, S, U ∈F such that(
−A B
D A

)
=α and

(
−R S
U R

)
=β.

We have

α ◦ β ◦ α =

(
−A B
D A

)
◦
(
−R S
U R

)
◦
(
−A B
D A

)
=

(
−A B
D A

)
◦
(

RA+ SD −RB + SA
−UA+RD UB +RA

)
=(

−A2R−ADS −ABU +BDR ABR−A2S +B2U +ABR
ADR+D2S − UA2 +ARD A2R+ADS +ABU −BDR

)
.

This last is in Π(L), and so (4.4.3) holds. QED

(4.14) Remarks The circle of theorems (4.5), (4.9), (4.10), (4.11), (4.12) and (4.13) show that a
meridian as derived from a quadric equivalence relation, a meridian operator, a meridian family of involutions,
or from a field, is in each case essentially the same object. So far as we know, the equivalence of the latter
two characterizations is due to J. Tits ([Tits]).

(4.15) Notation LetM be a meridian. We shall denote by ΓT
M the set of (meridian) translations

in Γ
M:

ΓT
M ≡ {α∈ΓM : α has exactly one fixed point}.

(4.16) Theorem Let M be a meridian relative to a meridian operator. Then

ΓT
M = {M 3 X ↪→

X B
C

B E
∈M : B,C,E∈M distinct}.

Proof. We first take three distinct elements fromM, denote them by ∞, 0, and 1, and define operators
+ and · as in (4.11.1). We have

(∀X ∈F)
X ∞
0

∞ 1
= X + 1 and

∞ ∞
0

∞ 1
= ∞.

Evidently this function M3 X ↪→
X ∞
0
∞ 1

∈M is a translation.

Now let τ∈Γ
M be a translation. We shall denote its fixed point by ∞. Let 0 be any other point

and denote τ(0) by 1. Adopting + and · to 0, 1, and ∞, we define θ|M 3 X ↪→ X + 1 ∈ M for X ∈F and
θ(∞) ≡ ∞. Evidently θ is a translation and agrees with τ at both ∞ and 0. It follows from Theorem (2.40.ii)
that τ=θ. QED
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(4.17) Definition and Notation . Let M be a meridian relative to a meridian operator [·····]. We
define the set of meridian dilations by

Γ∆
M ≡ {M 3 X ↪→

X B
C

D E
∈M : B,C,D,E∈M distinct}.

(4.18) Theorem Let M be a meridian relative to a meridian operator [·····]. Then a necessary and
sufficient condition for δ∈Γ

M to be a meridian dilation is for it to have two distinct fixed points.

Proof. If δ is a dilation, then it is of the formM3 X ↪→
X B
C

D E
∈M. From (4.1.2) follows that δ fixes

both B and D.
Suppose now that δ fixes two distinct points ∞ and 0 in M. Let 1 any other point of M and define

operators + and · as in Theorem (4.11.1). Let E ≡ δ(1). We have

∞ ∞
1

0 E
= ∞ = δ

∞, 0 ∞
1
0 E

= 0 = δ
0 and

1 ∞
1
0 E

= E = δ
1.

The function M 3 X ↪→
X ∞
1

0 E
∈ M equals δ at three distinct points and, by the fundamental theorem,

must be δ. QED

(4.19) Definition and Notation Let M be a meridian. An element of Γ
M which is neither a

translation nor a dilation will be called a meridian rotation. We denote the set of all rotations as follows:

ΓR
M ≡ {ρ∈ΓM : ρ has no fixed points.}

(4.20) Theorem Let M be a meridian and let θ be an element of Γ
M. Then

(i) θ is an involution⇐⇒ (∃A,B∈M distinct) θ
A=B and θ

B=A;
(ii) θ is a translation⇐⇒ (∃ π, σ∈Π

M ∩ Γ∆M with a single common fixed point) θ=π ◦ σ;
(iii) θ is a dilation⇐⇒ θ 6∈ΓT

M and either θ is an involution or
(∃ π∈Π

M ∩ Γ∆M, σ∈ΠM agreeing on two points) θ=π◦σ;
(iv) θ is a rotation⇐⇒ either θ is an involution with no fixed point or

(∃ π∈Π
M ∩ Γ∆M, σ∈ΠM agreeing at no point) θ=π◦σ;

(v) Γ
M=ΠM ∪ {π◦σ : π∈Π

M ∩ Γ∆M, σ∈ΠM}.
Proof.

(i)⇒ : Trivial.

⇐(i) : This follows from (2.30).
(ii)⇒ : If θ is a translation with fixed point ∞, 0 is another point, and 1≡ θ

0, then θ=

(
1 1
0 1

)
where

+ and · are as in (4.11.1). Since

(
1 −1
0 −1

)
and

(
1 0
0 −1

)
are in Π

M ∩ Γ∆M and both fix ∞, and

since

(
1 1
0 1

)
=

(
1 −1
0 −1

)
◦
(
1 0
0 −1

)
, we have established the =⇒ part of (ii).

⇐(ii) : Trivial.
(iii)⇒ : Since θ is a dilation, it has two fixed points by (4.18), and so cannot be a translation. We shall

presume that θ is not an involution. We shall denote the two fixed points of θ by 0 and ∞, write 1 for a

third point, and define + and · as in (4.11.1). If R≡ θ
1 then θ=

(
R 0
0 1

)
and so

θ = θ=

(
R 0
0 1

)
=

(
0 1
1 0

)
◦
(

0 1
R 0

)
.

Both factors are in Π
M and

(
0 1
1 0

)
, which fixes both 1 and −1, is in Γ∆

M.
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⇐(iii) : Let θ=π◦σ for π, σ∈Π
M and suppose that θ is not a translation and that π and σ agree on

exactly two points A and B. If π
A=A and π

B=B then, by (2.34), π would equal σ and so π would be
the identity mapping, which is absurd. If π

A=A then θ would be a translation (with fixed point A) and
so B≡π

A=σA is not A. Evidently θ
A=A and θ

B=B. Hence θ is a dilation.
(iv)⇒ : We presume that θ is not an involution. Then there exist ∞, 1, 0∈M distinct such that θ

∞=1
and θ

1=0. Let M≡ θ
0. Direct calculation yields

θ =

(
−M M
−M 1

)
=

(
M −M
1 −M

)
◦
(
0 1
1 0

)
.

Both factors are in Π
M and

(
0 1
1 0

)
, which fixes both 1 and −1, is in Γ∆

M.
⇐(iv)

: Letθ=π◦σ for π, σ∈Π
M, π∈Γ∆M and suppose that π and σ agree on no point. Then π◦σ

can have no fixed point, whence θ is a rotation. This establishes the ⇐= part of (iv).
Part (v) now follows from (ii), (iii), and (iv). QED

(4.21) Example We return to the example (2.42), which was a meridian M consisting of four
elements A, B, C and D which we shall picture as four points arranges as the vertices of a square in a plane:

A

C

B

D .

It follows from the fundamental theorem that we may regard Γ
M as the group of permutations of these

four points. There are of course 24 of them, and we shall denote them with arrows to show the orbits of the
permutations.20 We have

Π
M ∩∆M = { ↘↖ , ↙↗ , ↓↑ , ↓↑ ,

→←

,
→←

}

Π
M ∩ R

M = {
→←

→←
, ↓↑ ↓↑ , ↘↙↖↗ }

T
M = { ↗

←
↓ , ↙

→
↑ , ↑ ↘

←
, ↓ ↖

→
, ↑

→
↙ , ↓

←
↗ ,

→
↖ ↓ ,

←
↘ ↑ }

R
M ∩ Γ 4

∼ (M) = { ↑
→

←
↓ , ↓

←

→
↑ ,

←
↘↗
←

,

→
↖↙
→

, ↑ ↘↙ ↑ , ↓ ↖↗ ↓ }

(4.22) Example Let M be the real projective line. Then
A C
E

D B
is just µ

A,B,C,D,E of Figure

(1) in Section (1).

(4.23) Example Let M be the circle. Then
A C
E

D B
is just µ

A,B,C,D,E of Figure (4) in Section

(1).

(4.24) Definition Let M be a meridian relative to a meridian operator [·····] . Any bijection from
M to M which preserves [·····] is called an automorphism of M.

20 If a point is fixed, we shall picture the point without arrows.
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(4.25) Corollary LetM be a meridian relative to a meridian operator [·····] , and let φ be in Γ. Then
φ is an automorphism of M.

Proof. It is evident that a composition of automorphisms is an automorphism, φ is the composition of
two involutions, and it follows from (4.1.4) that involutions are automorphisms. QED

(4.26) Theorem Let M be a meridian relative to a meridian operator [·····] . Let 0, 1 and ∞ be
three distinct points of M and define F and operators + and · as in Theorem (4.11). Let φ be a field
automorphism of F , and let α be the bijection ofM which fixes ∞ and equals φ on F . Then α is a meridian
automorphism

Proof. For A,B,C,D,E∈F such that {A,E}6={B,D} we have(
AE -BD ABD+BDE -ABE -ADE

A+E -B -D BD -AE

) A =

A2E -ABD+ABD+BDE -ABE -ADE

A2 +AE -AB -AD -AE+BD
=
E(A2 +BD -AB -AD)

A2 +BD -AB -AD
= E

and (
AE -BD ABD+BDE -ABE -ADE

A+E -B -D BD -AE

) B =
ABE -B2D+ABD+BDE -ABE -ADE

AB+BE -B2 -BD -AE+BD
=

D( -B2 +AB+BE -AE)
-B2 +AB+BE -AE

= D.

From (4.11) we know that

(
AE -BD ABD+BDE -ABE -ADE

A -E+B -D BD -AE

)
is in or Γ

M, whence follows

that it is in or Π
M as well. Thus we have(

AE -BD ABD+BDE -ABE -ADE
A -E+B -D BD -AE

)
=

A↔E
B↔D (1).

Since φ is a field automorphism, we evidently have

(∀X ∈F) α ◦
(

AE -BD ABD+BDE -ABE -ADE
A -E+B -D BD -AE

)
◦ α−1X =

α
 (AE -BD)·α−1

X+ABD+BDE -ABE -ADE
(A -E+B -D)·α−1

X+BD -AE
 =

(α
AαE -α

BαD)X+α
AαBαD+α

BαDαE -α
AαBαE -α

AαDαE
(α

A -α
E+α

B -α
D)X+α

BαD -α
AαE =(

α
AαE -α

BαD α
AαBαD+α

BαDαE -α
AαBαE -α

AαDαE
α
A -α

E+α
B -α

D α
BαD -α

AαE
) X.

Computing as above we see that

α ◦
(

AE -BD ABD+BDE -ABE -ADE
A -E+B -D BD -AE

)
◦ α−1 =

α(A)↔α(E)
α(B)↔α(D)

which implies

α ◦ A↔E
B↔D =

α(A)↔α(E)
α(B)↔α(D) ◦ α.

Evaluating both sides of the above at C and rewriting in meridian operator notation, we have

α
 A B

C
D E

 =
R S
T

U V
, where


R=α

A,
S =α

B,
T =α

C,
U =α

D,
V =α

E.
Thus α is a meridian automorphism. QED

(4.27) Theorem Let M be a meridian relative to a meridian operator [·····] and let α be a meridian
automorphism. Let 0, 1 and ∞ be three distinct points of M and define F and operators + and · as in
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Theorem (4.11). Let 0́ ≡α(0), 1́ ≡α(1) and ∞́ ≡α(∞), and let F´ be the corresponding field with operators
+́ and ·́ . Then the restriction of α to F is an isomorphism of fields from F onto F´.

Proof. For A,B∈F we shall write R for α
A, S for α

B, T for α(0), U for α(∞) and V for α(1). We
have

α
A + α

B =
R U
T

U S
= α ◦

A ∞
0

∞ B
= α(A+B)

and

α
A · αB =

S T
V

U R
= α ◦

B 0
1
∞ A

= α(A ·B).

QED
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5. Libras: Part II

(5.1) Definitions and Notation Let b, , c be a libra operation on a set L. Recall that a subset B
of L is balanced if bx, y, zc∈B whenever x, y, z∈B. If B is a balanced subset of L, then, for all r, s∈L

br, s, Bc ≡ {br, s, bc : b∈B}, br,B, sc ≡ {br, b, sc : b∈B} and bB, r, sc ≡ {bb, r, sc : b∈B} (1)

are also balanced. We call the sets br, s, Bc left translates of B and the sets bB, r, sc right translates of
B. We write

B (2)

for the family of left translates of B and

B (3)

for the family of right translates of B, respectively. Sets of the form br,B, sc are called translates of B,
and the family of all such will be denoted by

B . (4)

The elements of

B ≡ B ∪ B (5)

will be referred to as linear translates of B, and the other elements of B as skew translates of B.

(5.2) Theorem Let B be a balanced subset of L. Then
(i) (∀ b∈B) B = bb, B, bc;
(ii) B ∪ B ⊂ B ;

(iii) a translate of a translate of B is again a translate of B.
Proof. That bb, B, bc⊂B for b∈B is trivial. Let x, b∈B. Since B is balanced, we have bb, x, bc∈B. Then

x
by (3.2.1) bb, b, xc by (3.2.1) bbb, b, xc, b, bc by (3.3.1) bb, bb, x, bc, bc∈bb, B, bc,

which implies that B ⊂ bb, B, bc. Hence (i) holds.
For r, s∈L and b∈B,

br, s, Bc by (i) br, s, bb, B, bcc by (3.2.2) bbr, s, bc, B, bc
and

bB, r, sc by (i) bbb, B, bc, r, sc by (3.2.2) bb, B, bb, r, scc

which implies (ii).
For r, s, t, u∈L we have, for any b∈B

br, bt, B, uc, sc by (i) br, bt, bb, B, bc, uc, sc by (3.2.2) br, bbt, b, Bc, b, uc, sc by (3.3.1)

bbr, u, bc, bt, b, Bc, scbbr, u, bc, B, bb, t, scc,

whence (iii). QED

(5.3) Definitions By a homogeneous aggregate of translates, or more simply, an aggregate,
we shall mean a family T of balanced sets, each one of which is a translate of each other one, and each
translate of a member of T again a member of T . It follows from Theorem (3.2) that the translates of
any balanced set comprise an aggregate, and that an aggregate is the family of translates of any one of its
members:

(∀ T an aggregate)(∀ T ∈T ) T = T . (1)

The family of all singletons is evidently a homogeneous aggregate of translates. We shall call it the
point aggregate of L.

(5.4) Theorem Let T be a aggregate and let B,C ∈T . Then
(i) C ∈ B ⇐⇒ B∈ C ;

(ii) C ∈B ⇐⇒ B∈C .
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Proof. If C ∈ B then C = br, s, Bc for r, s∈L. Then

bs, r, Cc = bs, r, br, s, Bcc by (3.2.2) bbs, r, rc, s, Bc by (3.2.1) bs, s,Bc by (3.2.1)
B

which show that B∈ C . The reverse implication follows by interchanging the roles of B and C in the above.
Hence (i) holds.

That (ii) holds follows from an analogous argument. QED

(5.5) Definition We say that a balanced set B is normal21 if each right translate of B is also a left
translate of B.

(5.6) Lemma We have the following for any libra L:

(i) (∀ a, b, c∈L)(∃! x∈L) a=bx, b, cc;
(ii) (∀ a, b, c∈L)(∃! x∈L) a=bb, x, cc;
(iii) (∀ a, b, c∈L)(∃! x∈L) a=bb, c, xc;
(iv) (∀B⊂L balanced)(∀ b, y∈L:b∈B) bb, B, yc = bB, b, yc;
(v) (∀B⊂L balanced)(∀ b, y∈L:b∈B) by, b, Bc = by,B, bc.

Proof.
(i)⇒ : If x∈L is such that a=bx, b, cc, then

ba, c, bc = bbx, b, cc, c, bc by (3.2.2) bx, b, bc, c, bcc by (3.2.1)
x

so x is unique. That x≡ ba, c, bc satisfies a=bx, b, cc is a direct computation.
(ii)⇒ : If x∈L is such that a=bb, x, cc, then

bc, a, bc = bc, bb, x, cc, bc by (3.3.1) bbc, c, xc, b, bc by (3.2.1)
= x

so x is unique. That x≡ bc, a, bc satisfies a=bb, x, cc is a direct computation.
(iii)⇒ : Follows by an argument analogous to that showing (i).
(iv)⇒ : For c∈B we have

bb, c, yc by (3.2.1) bb, bb, b, cc, yc by (3.3.1) bbb, c, bc, b, yc∈bB, b, yc
and

bc, b, yc by (3.2.1) bbb, b, cc, b, yc by (3.3.1) bb, bb, c, bc, yc∈bb, B, yc

which shows (iv).
(v)⇒ : The proof is analogous to that of (iv). QED

(5.7) Theorem Let B be a balanced subset of a libra L and let T be the smallest aggregate
containing B. Then the followings statements are pairwise equivalent.

(i) B is normal;
(ii) each left translate of B is a right translate of B;
(iii) T is a partition of L;
(iv) B = T ;

(v) B = T ;

(vi) (∀A∈T ) A is normal.
Proof. Suppose that (i) holds. Let x, y∈L and b∈B. By (i) there exist r, s∈L such that

bbb, y, xc, b, Bc = bB, r, sc. (1)

By (2..i) we have

bb, bB, x, yc, b, c by (3.3.1) bbb, y, xc, B, bc by (5.2.i) bbb, y, xc, bb, B, bc, bc by (3.3.1)

bbb, y, xc, b, bB, b, bcc by (3.2.1) bbb, y, xc, b, Bc by (1) bB, r, sc (2)

and so
bB, x, yc by (3.2.1) bbb, b, bB, x, ycc, b, bc by (3.3.1) bb, bb, bB, x, yc, bc, bc by (2)

21 This term is carried over from group theory and chosen here for historical rather than descriptive reasons.
A balanced subset is ‘‘normal’’ if it is a level set of a libra homomorphism.
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bb, bB, r, sc, bc by (3.3.1) bbb, s, rc, B, bc by (5.2.i) bbb, s, rc, bb, B, bc, bc by (3.3.1)

bbb, s, rc, b, bb, b, Bcc by (3.2.1) bbb, s, r, c, b, Bc.

It follows that (ii) holds.
Suppose that (ii) holds. Assume that (iii) does not hold. Then there exist A,C ∈T such that A 6=C and

A∩C 6=∅. In view of (3.3.1) we can choose u, v∈L such that B = bu,A, vc. Let D≡ bu,C, vc. Then B 6=D
and B∩D 6=∅. Choose b from B∩D and choose d∈D such that d 6∈B. Since D=bd, b, Bc is a left translate of
B, (ii) implies that there exist r, t∈L such that D=bB, r, tc. Thus

d∈D = bB, r, tc by (3.2.1) bB, br, b, bc, tc by (3.3.1) bB, b, bb, r, tcc and b∈D = bB, b, bb, r, tcc.
By (5.6.i) we can choose m,n∈B such that d = bm, b, bb, r, tcc and b = bn, b, bb, r, tcc. We have

bb, r, tc by (3.2.1) bbb, n, nc, br, b, bc, tc by (3.3.1) bbb, n, nc, b, bb, r, tcc by (3.2.2) bb, n, bn, b, bb, r, tccc=bb, n, bc
which yields

d = bm, b, bb, r, tcc = bm, b, bb, n, bcc =⇒ d∈B.

Since this is absurd, it follows that (iii) holds.
Suppose that (iii) holds. Since B is a sub-family of T and B is also a partition, they must be the

same partition of L. Hence (iv) holds.
Now suppose that (iv) holds. Let A be in T . Let b be in B. By (iv) there exist x, y∈L such that

bb, A, bc = bx, y,Bc. We have

A
by (3.2.1) bbb, b, Ac, b, bc by (3.3.1) bb, bb, A, bc, bc = bb, bx, y,Bc, bc by (3.3.1)

bbb, B, yc, x, bc by (5.6.iv) bbB, b, yc, x, bc by (3.3.1) bB, b, by, x, bcc by (3.2.1)

bbb, b, Bc, b, by, x, bcc by (3.3.1) bb, bb, B, bc, by, x, bcc by (5.2.i) and by (5.6.iv) bB, b, by, x, bcc.

This implies (v).
Now suppose that (v) holds. Let A be in T . Then by (v) A is a right translate of B, whence follows

that B is a right translate of A. Suppose we have shown that each right translate of A is left translate of B.
Then A itself will be a left translate of B, whence follows that B will be a left translate of A – and so each
right translate of A, being a left translate of B, will be also a left translate of B. Thus, to show that A is
normal, it will suffice to show that, for each x, y∈L, bA, x, yc is a left translate of B. To this end we let b be
in B and apply (v) to find r, s∈L such that bbb, y, xc, A, bc = bB, r, sc. We have by (2.i)

bA, x, yc by (3.2.1) bbb, b, bA, x, ycc, b, bc by (3.3.1) bb, bb, bA, x, yc, bc, bc by (3.3.1)

bb, bbb, y, xc, A, bc, bc = bb, bB, r, sc, bc by (3.3.1) bbb, s, rc, B, bc by (5.6.iv) bbb, s, rc, b, Bc

which implies (vi).
That (vi) implies (i) is trivial. QED

(5.8) Definition We say that a homogeneous aggregate of balanced sets is normal provided all of
its elements are normal balanced sets. By Theorem (5.7) an aggregate is normal if and only if any one of its
elements is normal.

(5.9) Definitions and Notation A libra homomorphism of L into a libra of operators22 from a
set X to another set Y is called a representation of L on X×Y .23. Here X and Y are referred to as the
representation spaces. If φ is the representation (homomorphism) and x an element of the representation
space X, it will be customary herein to write the value of φ at a by φa.

If a representation is injective, we say that it is faithful. If for all x∈X and y∈Y there exists a∈L such
that φa

x = y, we shall say that the representation is homogeneous.
For a representation φ of a libra L on X×Y and ´

`
x, y`

´
∈X×Y , we shall use the notation

[x
φ
= y] ≡ {a∈L : φa

x = y}. (1)

22 Cf. (3.6).
23 If X = Y , the representation is said to be on X
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and

Tφ ≡ {[x
φ
= y] : x∈X, y∈Y }. (2)

(5.10) Theorem Let φ be a homogeneous representation of a libra L on X×Y . Then Tφ is an

aggregate of balanced sets.
Furthermore, the following statements are pairwise equivalent:

(i) T is normal;
(ii) (∀ a, b∈L) φa = φb ⇐⇒ (∀ x∈X) φa

x = φb
x;

(iii) (∀ a, b∈L) φa = φb ⇐⇒ (∃ x∈X) φa
x = φb

x.
Proof. Let T be in Tφ. Then there exist x∈X and y∈Y for which T = [x

φ
= y]. Let a, b∈L. Let u∈X

satisfy φb
u=y. Then

(∀ c∈T ) φba,c,bc
u by (3.6.1)

φa ◦ φc−1φbu = φa
x =⇒ ba, T, bc = [u

φ
= φa

x]. (1)

Now let S be any other element of T , so that there exist w∈X, z∈Y such that S = [w
φ
= z]. Choose d∈L

such that φd
w = y and choose e∈L such that φe

x = z. Then, by replacing T in equation (1) with S,
replacing a with d, and replacing b with e, we obtain

bd, S, ec = [x
φ
= y] = T.

This proves that T is an aggregate.
(i)=⇒(ii): Let (i) hold. Let a, b∈L and x∈X and suppose that φa

x = φb
x. Let t be in X. Since

T is normal, there exist r, s∈L such that br, s, [t φ= φa
t]c = [x

φ
= φa

x]. Since a is in [x
φ
= φa

x], there

exists c∈ [t
φ
= φa

t] such that a = br, s, cc. We have

φa
t = φbr,s,cc

t = φr ◦ φs−1(φc
t) = φr ◦ φs−1φat. (2)

Since b is in [x
φ
= φa

x], there exists d∈ [t
φ
= φa

t] such that b=br, s, dc. We have

φb
t = φbr,s,dc

t = φr ◦ φs−1(φd
t) = φr ◦ φs−1(φa

t) by (2)
φa

t.
Thus (ii) holds.

(ii)=⇒(iii): Trivial.
(iii)=⇒(ii): Suppose that (iii) holds, that m is in L and that t is any element of X. Since φ is

homogeneous, there exists w∈L such that φw
x = φm

t. If a and b in L satisfy φa
t = φb

t, then

φba,m,wc
x = φa ◦ φm−1φwx = φa ◦ φm−1φmt = φa

t =

φb
t = φb ◦ φm−1φmt = φb ◦ φm−1φwx = φbb,m,wc

x
which by (iii) implies φba,m,wc=φbb,m,wc. Thus

φa = bbbbφa, φm, φwcc, φw, φmcc = bbφba,m,wc, φw, φmcc =

bbφbb,m,wc, φw, φmcc = bbbbφb, φm, φwcc, φw, φmcc = φb,

which proves (ii).

(ii)=⇒(i): Let B be a generic element of Tφ. Then there exist x∈X and y∈Y such that B= [x
φ
= y].

Let R be any right translate of B. Then there exist q, r∈L such that R=bB, r, qc. Since all the elements of
B agree at x, it follows from (ii) that they agree on φr ◦φq−1x as well — let u∈Y be this common value
and let v≡φr−1u. Since φ is a homogeneous representation, there exists s∈L such that φ

sv =y. For all
a∈B we have

φbbs,r,ac,r,qc
x = φ

s ◦ φr−1 ◦ φa ◦ φr−1 ◦ φq
x = φ

s ◦ φr−1u = y.

It now follows from (ii) that bbs, r, Bc, r, qc= [x
φ
= y], whence follows that bbs, r, Bc, r, qc = B. We have

br, s, Bc = br, s, bbs, r, Bc, r, qcc = bbr, s, bs, r, Bcc, r, qc = bbbr, s, sc, r, Bc, r, qc = bbr, r, Bc, r, qc = bB, r, qc.
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It follows that B is normal. QED

(5.11) Definition We shall say that a homogeneous representation is normal if any of the conditions
of Theorem (5.10) hold.

(5.12) Theorem Let φ be a normal homogeneous representation of a libra L on X×Y . Let r, s, t∈Y .
Suppose x,m∈X and a, b, c, u, v, w∈L satisfy

r = φa
x = φu

m, s = φb
x = φv

m, and t = φc
x = φw

m. (1)

Then

φba,b,cc
x = φbu,v,wc

m. (2)

Proof. Let d be any element of L and choose e∈L such that φe
x=φdm. Evidently

φba,e,dc
m = r = φu

m, φbb,e,dcm = s = φv
m, and φbc,e,dc

m = t = φw
m.

Since φ is normal, it follows from (5.10.ii) that φba,e,dc=φu, φbb,e,dc=φv, and φbc,e,dc=φw. Thus

φbu,v,wc
m = φbba,e,dc,bb,e,dc,bc,e,dcc

m =

φba,e,d,d,e,b,c,e,dc
m = φba,b,c,e,dc

m = φba,b,cc
x

which proves equation (2). QED

(5.13) Notation Let φ be a normal homogeneous representation of a libra L on X×Y . For r, s, t∈Y
we define

br, s, tcφ ≡ φba,b,cc
x (∀ x∈X, a, b, c∈L:r = φa

x, s = φb
x, and t = φc

x).
In view of Theorem (5.12), b, , cφ is a well-defined libra operation on Y .

(5.14) Theorem Let φ be a faithful normal homogeneous representation of L on X×Y . Then, for

each ´
`
x, y`

´
∈X×Y , the set [x

φ
= y] is a singleton. In particular

(∀ x∈X) L 3 a ↪→ φa
x ∈ Y is a bijection. (1)

Proof. Let x be in X and y in Y . Assume that there exist distinct elements a and b of [x
φ
= y]. Since

φ is faithful there exists w∈X such that φa
w 6=φbw. Since a is in [x

φ
= y] ∩ [w

φ
= φa

w], it follows from

(5.7.iii) that [x
φ
= y]= [w

φ
= φa

w]. Hence b is in [w
φ
= φa

w], which is absurd. QED

(5.15) Definitions, Notation, and Discussion . In the sequel we shall be much concerned with
representations which are not normal, and will treat these specifically in the following section. For this we
shall need some definitions.

Let b, , c be a libra operator for a libra L. The obverse of b, , c is the trinary operator defined by

(∀ a, b, c ∈ L) da, b, ce ≡ bc, b, ac. (1)

If ρ is a representation of L on (X×Y ), then the obverse of ρ is the representation of L on Y×X defined
by

(∀ x∈L) ρ̃x ≡ ρx−1. (2)

The obverse representation is a representation of L relative to the obverse operator d, , e – not relative to the
libra operator b, , c24

The symmetrization of L is the set L×L equipped with the symmetrization operator | , , |:
(∀ ´

`
a, z `

´
, ´
`
b, y`

´
, ´
`
c, x`

´
∈L×L) | ´

`
a, z `

´
, ´
`
b, y`

´
, ´
`
c, x`

´
| ≡ ´

`
ba, b, cc, dz, y, xe`

´
= ´

`
ba, b, cc, bx, y, zc`

´
. (3)

The symmetrization of the representation ρ is the representation
↔
ρ of the libra L×L on (X×Y )×(X×Y )

defined by

(∀ x∈X, y∈Y )(∀ ´
`
a, b`

´
∈L×L)

↔
ρ ´

`
a,b̀

´

´
`
x, y`

´

 ≡ ´
`
ρ̃b

y, ρax`
´
. (4)

24 Unless they are the same of course, which is the case when L is abelian.
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Two representations φ on (X×Y ) and η on (M×N) are said to be equivalent if there exist bijections
µ from X to M and ν from Y to N such that

(∀ a∈L) ηa = ν ◦ φa ◦ µ−1 : vid.

X
φa - Y

µ

?

a∈L

?

ν

M
ηa -N

.
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6. Cartesian Aggregates

(6.1) Definitions and Notation Let T be an aggregate25 of balanced subsets of a libra L. By a
row of T we shall mean a sub-family R of T such that each member of R is a right translate of each other
member of R, and such that each right translate of a member of R is again a member of R. By a column
of T we shall mean a sub-family C of T such that each member of C is a left translate of each other member
of C, and such that each left translate of a member of C is again a member of C. Each row is a partition of
L, and each column is a partition of L.

We shall write for the family of all rows in T , and write for the family of all columns in T .

(6.2) Theorem Let a, b∈L, X ∈X ∈ and Y ∈Y ∈ . Then

(i) {ba,W, bc : W ∈X}= ba,X, bc ;26

(ii) {ba,W, bc : W ∈Y}= ba, Y, bc .

Proof. For r, s∈L holds

ba, br, s,Xc, bc = ba,X, bs, r, bcc = ba,X, b, b, s, r, bc = bba,X, bc, b, bs, r, bcc

whence follows that {ba,W, bc : W ∈X}⊂ba,X, bc . For t, u∈L holds

bba,X, bc, t, uc = ba,X, b, t, u, b, bc = ba, bbb, u, tc, b,Xc, bc

whence follows that ba,X, bc⊂{ba,W, bc : W ∈X}. It follows that (i) holds.

The proof of (ii) is analogous to that of (i). QED

(6.3) Notation Elements a and b of L produce bijections as follows:

a©T b|T 3 B ↪→ ba,B, bc ∈ T (1)

and
a T b| 3 X ↪→ {ba,X, bc : X ∈X} ∈ . (2)

(6.4) Theorem For each b∈L and all r, s, t∈L

br, s, tc©T b = bbr©T b, s©T b, t©T bcc.
Proof. . For S∈T

(r©T b) ◦ (s©T b)
−1 ◦ (t©T b)

S = (r©T b) ◦ (s©T b)
−1bt, S, bc = r©T b

bb, bt, S, bc, sc =

br, bb, bt, S, bc, sc, bc = br, bb, b, S, t, sc, bc = br, s, t, S, b, b, bc = bbr, s, tc, S, bc = (br, s, tc©T b)
S.

QED

(6.5) Notation We define for a in L

a
©T ≡ a©T a and a

T ≡ a T a. (1)

(6.6) Theorem For a, b, c∈L
ba, b, cc

T
= bbaT , bT , cT cc.

Proof. For X ∈T
a
T ◦ bT −1 ◦ cT

 X  = a
T ◦ bT −1 ◦ cT

 bbc, b, ac, ba, b, cc, Xc  = a
T ◦ bT −1 ◦ cT

 bc, b, a, c, b, a,Xc  =

a
T ◦ bT −1bc,X, a, b, c, a, b, c, cc = a

T ◦ bT −1bc,X, a, b, c, a, bc = a
T  bb, b, a, c, b, a,X, c, bc  =

a
T  ba, c, b, a,X, c, bc = ba, b, c,X, a, b, c, a, ac = bba, b, cc, X, ba, b, ccc = ba, b, cc

T
( X ).


QED

25 Cf. (5.3).
26 Cf. (5.1).
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(6.7) Discussion and Notation The analogue of Theorem 6.6 for
©T

does not hold, and in fact, a

necessary and sufficient condition for ba, b, cc©T to equal a
©T ◦ b©T

−1
◦ c©T is for ba, b, cc to equal bc, b, ac. It follows

that, in general, {a©T : a∈L} may not be a balanced subset of the libra F(T , T ). It is a simple exercise to
show that

(∀ a, b,m, n, r, s∈L) (a©T b) ◦ (m©T n)
−1 ◦ (r©T s) = ba,m, rc©T bb, n, sc. (1)

It follows that {x©T y : x, y∈  L} is a balanced subset. Since it contains {a©T : a∈L}, one may ask if it itself is
the smallest balanced set containing it. We shall return to this question in (9) infra.

For a, b,m, n∈L we shall adopt the notation ba,m©T n, bc for (a©T b) ◦ (n©T m):

ba,m©T n, bc|T 3 A ↪→ {ba,m, x, n, bc : x∈A} ∈ T . (2)

For a, b, c, d, r, s, t, u∈L and A∈T , the computation

ba, b©T c, dc ◦ br, s©T t, uc
A = ba, b©T c, dc

br, s, A, t, uc = ba, b, r, s, A, t, u, c, dc (3)

shows that
ba, b©T c, dc ◦ br, s©T t, uc = bba, b, rc, t©T s, bu, c, dcc = ba, bs, r, bc©T bc, u, tc, dc.

We shall write

Libra
T  ≡ {a©T b : a, b∈L} and Group

T  ≡ {ba, b©T c, dc : a, b, c, d∈L}. (4)

Theorem (6.6) implies that Libra(T ) is a libra. Furthermore, Group
T ) is a group since equation (2) implies

that ba, a©T a, ac is an identity for each a∈L and equation (3) shows that, for all a, b, c, d∈L,

ba, b©T c, dc−1 = bb, a©T d, cc. (5)

(6.8) Definitions Let φ be a faithful representation of a libra L on X × Y . If

(∀ x, r∈X distinct)(∀ y, s∈Y distinct)(∃ a∈L) φa
x = y and φa

r 6= s, (1)

we shall say that φ is cartesian. In particular, a cartesian representation is homogeneous.
Theorem (6.4) says that, for each b∈L the function L 3 a ↪→ a©T b ∈ J(T , T ) is a representation of L on

T . Theorem (6.6) says the the function sending each a∈L to the restriction of a
T

to is a representation
of L on ( , ). This latter will be called the left T -inner representation of L.

(6.9) Theorem Let ρ be a cartesian representation of a libra L on X × Y . Define26

µ|X 3 x ↪→ {[x ρ
= y] : y∈Y } and ν|Y 3 y ↪→ {[x ρ

= y] : x∈X}.
Then ρ is equivalent to the T -inner representation

T
:

(∀ a∈L) a
T

= ν ◦ ρa ◦ µ−1 : vid.

X
ρa - Y

µ

?

a∈L

?

ν

Tρ a
T

- Tρ

. (1)

Proof. We must show that µ
x is an element of

Tρ for each x∈X. Let y be in Y and a, b∈L.
Then, letting k≡ρa◦ρb−1y,

ba, b, [x ρ
= y]c = {ba, b, tc : ρt

x = y} = {ρa) ◦ ρb−1 ◦ ρt : ρt
x = y} = [x

ρ
= k].

Let s be another element of Y . Let u be in [x
ρ
= y] and, exploiting the fact that ρ is cartesian, find v∈L

such that ρv
x=s. Since ρu

x=y, we have, for all t∈L such that ρt
x=y

ρv ◦ ρu−1 ◦ ρt
x = ρv

x = s

whence follows that bv, u, [x ρ
= y]c= [x

ρ
= s]. Consequently µ

x is in
Tρ.

That each ν
y is an element of

Tρ is shown by an analogous argument. QED

(6.10) Theorem Let ρ be as in Theorem (6.9). Then

(i) (∀ a, b∈L distinct)(∃ T ∈Tρ) a∈T and b 6∈T ;

26 Cf. (5.8).
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(ii) (∀ T ∈Tρ)(∀ a, b∈L) ba, T, bc=T ⇐⇒ a, b∈T .
Proof. We first prove (i). Since ρ is faithful, there exists x∈X such ρa

x 6=ρbx. Setting y≡ρa
x,

we have a∈ [x
ρ
= y] but b 6∈ [x

ρ
= y].

We now prove (ii). If a, b∈T , then it is trivial that ba, T, bc=T . We show that the reverse implication
holds. Suppose that br, T, sc=T for T ∈Tρ and some r, s∈L. Then br, t, sc=u for t, u∈T , and so r=bu, s, tc,
whence follows that r must be in T if s is in T . Similarly, s must be in T if r is in T . Thus we may presume

that neither r nor s is in T . Choose ´
`
x, y`

´
∈X × Y such that T = [x

ρ
= y]. Let m≡ρr

x and n≡ρs−1y.
Because ρ is cartesian, there exists t∈L such that ρt

x=y and ρt
n 6=m. Then t is in T and so in br, T, sc

as well. Thus t = br, w, sc for w∈T , and so w = bs, t, rc. Consequently

y = ρw
x = ρs ◦ ρt−1 ◦ ρr

x = ρs ◦ ρt−1m 6= ρs
n = y

which is absurd. This establishes (ii). QED

(6.11) Definition We shall say that an aggregate T is cartesian if both the conditions of Theorem
(6.10) are satisfied:

(∀ a, b∈L distinct)(∃ T ∈T ) a∈T and b 6∈T (1)

(∀ T ∈T )(∀ a, b∈L) ba, T, bc=T ⇐⇒ a, b∈T (2)

(6.12) Theorem Let T be a cartesian aggregate on a libra L. Then

(∀ a, b, c, d∈L) ´
`
a, b`

´
= ´

`
c, d`

´
⇐⇒ a©T b = c©T d. (1)

Proof. We have
a©T b = c©T d⇐⇒ (∀X ∈T ) ba,X, bc=bc,X, dc ⇐⇒

(∀X ∈T ) X =bb, b,X, a, ac=bb, ba,X, bc, ac=bb, bc,X, dc, ac=bb, d,X, c, ac ⇐by (5.2.i)⇒

(∀X ∈T , x∈X) X =bb, d, x,X, x, c, ac ⇐by (6.10.ii)⇒ (∀X ∈T , x∈X) bb, d, xc, bx, c, ac∈X. (2)

If a6=c, then by (5.2.i) implies that there exists C ∈T such that c∈C and a 6∈C. If a©T b=c©T d, then (2) implies
that there exists y∈C such that

bc, c, ac=y =⇒ a=y∈C : an absurdity.

It follows that a©T b 6=c©T d. An analogous argument shows that if b 6=c, then a©T b 6=c©T d. QED

(6.13) Theorem The following are equivalent assertions for an aggregate T of balanced subsets of
a libra L:

(i) (∀B∈T and x, y∈L) [x,B, y]=B ⇐⇒ x, y∈B;
(ii) (∃B∈T ) (∀ x, y∈L) bx,B, yc=B ⇐⇒ x, y∈B;

(iii) (∃B∈T ) B ∩ B ={B};

(iv) (∀B∈T ) B ∩ B ={B}.
Proof. That (i) implies (ii) is trivial.

Suppose that (ii) holds for B∈T . Suppose that br, s, Bc=bB, t, uc for r, s, t, u∈L. Let b∈B. Then,
letting x≡ br, s, bc and y≡ bb, t, uc, we have

bx, b,Bc = br, s, b, b, Bc = br, s, Bc = bB, t, uc = bB, b, yc.
Thus

B = bb, x, x, b, Bc = bb, x, bx, b,Bcc = bb, x, bB, b, ycc by (5.2.i) bb, x, bbb, B, bc, b, ycc =

bb, x, b, B, b, b, yc = bbb, x, bc, B, yc.

By (ii) we have y, bb, x, bc∈B. Consequently br, s, Bc=bx, b,Bc=B, and so B ∪ B ={B}. Hence (iii) holds.

Now suppose that (iii) holds for B∈T and that C is any other element of T . Then there exist x, y∈L
such that C =bx,B, yc. Suppose that br, s, Cc=bC, t, uc for r, s, t, u∈L. We have

bB, br, s, xc, xc = by, y,B, x, s, r, xc = by, br, s, bx,B, ycc, xc = by, br, s, Cc, xc =
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by, bC, u, tc, xc = by, bbx,B, yc, u, tc, xc = by, t, u, y,B, x, xc = by, by, u, tc, Bc.

It follows from (iii) that bB, br, s, xc, xc=B. Thus

C = bx,B, yc = bx, bB, br, s, xc, xc, yc = bx, x, r, s, x,B, y = br, s, bx,B, ycc = br, s, Cc.
This implies (iv).

Finally, we suppose that (iv) holds and let B be any element of T . Suppose that B=bx,B, yc for x, y∈L.
For b∈B we have

bb, x,Bc = bb, x, bx,B, ycc = bbb, x, xc, B, ycc by (5.2.i) bbb, x, xc, bb, B, bc, yc = bb, x, x, b, B, b, yc = bB, b, yc.
From (iv) follows that bb, x,Bc=B. Hence bb, x, bc=d for some d∈B, whence x=bb, d, bc∈B. It follows that
B=bb, x,Bc=bB, b, yc which implies that y=bb, b, yc∈bB, b, yc=B. This means that (i) holds. QED

(6.14) Notation If two sets R and S have a singleton for their intersection R ∩ S, we shall denote
the element of the singleton by R ∧ S:

R ∩ S = {R ∧ S}. (1)

(6.15) Theorem Let T be a cartesian aggregate on the libra L. Let A,B∈ and C,D∈ . Then

A ∧ C exists (1)

and

A ∧ C = B ∧ D ⇐⇒ ´
`
A, C `

´
= ´

`
B,D`

´
. (2)

Proof. Let A be in A and c in C. Since T is an aggregate of balanced sets, there exists x∈L such that
bx,A, xc = C. For any a∈A we have

C = bx,A, xc by (5.2.i) bx, ba,A, ac, xc = bbx, a,Ac, a, xc =⇒ bC, x, ac = bx, a,Ac =⇒ A∩ C 6= ∅.
That A ∩ C is a singleton follows from (6.13.iv). This establishes (1).

(2)⇒ : Let A≡A ∧ C = B ∧ D. Then A is in A and B so A = A = B. Similarly, A = C = D. Thus
´
`
A, C `

´
= ´

`
B,D`

´
.

⇐(2)
: Trivial. QED

(6.16) Theorem Let T be a cartesian aggregate on the libra L. Then the T -inner representation is
cartesian.

Proof. Let x, y∈L be distinct. Choose B∈T such that x∈B and y 6∈B. Then x
T
( B )= bx,B, xc =B

but, for b∈B,

y
T
( B ) = y

T
( by, b, Bc ) = by, by, b, Bc, yc = bby,B, bc, y, yc = by,B, bc = by, b, Bc .

Since y is in by, b, Bc but not in B, we know that by, b, Bc6=B. It follows from Theorem (6.13.iv) that

B 6=by, b, Bc . Thus x
T 6=y T . It follows that the representation is faithful.

Let A and B be distinct elements of T and C and D distinct elements of T . Choose a from A ∧ C
such that it is not in B ∧ D. Then a

T
(A)=C but a

T
(B)6=D. QED

(6.17) Discussion Theorems (6.9) and (6.16) imply that the cartesian aggregates of a libra L
correspond exactly to the equivalence classes of cartesian representations of L. Along with the diagram of
(6.9.1), we have its obverse27:

(∀ a∈L)

X
ρa - Y

µ

? ?

ν

Tρ a
T

- Tρ

and

X
ρ̃a� Y

µ

? ?

ν

Tρ a
T

� Tρ

. (1)

27 Cf. (5.15).
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Each column C of T intersects each row R of T in exactly one element:

{C ∧ R} = C ∩ R. (2)

Thus ∧ may be viewed as a bijection from C×R onto T . The operator ©T is actually a representation of the
symmetrization L×L of L on T ×T , and it is equivalent to the symmetrization

↔
ρ of the representation ρ:

(∀ ´
`
a, b`

´
∈L×L)

X × Y
↔
ρ´

`
a,b̀

´ - X × Y

µ×ν
? ?

µ×ν

Tρ× Tρ Tρ× Tρ

∧

? ?

∧

T a©T b - T

(3)

(where µ×ν
´
`
x, y`

´

≡´
`
µ
x, νy`

´
). It is a corollary to Theorem (6.12) that

the symmetrization representation
↔
ρ of L×L on X×Y is faithful. (4)

The cardinality of is the same as the cardinality of : we define the dimension of T to be this
cardinal number. Thus the cardinality of T is the square of its dimension.

For a∈L we define the diagonal of T determined by a as

\\a\\ ≡ {A∈T : a∈A}. (5)

The cardinality of such a diagonal is the dimension of T .

A diagonal \\a\\ can be used to give form to an aggregate in the sense that it associates to each column
a row, and vice versa. A column C is a partition of L and so has exactly one element which contains a: this
element is C ∩ \\a\\. Thus we have the bijections

3 C ↪→ C ∩ \\a\\ ∈ and 3 R ↪→ R∩ \\a\\ ∈ . (6)

If {Ai}i∈N is a well ordering of \\a\\, then the aggregate T may be visualized as the elements of a matrix:

A1 A1 ∧ A2 . . . A1 ∧ An . . .

A2 ∧ A1 A2 . . . A2 ∧ An . . .

...
...

. . .
...

An ∧ A1 An ∧ A2 An . . .

...
...

...
. . .


(7)

Once an aggregate is visualized as a matrix, one can depict the actions of the operators x©T y and x
©T

for
x, y∈L. Let, for instance, B be an element of T and b an element of B. Then x∈bx, b,Bc and y∈bB, b, yc so

...
...

...
...

...
. . . bB, b, yc . . . B . . .
...

...
...

...
...

. . . x©T y
B . . . bx, b,Bc . . .

...
...

...
...

...


and



...
...

...
...

...
. . . bB, b, xc . . . B . . .
...

...
...

...
...

. . . x
©TB . . . bx, b,Bc . . .

...
...

...
...

...


. (8)

In the case x=a, there exist indices i, j∈N such that bB, b, ac=Ai and ba, b, Bc=Aj and so the second of the
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above matrices becomes 

...
...

...
...

...
. . . Ai . . . a

©TB . . .
...

...
...

...
...

. . . B . . . Aj . . .
...

...
...

...
...


. (9)

We say that B and a
©TB are symmetric with respect to \\a\\. More formally, two elements B and C of T

are symmetric relative to the diagonal of T determined by a if C =ba,B, ac28.
We shall say that B and C in T are skew provided that

B 6= C and B 6= C ; (10)

and we shall say that B and C are a-skew provided that they are skew and that they are not symmetric
with respect to a.

For each x∈L, the operator x
©T

permutes the elements of the matrix, sending columns to rows and rows
to columns. The matrix in (9) suggests Theorem (6.19) infra.

(6.18) Example We return to the example of (4.21) and (2.42). The libra Γ
M is precisely the set

of bijections of its four point domain domain M={A,B,C,D}. We denote by ρ the identity representation

of Γ
M onM. Evidently T has sixteen elements: [A

ρ
= A], [A

ρ
= B],. . . and [D

ρ
= D]. We have, for instance,

[A
ρ
= B] = {[A ρ

= A], [A
ρ
= B], [A

ρ
= C], [A

ρ
= D]}

and

[A
ρ
= B] = {[A ρ

= B], [B
ρ
= B], [C

ρ
= B], [D

ρ
= B]}.

If we set a ≡
→←

→←
, then

\\a\\ = {[A ρ
= B], [B

ρ
= A], [C

ρ
= D], [D

ρ
= C]}

and a corresponding matrix is 
[A

ρ
= B] [B

ρ
= B] [C

ρ
= B] [D

ρ
= B]

[A
ρ
= A] [B

ρ
= A] [C

ρ
= A] [D

ρ
= A]

[A
ρ
= D] [B

ρ
= D] [C

ρ
= D] [D

ρ
= D]

[A
ρ
= C] [B

ρ
= C] [C

ρ
= C] [D

ρ
= C]

 .

Obviously the dimension is 4.

(6.19) Theorem Let x be in L and T be a cartesian aggregate for L. Then

(i) (∀A,B∈T ) x
©TA=B ⇐⇒ x∈( A ∧ B ) ∩ ( B ∧ A);

(ii) (∀A∈T ) x
©TA=A⇐⇒ x∈A⇐⇒ x

T
( A )=A .

Proof.
(i)⇒ : Suppose that x

©TA=B for A,B∈T . Let a be an element of A. Then

B = x
©TA = bx,A, xc by (5.2.i) bx, ba,A, ac, xc = bbx, a,Ac, a, xc =⇒ bx, a,Ac = bB, x, ac. (1)

We have

x = bx, a, ac∈bx, a,Ac by (1)
A ∧ B (2).

Now let b be an element of B. Then

A = x
©T ◦ x©T

A = x
©T
(B) = bx,B, xc by (5.2.i) bx, b,B, b, xc = bbx, b,Bc, b, xc =⇒ bA, x, bc = bx, b,Bc.

28 Or, equivalently, B=ba,C, ac.
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This implies that x=bx, b, bc∈bx, b,Bc= B ∧ A which, with (2) yields x∈( A ∧ B ) ∩ ( B ∧ A).

⇐(i) : Suppose now that x∈( A ∧ B ) ∩ ( B ∧ A). Let a be in A and b be in B. That x is in A ∧ B

implies that bx, a,Ac=bB, b, xc. That x is in B ∧ A implies that bA, a, xc=bx, b,Bc. We have

bB, b, bx, a, xcc = bbB, b, xc, a, xc = bbx, a,Ac, a, xc = bx, a, bA, a, xcc = bx, a, bx, b,Bcc = bbx, a, xc, b, Bc.
The only right translate of B which is also a left translate of B is B itself. Thus

B = bB, b, bx, a, xcc =⇒ (∃ c, d∈B) c = bd, b, bx, a, xcc =⇒ bx, a, xc = bb, d, cc∈B.
Consequently we have

x
©TA = bx,A, xc⊂B =⇒ x

©TA = B.

which proves (i).

When A=B we have ( A ∧ B ) ∩ ( B ∧ A)=A ∩A=A. Thus the first ‘‘⇐⇒’’ of (ii) is a special case of

(i).
If x is in A, then

x
T  A  = bx,A, xc = A.

Suppose, on the other hand, that x
T  A =A , and let a∈A. Evidently x∈bx, a,Ac so

x = bx, x, xc∈bx, bx, a,Ac, xc = bx,A, a, x, xc = bx, a, a,A, ac = bx, a,Ac.
Thus bx, bx, a,Ac, xc = x

©Tbx, a,Ac is both a right coset and a left coset of A. Hence it must be A. Thus
x∈bx, a,Ac = A. This finishes the proof of the second ‘‘⇐⇒’’ of (ii). QED

(6.20) Definition Let X ∈ ∪ and x∈L. Since X is a partition of L, we may define

x ∧ X ≡ Y where x∈Y ∈X .

(6.21) Theorem Let T be a cartesian aggregate for L and let a, b∈L. Then a T b agrees with a
T

on
and agrees with b

T
on .

Proof. For T ∈ T and t∈T ,

a
T
( T ) = {ba, bm, t, T c, ac : m∈L} = {ba, T, bt,m, acc : m∈L} = {ba, T, nc : n∈L} =

{ba, T, bt,m, bcc : m∈L} = {ba, bm, t, T c, bc : m∈L} = a T b( T )

and

b
T
(T ) = {bb, bT, t,mc, bc : m∈L} = {bbb,m, tc, T, bc : m∈L} = {bn, T, bc : n∈L} =

{bba,m, tc, T, bc : m∈L} = {ba, bT, t,mc, bc : m∈L} = a T b(T ).

QED
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7. Libra Polarity

(7.1) Definitions and Notation In examining the structure of a libra, the concept of a ‘‘polar’’ is
sometimes of use. The polar of a subset S of a libra L is defined as follows:

S◦ ≡ {x ∈ L : (∀ s ∈ S) bx, s, xc = s}. (1)

We shall usually abbreviate {i}◦ to i� in the case of a singleton, and we shall abbreviate the polar (S◦)◦ of
a polar to S◦◦.

Polars are not necessarily balanced. In fact we have

(7.2) Theorem Let B be a balanced subset of a libra L and A⊂L. A condition both necessary and
sufficient for B ∩A◦ to be balanced is for B ∩A◦ to be abelian.

Proof. Let a, b, c∈B ∩A◦. For i∈A we have

bi, ba, b, cc, ic = bi, c, b, a, ic = bi, c, i, i, b, i, i, a, ic = bbi, c, ic, bi, b, ic, bi, a, icc = bc, b, ac
which implies that ba, b, cc is in i� precisely if ba, b, cc=bc, b, ac. QED

(7.3) Theorem Let S be any subset of a libra L. Then
(i) (∀ T⊂S) S◦⊂T ◦;
(ii) S◦◦ is the intersection of all polars containing S;
(iii) S is a polar ⇐⇒ S =S◦◦;
(iv) S◦◦◦=S◦;
(v) (∀ T, S⊂L:T⊂S◦) T ◦◦⊂S◦.

Proof.
(i)⇒ : That (i) is true is follows directly from the definitions.

(iv)⇒ : That S⊂S◦◦ follows from the definition of polarity. Thus (i) implies that S◦◦◦⊂S◦. That S◦⊂S◦◦◦

follows directly from the definitions. Thus (iv) holds.
(ii)⇒ : Suppose that W⊂L and that S⊂W ◦. From (i) then follows that W ◦◦⊂S◦. From (i) and (iv)

follows

S◦◦ ⊂W ◦◦◦ = W ◦

which proves (ii).
(iii)⇒ : That S⊂S◦◦ follows from the definition. If S is a polar, then S◦◦⊂S by (ii), and so S =S◦◦. That

S is polar if S =S◦◦ is trivial. This proves (iii).
(v)⇒ : We have

T⊂S◦
by (i)⇒ S◦◦⊂T ◦

by (i)⇒ T ◦◦⊂S◦◦◦
by (iv)⇒ T ◦◦⊂S◦.

QED

(7.4) Theorem Let A and B be balanced polars. Then

A = B◦ ⇐⇒ B = A◦ =⇒ A ∪B is balanced.

Proof. Suppose that A=B◦. Then A◦=B◦◦. Since B is a polar, (7.3.iii) implies that B=B◦◦. Hence
B=A◦.

That B=A◦ implies A=B◦ follows by an analogous argument.
Let x, y, z∈A ∪ B. If x, y, z∈A or x, y, z∈B, then bx, y, zc would be in A ∪ B since both A and B are

balanced. Thus, without loss of generality, we can and shall suppose that x and y are in A and that z is in
B. We need to show that bx, y, zc, bx, z, yc and bz, x, yc are in A∪B – however, since z is in the polar of A,
these are all the same. We have, for any a∈A we have (since Theorem (7.2) implies that A is abelian)

ba, bx, y, zc, ac = ba, z, by, x, acc = ba, z, ba, x, ycc = ba, z, a, x, yc =

ba, a, z, x, yc = ba, a, x, z, yc = ba, a, x, y, zc = bx, y, zc.

It follows that bx, y, zc is in A◦=B⊂A ∪B. QED

(7.5) Theorem Let A and B be balanced polars of one another. Let a be in A and b be in B. Then

B = ba, b, Ac. (1)
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Proof. From (7.2) we know that
A is abelian. (2)

Let c and d be generic elements of A. Then of course

a, c, d∈B◦. (3)

We have

bd, ba, b, cc, dc = bd, c, b, a, dc by (3) bd, c, a, d, bc by (3) bd, d, a, c, bc = ba, b, cc =⇒
d∈ba, b, cc◦ = B =⇒ A ⊂ B. (4)

For e∈B, we have

e = be, a, ac by (3) ba, e, ac ∈ ba, b, Ac =⇒ B ⊂ ba, b, Ac. (5)

Inclusions (4) and (5) imply (1). QED

(7.6) Definition We shall say that a libra L is polar provided that there exists a∈L such that no
proper balanced subset of L contains a� (as a subset).

(7.7) Theorem Let L be a polar libra and let u and v be elements of L. Then there exists n∈N
odd and {xi}i=ni=1

⊂u� such that
bx1, x2, . . . , xnc = v.

Proof. Since no proper balanced subset of L contains a� as a subset, and since

{bt1, t2, . . . , tnc : n ∈ N odd and {ti}i=ni=1 ⊂ a�}
is a balanced subset of L containing a� , there exists n∈N odd and {ti}i=ni=1

⊂a� such that

bt1, t2, . . . , tnc = ba, u, vc. (1)

For i=1, 2, . . . , n let xi≡ bu, a, tic. Then

bx1, x2, x3, . . . , xn−1, xnc = bbu, a, t1c, bu, a, t2c, bu, a, t3c, . . . , bu, a, tn−1c, bu, a, tncc =

bu, a, t1, t2, a, u, u, a, t3, . . . , tn−1, a, u, u, a, tnc = bu, a, bt1, t2, . . . , tncc = bu, a, ba, u, vcc = v.

Furthermore, for each i∈{1, . . . , n},

bu, xi, uc = bu, bu, a, tic, uc = bu, ti, a, u, uc = bu, ti, ac
by (1) bu, a, tic = x

and so {xi}i=ni=1
⊂u� . QED

(7.8) Example We return again to the example of (2.42), (4.20) and (6.18). We shall compute some
polars of subsets of Γ

M for this example.
First, we write

for the identity permutation of the four corner points. Direct calculation shows that its polar is the family
of involutions of Γ

M:
�

=

{ ↘↖ , ↙↗ , ↓↑ , ↓↑ ,

→←

,
→←

,

→←

→←
, ↓↑ ↓↑ , ↘↙↖↗ }. (1)

We have

bb ↘↖ , ↙↗ , ↓↑ cc =

→
↖↙
→
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which shows that

�

is not balanced. From (7.2) we know that it cannot be abelian either.

We choose one of the elements of this polar at random, say ↘↙↖↗ , and observe that

bb ↙↗ , , ↘↖ cc = ↘↙↖↗ . (2)

Replacing serially by the elements of (1) in (2), we can compute the polar of ↘↙↖↗ :

↘↙↖↗

�

=

{ ↙↗ , ↘↖ , ↑ ↘↙ ↑ , ↓ ↖↗ ↓ ,

←
↘↗
←

,

→
↖↙
→

,

→←

→←
, ↓↑ ↓↑ , }. (3)

From (1) and (3) we have

{ , ↘↙↖↗ }◦ = { ↙↗ , ↘↖ ,

→←

→←
, ↓↑ ↓↑ }. (4)

Direct calculation shows that this polar is balanced. If its polar were also balanced, then (7.3.iv) and (7.5)

would show us how to calculated it: we could take ↙↗ for A and for B and use (7.5.1). We

would obtain

{ , ↘↙↖↗ }◦◦ = { , ↘↙↖↗ , ↓
←

→
↑ , ↑

→

←
↓ }.

Direct calculation shows that this is in fact the case: we have

{ ↙↗ , ↘↖ ,

→←

→←
, ↓↑ ↓↑ }◦ = { , ↘↙↖↗ , ↓

←

→
↑ , ↑

→

←
↓ }

and

{ , ↘↙↖↗ , ↓
←

→
↑ , ↑

→

←
↓ }◦ = { ↙↗ , ↘↖ ,

→←

→←
, ↓↑ ↓↑ }. (5)

From (7.4) and (5) we know that

{ , ↘↙↖↗ , ↓
←

→
↑ , ↑

→

←
↓ , ↙↗ , ↘↖ ,

→←

→←
, ↓↑ ↓↑ }

is balanced.
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8. Meridian Libras

(8.1) Discussion In the cross ratio definition of a meridian of Section (2), the set Mor(M,M)29

was seen to be a libra30. In general, the set of isomorphisms from one meridian onto another, if non-void, is
a libra. Such libras have an intrinsic characterization, which is the subject of the present section.

(8.2) Notation . If A is a subfamily of T and a and b are in L, we define

ba,A, bc ≡ {ba,A, bc : A∈A}. (1)

(8.3) Theorem Let T be a cartesian aggregate of balanced subsets of a libra L such that T has
dimension31 at least 4. Suppose further that there exists a∈L such that

(i) (∀B∈T ) B ∩ a� is balanced and has more than one element;
(ii) (∀B,C ∈T distinct and a-skew) B ∩ C ∩ a� is a singleton.

Define
Π

  ≡ {aT −1 ◦ xT : x∈a�}. (1)

Then Π
  is a meridian family of involutions on .

Proof. For x, a∈L such that bx, a, xc=a, we have

(a
T −1 ◦ xT ) ◦ (a

T −1 ◦ xT ) = a
T −1 ◦ (x

T ◦ aT −1 ◦ xT ) by (6.6)
a
T −1 ◦ bx, a, xcT = a

T −1 ◦ aT

which shows that a
T −1 ◦ xT is an involution.

Let A,B,D, E ∈ with {A, E} ∩ {B,D}=∅. If ba,A ∧ aT
E, ac=B ∧ aT D, then (6.15) implies that

E = D, which is absurd. It follows that A ∧ aT
E and B ∧ aT

D are distinct and skew, and so (ii) implies

that (A∧aT
E)∩(B∧aT

D)∩a� is some singleton {j}. Thus a
T −1◦j T sends A to E and B to D. If any other

φ∈Π
  did the same, since φ can be written as a

T −1 ◦k T , we would have k∈(A∧aT
E)∩ (B∧aT

D)∩a� ,
whence k=j and φ=a

T −1◦j T . This establishes (4.4.1).
Let P and Q be in . Suppose that β, γ, δ∈Π

  and that β
P=γP=δP=Q. By (1) there exist

b, c, d∈L such that a
T −1◦bT =β, a

T −1◦cT =γ and a
T −1◦dT =δ. Let P be the element of P which contains a and

let Q be in Q. Let R≡ Q ∧ P . We have

Q = Q = β
P = a

T −1◦bT
 P  = a

T −1bb, P, bc = ba, bb, P, bc, ac = bP, b, ac = bP, a, bc

=⇒ bP, a, bc∈ Q ∩ P =⇒ bP, a, bc = Q ∧ P = R.

We have b = ba, a, bc∈bP, a, bc = R. Similarly, c and d are in R as well. Thus

b, c, d∈R ∩ a� by (i)⇒ bb, c, dc∈R ∩ a�= by (7.2) bb, c, dc = bd, c, bc. (2)

Hence

(a
T −1 ◦ bT ) ◦ (a

T −1 ◦ cT )
−1
◦ (a

T −1 ◦ dT )
P = (a

T −1 ◦ bT ) ◦ (a
T −1 ◦ cT )

−1
◦ (a

T −1 ◦ dT )
 P  =

ba, bb, babc, babd, P, dc, ac, cc, ac, bc, ac = bbba, b, a, c, ac, d, P c, d, a, c, a, b, ac =

bb, c, d, a, a, a, P, a, a, a, d, c, bc by (2) bbb, c, dc, a, P, a, bb, c, dcc by (2) ba, bb, c, dc, P, , bb, c, dc, ac =

a
T −1 ◦ ba, b, ccT

 P  = a
T −1 ◦ ba, b, ccT

P
This shows that (4.4.2) holds.

Let β and γ be in Π
 . Choose b, c∈a� such that β=a

T −1 ◦ bT and γ=a
T −1 ◦ cT . We have

β ◦ γ−1 ◦ β = a
T −1 ◦ bT ◦ cT −1 ◦ aT ◦ aT −1 ◦ bT = a

T −1 ◦ bT ◦ cT −1 ◦ bT = a
T −1 ◦ bb, c, bcT . (3)

Furthermore
ba, bb, c, bc, ac = ba, b, c, b, ac = ba, a, b, c, bc = bb, c, bc =⇒ bb, c, bc∈a�

29 Cf. (2.8).
30 Cf. (3.6).
31 Cf. (6.17) for definitions of ‘‘dimension’’ and ‘‘a-skew’’.
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which, with (3), implies (4.4.3). QED

(8.4) Definition and Remarks A cartesian aggregate of balanced sets satisfying (i) and (ii) of
Theorem 7.1, and of dimension at least 4, will be called a meridian aggregate.

It follows from Theorem (8.3) and Theorem (4.5) that is a meridian when T is a meridian aggregate.

Evidently is as well, with meridian family of involutions {aT ◦ xT −1
: x∈a�}.

(8.5) Example Let S be three dimensional real projective space, and let Q be a quadric surface
in S in the sense of (1.7). We shall regard Q as a circular hyperboloid extending vertically as in Figure
(24).32 We write L for the complement of Q in S. We write M for the family of rules of Q which go up
counter-clockwise, and we write N for the family of rules of Q which go up clockwise. Each elementa of L
corresponds to a mapping ρa of M onto N as in Figure (1.11). We shall show in Section (10) that these
mappings form a libra, which libra operation carries over to L in exactly one way so that ρ is a meridian
representation. The elements of the associated meridian aggregate T are then intersections with of L with
planes in S tangent to Q. Each such tangent plane intersects with Q in two rules, one from M and one from
N .

Fig. 16: Some elements of M and N

32 If S carries homogeneous coordinates ´
`
x, y, z, t`

´
, the solution to the equation x2 + y2 = z2 + t2 gives

such a quadric surface.
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Fig. 17: Plane B Tangent to Q (element of T) at Point q

Fig. 18: Plane B Tangent to Q (element of T) cutting Polar of a Point b

(8.6) Theorem Let T be a meridian aggregate of balanced subsets of a libra L. Then, for all b∈L.
(i) (∀B∈T ) B ∩ b� is balanced and has more than one element;
(ii) (∀B,C ∈T b-skew) B ∩ C ∩ b� is a singleton.

Furthermore, if a and Π
  are as in (8.3.1), then

(iii) Π
 ={y T −1 ◦ xT : x, y∈L and x∈y�}.

If L is a polar libra, than we also have

(iv) Γ
 ={bT −1 ◦ xT : x∈L}.
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Proof.
(i)⇒ : Let B be in T . Let a be as in (8.3) and let b be a generic element of L. Since ba, b, Bc

is in T , (8.3.i) implies that ba, b, Bc ∩ a� is balanced and has and least two elements. Thus there are two
elements r, s∈B such that ba, b, rc and ba, b, sc are in a� . We have

bb, r, bc = bb, r, b, a, ac = bb, bb, ba, b, rc, acc = bb, a, ba, b, rcc = bb, a, a, b, rc = bb, b, rc = r (1)

It follows that r, and by analogy s, are in b� : B ∩ b� has at least two elements. If t is any other element of
B ∩ b� we have

ba, ba, b, tc, ac = ba, t, b, a, ac = ba, t, bc = ba, b, tc =⇒ ba, b, tc∈a� .

By (8.3.i) we know that bba, b, rc, ba, b, sc, ba, b, tcc is in ba, b, Bc ∩ a� . Thus there exists u∈B such that
ba, b, uc∈a� and

ba, b, uc = bba, b, rc, ba, b, sc, ba, b, tcc = ba, b, r, s, b, a, a, b, tc = ba, b, r, s, b, b, tc = ba, b, br, s, tcc.
Thus u = br, s, tc and, as with r in (1), we have u in b� . It follows the (i) holds.

(ii)⇒ : Let now B and C be in T and b-skew. Then ba, b, Bc and ba, b, Cc are ba, b, bc-skew: i.e they
are a-skew. By (8.3.ii) ba, b, Bc ∩ ba, b, Cc ∩ a� is a singleton. Hence the intersection of B=bb, a, ba, b, Bcc,
C =bb, a, ba, b, Ccc, and b� =bb, a, ac� is a singleton. This proves (ii).

(iii)⇒ : That Π ⊂ {y T −1 ◦ xT : x, y∈L and x∈y�} is trivial. Suppose that x, y∈L and x∈y� . As in the
first paragraph of this proof, we can show that ba, y, xc is in a� . We have

y
T −1 ◦ xT = a

T −1 ◦ aT ◦ y T −1 ◦ xT by (6.6)
a
T −1 ◦ ba, y, xcT =⇒ y

T −1 ◦ xT ∈Π
 ,

which establishes (iii).
(iv)⇒ : By Theorem (4.20) we know that Γ

  is the smallest group of bijections of containing

Π
 . It follows immediately that Γ

  ⊂ {bT −1 ◦ xT : x∈L}, so to establish (iv), it will suffice to show,

for any x∈L, that b
T −1 ◦ xT is a composition of a finite sequence of elements of Π

 . From Theorem (7.7)
follows that there exists n∈N odd and {ti}i=ni=1 ⊂ b� such that

x = bt1, t2, . . . , tnc.
We have

b
T −1 ◦ xT 6.6 b

T −1 ◦ t1
T ◦ t2

T −1 ◦ t3
T ◦ . . . ◦ tn−1

T −1 ◦ tn
T

=

(b
T −1 ◦ t1

T
) ◦ (b

T −1 ◦ t2
T
)
−1
◦ (b

T −1 ◦ t3
T
) ◦ . . . ◦ (b

T −1 ◦ tn−1
T
)
−1
◦ (b

T −1 ◦ tn
T
)

QED

(8.7) Theorem Let M be a meridian. Then Γ
M is a polar libra33 relative to the canonical libra

operator bb, , , cc.
Let ι be the identity representation of Γ

M on M×M. Let T be an abbreviation for Tι, as defined
in (5.9.2). Then T is a meridian aggregate.

The identity representation is equivalent to the T -inner representation34 T T
of Γ

M on T × T .
Proof. By Theorem (2.15) Γ

M is a group. Thus Γ
M is balanced relative to the libra operator

bb, , , cc.
Define the bijections

µ| 3 [m
ι
= n] ↪→ n ∈M and ν| 3 [m

ι
= n] ↪→ m ∈M. (1)

Then, for α∈Γ
M and m∈M,

ν ◦ αT ◦ µ−1m = ν ◦ αT
( [m

ι
= m] = ν( [α

m ι
= α−1m] ) = α

m = ια
m

which establishes the equivalence. QED

(8.8) Definition, Notation and Discussion Let L be a libra containing a meridian aggregate T
of balanced subsets of L. It being somewhat cumbersome to deal with and , we shall deal at times with

33 Cf. (7.6).
34 Cf. (6.8).
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a representation ρ of L on a product M×N equivalent to the T-inner representation. Such a representation
will be said to be characteristic. We reserve µ| →M and ν| → N to represent the bijections such that

ρa = ν ◦ aT ◦ µ−1 (∀ a∈L). (1)

For a given a∈L it is sometimes expedient to form the representation
a
ρ ≡ ρa−1 ◦ ρ (2)

of L on M . We shall say that
a
ρ is the a-representation founded on ρ. In this case we shall sometimes

denote one element of M by ∞, write F for the complement of {∞} in M , and then choose two distinct
elements 0 and 1 of F . We shall use the field operations of addition and multiplication defined in Theorem

(4.11) as well as the matrix notation

( )
for elements of the set Γ

m defined there, which by (8.6.iv), is

evidently just the set {
a
ρx : x∈L}. Such a choice of 0, 1, and ∞ will be called choice of a basis for M .

From (8.3) we know that M is a meridian where

Π
M = {

a
ρx : x∈a�} and Γ

M = {
a
ρx : x∈L}. (3)

(8.9) Theorem Let T be a meridian aggregate of a libra L, let ρ be a characteristic representation

on L on M×N , and let
a
ρ be the corresponding a-representation. Then

(i) (∀ a, b, c, u, v, w∈M :#{a, b, c}=#{u, v, w}=3)(∃! x∈L)
a
ρx

a=u, a
ρx

b=v and
a
ρx

c=w;
(ii) (∀ a, b, c∈M, r, s, t∈N :#{a, b, c}=#{r, s, t}=3)(∃! x∈L) ρx

a=r, ρxb=s and ρx
c=t;

(iii) (∀A1,A2,A3∈ distinct)(∀ B1,B2,B3∈ distinct)(∃! x∈L) x
T Ai = Bi for i = 1, 2, 3.

(iv) (∀A,B,C ∈T pairwise skew) A ∩B ∩ C is a singleton.

Proof.
(i)⇒ : Follows from the fundamental theorem (2.12) applied to (8.3).

(ii)⇒ : Let ´
`
u, v, w`

´
≡´

`
r, s, t`

´
and apply (i).

(iii)⇒ : Follows from the fact that ρ and the left inner representation are equivalent.
(iv)⇒ : Let A,B,C ∈T be pairwise skew. Then A , B and C are distinct, as are A, B and C . By

(iii) there is a unique x∈L such that x
T  A =A , x

T  B =B and x
T  C =C . By Theorem (6.19.ii) this

implies that x∈A∩B∩C. If any other y∈L were in A∩B∩C, then we would have y
T  A =A , y

T  B =B
and y

T  C =C , which would violate the uniqueness of x in this respect. QED

(8.10) Lemma Let T be a meridian aggregate of a libra L, and let
a
ρ be an a-representation for

a∈L. Let b∈L be distinct from a. Then there exists a choice of basis and q, r∈F such that, if

A ≡ {
(
e rd
qd e

)
: e, d∈F and e2 6= qrd2} and B ≡ {

(
e −rd
qd −e

)
: e, d∈F and e2 6= qrd2},

then

(∀ u, v∈A distinct) {u, v}◦ = B, (1)

(∀ g, h∈B distinct) {g, h}◦ = A, (2)

A◦ = B and B◦ = A. (3)

Furthermore, these choices can be made such that
a
ρb =

(
1 r
q 1

)
if b 6∈a� and

a
ρb =

(
o r
q o

)
if b∈a� . (4)

Proof. Suppose first that b∈a� . Let 0 be any element of M and set ∞≡ρb
0. Let 1 be any third

element and define q≡1 and r≡ρb
1.

(4)⇒ Now suppose that b 6∈a� . It follows from (4.20) that there exists π∈Π
M with fixed points and

σ∈Π
M such that

a
ρb=π ◦ σ. Let 0 and ∞ be the fixed points of π, and let 1 be any third element of M .
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Then π=

(
1 0
0 −1

)
. Since σ is self-inverse, there exist i, j, k∈F such that σ=

(
i j
k −i

)
. We have

a
ρb = π ◦ σ =

(
1 0
0 −1

)
◦
(
i j
k −i

)
=

(
i j
−k i

)
.

The hypothesis that b 6∈ a� insures that i cannot be 0. We let q≡ −ki and r≡ j
i . It is now evident that (4)

holds.
(1)⇒ Whenever u, v∈A, direct calculation shows that

B ⊂ {u, v}◦. (5)

Let u, v∈A be distinct and choose d, e, s, t∈F distinct such that
a
ρu=

(
e rd
qd e

)
and e2 6=qrd2, (6)

a
ρv =

(
t rs
qs t

)
and t2 6=qrs2. (7)

Let p be a member of {u, v}◦ and choose w, x, y, z∈M such that

a
ρp=

(
w x
y z

)
and wz 6=xy. (8)

We have

bu, p, uc=p⇐⇒
(
e rd
qd e

)
◦
(
w x
y z

)
−1 =

(
w x
y z

)
◦
(
e rd
qd e

)
−1 ⇐⇒

(
ez − rdy rdw − ex
qdz − ey ew − qdx

)
=

(
ew − qdx −rdw + ex
−qdz + ey ez − rdy

)
. (9)

Equation (9) implies that the matrix

[
ez − rdy rdw − ex
qdz − ey ew − qdx

]
is a non-0 multiple k of the matrix[

ew − qdx −(rdw − ex)
−(qdz − ey) ez − rdy

]
. If k= − 1, then

ez − rdy= − ew + qdx (10)

and if k 6=− 1, then
rdw − ex=0=qdz − ey and ez − rdy=ew − qdx. (11)

If e=0, then (11) and (6) imply that w = 0 = z and ry=qx: thus

a
ρp=

(
w x
y z

)
=

(
0 ry

q
y 0

)
=

(
0 ry
qy 0

)
=

(
e rd
qd e

)
=

a
ρu. (12)

If e6=0, then (11) and (6) imply

x = r
d

e
w, y = q

d

e
z, z = r

d

e
y + w − q d

e
x =⇒ z = rq(

d

e
)2z + w − qr(d

e
)2w =⇒

(1− d2

e2
rq)z = (1− d2

e2
qr)w

by (6)⇒ z=w =⇒ x = rdy =⇒

a
ρp =

(
w r dew

q dew w

)
=

(
e rd
qd e

)
=

a
ρu. (13)

Since u is not in {u, v}◦ and p is, it follows from (12) and (13) that (11) cannot hold. It follows that (10)
must hold, and so

e(z + w) = d(qx+ ry) (14)

holds. An analogous argument, using v instead of u, yields

t(z + w) = s(qx+ ry). (15)

From (14) and (15) follows that either

z + w = 0 = qx+ ry (16)
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or
e

t
=
d

s
(17)

If (17) held, then
a
ρu =

(
e rd
qd e

)
=

(
dt
s rd

qd dt
s

)
=

(
t rs
qs t

)
=

a
ρv

which is absurd since
a
ρ is faithful. It follows that (16) holds and so

a
ρp =

(
w x
y z

)
=

(
w − ryq
y −w

)
=

(
qw −ry
qy −qw

)
,

which in turn implies that p is in B. Thus {u, v}◦ ⊂ B. This, with (5), establishes (1).
(2)⇒ Whenever g, h∈B, direct calculation shows that

A⊂{g, h}◦. (18)

Let g, h∈B be distinct and choose d, e, s, t∈F distinct such that
a
ρ(g)=

(
e −rd
qd −e

)
and − e2 6=qrd2, (19)

a
ρ(h)=

(
t −rd
qs −t

)
and − t2 6=qrs2. (20)

Let p be a member of {g, h}◦ and choose w, x, y, z∈M such that

a
ρp=

(
w x
y z

)
and wz 6=xy. (21)

bg, p, gc=p⇐⇒
(
e −rd
qd −e

)
◦
(
w x
y z

)
−1=

(
w x
y z

)
◦
(
e −rd
qd −e

)
−1 ⇐⇒

(
ez + rdy −ex− rdw
qdz + ey −qdx− ew

)
=

(
qdx+ ew −ex− rdw
qdz + ey −ez − rdy

)
(22)

Equation (22) implies that the matrix

[
ez + rdy −ex− rdw
qdz + ey −qdx− ew

]
is a non-0 multiple k of the matrix[

qdx+ ew −ex− rdw
qdz + ey −ez − rdy

]
. If k=1, then

ez + rdy=qdx+ ew (23)

and if k 6=1, then
−ex− rdw=0=qdz + ey and ez + rdy= − qdx− ew. (24)

If e=0, then (24) and (19) imply that w = 0 = z and ry= − qx: thus

a
ρp=

(
w x
y z

)
=

(
0 − ryq
y 0

)
=

(
0 −ry
qy 0

)
=

(
e −rd
qd −e

)
=

a
ρg. (25)

If e6=0, then (24) and (19) imply

x = −r d
e
w, y = −q d

e
z, z = −r d

e
y − w − q d

e
x =⇒ z = rq(

d

e
)2z − w + qr(

d

e
)2w =⇒

(1− d2

e2
rq)z = −(1− d2

e2
qr)w

by (19)⇒ z= − w =⇒ x = −rdy =⇒

a
ρp =

(
w −r dew
q dew −w

)
=

(
e −rd
qd −e

)
=

a
ρg. (26)

Since u is not in {u, v}◦ and p is, it follows from (25) and (26) that (24) cannot hold. It follows that (23)
must hold, and so

e(z − w)=d(qx− ry) (27)
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holds. An analogous argument, using h instead of g, yields

t(z − w)=s(qx− ry). (28)

From (27) and (28) follows that either

z − w = 0 = qx− ry (29)

or
e

t
=
d

s
(30)

If (30) held, then
a
ρg =

(
e −rd
qd −e

)
=

(
dt
s −rd
qd −dts

)
=

(
t −rs
qs −t

)
=

a
ρh

which is absurd since
a
ρ is faithful. It follows that (29) holds and so

a
ρp =

(
w x
y z

)
=

(
w ry

q
y w

)
=

(
qw ry
qy qw

)
,

which in turn implies that p is in B. Thus {g, h}◦ ⊂ A. This, with (18), establishes (2).
(3)⇒ That B⊂A◦ follows from direct computation. Let g be in A◦. Since a and b are in A, it follows

that g is then in {a, b}◦, which by (1) is just B. Thus A◦=B. That B◦=A is proved analogously. QED

(8.11) Theorem Let T be a meridian aggregate of a libra L. Let a and b be distinct elements of L.
Then

(i) {a, b}◦ has at least three elements;
(ii) {a, b}◦ is balanced;
(iii) (∀ x, y∈{a, b}◦ distinct) {x, y}◦={a, b}◦◦;
(iv) (∀ c, d∈{a, b}◦◦ distinct) {c, d}◦={a, b}◦.

Proof.
(i)⇒ : Let 0, 1, ∞, A, B, q and r be as in Lemma (8.10). Then both

a
ρa=

(
1 0
0 1

)
and

a
ρb are

in A and distinct. It follows from (8.10.1) that

{a, b}◦ = B. (1)

We may and shall presume that −16=qr 6=1. It follows that

(
1 0
0 −1

)
,

(
1 −r
q 1

)
and

(
1 r
−q 1

)
are distinct

elements of B. This with (1) establishes (i).
(ii)⇒ : Follows from (1) and direct computation.
(iv)⇒ : Let x and y be distinct elements of {a, b}◦. We have

{a, b}◦ by (8.10.1) B =⇒ {a, b}◦◦ = B◦ by (8.10.3) A by (8.10.2) {x, y}◦

which is (iii).
(iv)⇒ : In (iii) we now replace x and y by c and d, and then replace a and b by x and y: which yields

that {c, d}◦={x, y}◦◦. Hence {c, d}◦={a, b}◦, which is (iv). QED

(8.12) Definition and Notation For distinct a and b in a meridian libra L we shall denote the set
{a, b}◦◦ by a, b and shall refer to it as a line trace. We adopt the notation

L(L) ≡ {a, b : a, b∈L distinct}.

(8.13) Theorem Let T be a meridian aggregate of a libra L. Let K be an element of L(L). Then
(i) K◦ is in L(L);
(ii) K◦◦=K;
(iii) K ∩K◦=∅;
(iv) K ∪K◦ is balanced;
(v) if x, y∈K are distinct, then x, y=K.

Proof.
(i)⇒ : Let a and b be distinct and such that {a, b}◦◦=K. By (8.11.i) and (8.11.iii) there exist
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distinct x, y∈{a, b}◦ such that {a, b}◦◦={x, y}◦. Thus

x, y = {x, y}◦◦ = {a, b}◦◦◦ = K◦

which establishes (i).
(ii)⇒ : That (ii) holds follows from (7.3.iv).
(iii)⇒ : If a were in K ∩K◦ there would be another element b of K and we could apply (8.10) to obtain

disjoint line traces A = K and and B=K◦◦: which is absurd.
(iv)⇒ : That (iv) holds follows from Theorem (7.4).
(v)⇒ : Let x and y be distinct elements of K. We have

x, y∈K
by (ii)

K◦◦
by (8.11.iv)⇒ {x, y}◦=K◦ =⇒ x, y={x, y}◦◦=K◦◦ by (8.11.ii)

K,

which establishes (v). QED

(8.14) Theorem Let T be a meridian aggregate of a libra L. Let a be an element of L and B an
element of T . Then

(i) B ∩ a� ∈L(L);
(ii) a∈B ⇐⇒ (B ∩ a�)◦ ⊂ B.

Proof. There are two cases to consider: either B= [0

a
ρ
= 0] for some 0∈M , or B= [0

a
ρ
= ∞] for distinct 0

and ∞ in M .

Case I: B= [0

a
ρ
= 0] for some 0∈M . Choose 1 and ∞ in M distinct from each other and from 0, and let

F≡{x∈M : x 6=∞}. Since
a
ρa=

(
1 0
0 1

)
, we have

{
a
ρx : x∈B ∩ a�} = {

(
1 0
r −1

)
: r∈F}. (1)

Let u, v∈B ∩ a� satisfy
a
ρu=

(
1 0
0 −1

)
and

a
ρv =

(
1 0
1 −1

)
. For w, x, y, z∈F we have

bb
a
ρu,

(
w x
y z

)
,
a
ρucc =

(
z x
y w

)
which implies that

bb
a
ρu,

(
w x
y z

)
,
a
ρucc =

(
w x
y z

)
⇐⇒ (∃ k∈F : k 6= 0)

(
z x
y w

)
= k ·

(
w x
y z

)
;

and, similarly,

bb
a
ρv,

(
w x
y z

)
,
a
ρvcc =

(
w x
y z

)
⇐⇒ (∃ k∈F : k 6= 0)

(
z − x x

z + y − x− w x+ w

)
= k ·

(
w x
y z

)
which implies that

{u, v}◦ = {t∈L : (∃ r∈F )
a
ρt =

(
1 0
r 1

)
}. (2)

It follows from (1) and (2) that u, v=B ∩ a� . Furthermore a is in B and, from (2),

(B ∩ a�)◦ = {u, v}◦ ⊂ [0

a
ρ
= 0] = B.

Thus (i) and (ii) hold for Case I.

Case II: B= [0

a
ρ
= ∞] for 0,∞∈M distinct. Choose 1∈M distinct from 0 and ∞ and let F≡{x∈M :

x 6=∞}. We have

{
a
ρx : x∈B ∩ a�} = {

(
0 r
1 0

)
: r∈F}. (3)
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Let u, v∈B ∩ a� satisfy
a
ρu=

(
0 1
1 0

)
and

a
ρv =

(
0 −1
1 0

)
. For w, x, y, z∈F we have

bb
a
ρu,

(
w x
y z

)
,
a
ρucc =

(
w x
y z

)
⇐⇒ (∃ k∈F : k 6= 0)

(
w −y
−x z

)
= k ·

(
w x
y z

)
and

bb
a
ρv,

(
w x
y z

)
,
a
ρvcc =

(
w x
y z

)
⇐⇒ (∃ k∈F : k 6= 0)

(
−w −y
−x −z

)
= k ·

(
w x
y z

)
which implies

{u, v}◦ = {t∈L : (∃ r∈F )
a
ρt =

(
1 0
0 r

)
}. (4)

It follows from (1) and (2) that u, v=B ∩ a� . Furthermore a is not in B but is in (B ∩ a�)◦. Thus (i) and
(ii) hold for Case II. QED

(8.15) Corollary Let T be a meridian aggregate of a libra L. Let K be an element of L(L) and let
A be an element of T . If K ∩A has at least two elements, then K⊂A.

Proof. Let a be in K◦ and let b, c be distinct elements of K ∩A. From (8.14)(i) follows that A ∩ a� is
in L(L), and from (8.13.v) follows that K =b, c=A ∩ a� . QED

(8.16) Corollary Let T be a meridian aggregate of a libra L. Let A be an element of T . Then
A◦=∅.

Proof. Assume that a is in A◦. It follows that A ∩ a� =A, and so (8.14.i) implies that A is in L(L).
From (8.10.iii) follows that a 6∈A. Let b be in A. Then ba, b, Ac contains a and so is not A. From (7.2) we
know that A is abelian. For c, d∈A we have

bd, ba, b, cc, dc = bbd, c, bc, a, dc = bbb, c, dc, a, dc = bb, c, d, d, ac = bb, c, ac = ba, b, cc
which means that d∈ba, b, Ac◦. This implies that A⊂ba, b, Ac◦. Since left translates are pairwise disjoint, it
follows that A=ba, b, Ac, which is absurd. QED

(8.17) Theorem Let T be a meridian aggregate of a libra L. Let A and B be distinct skew elements
of T . Then

(i) A ∩B is in L(L);

(ii) (A ∩B)◦=( A ∧ B ) ∩ ( B ∧ A).

Proof. Let a be in A. There exist ∞∈M and n∈N such that A= [∞
ρ
= n]. We have ρa

∞=n so

a
ρa

∞ = (ρa
−1 ◦ ρa)

∞ = (ρa
−1)

n = ∞ =⇒ A = [∞
a
ρ
= ∞].

There exist 0, 1∈M such that B= [0

a
ρ
= 1]. Since A and B are skew, neither 0 nor 1 can be ∞. We have

(∀ x∈A ∩B)(∃ r∈F )
a
ρ(x) =

(
r 1
0 1

)
. (1)

Let r and s in L satisfy
a
ρr =

(
0 1
0 1

)
and

a
ρs =

(
1 1
0 1

)
.

Direct calculations show that a necessary and sufficient condition for x∈L to be in r� ∩ s� is for there to be
u∈F such that

a
ρx =

(
1 u
1 0

)
. (2)

Thus r, s={x∈L : (1) holds} and
r, s◦ = {x∈L : (2) holds}. (3)

The first of these two equalities implies that r, s=A ∩ B∈L(L). The set of x∈L satisfying equation (2) is

just [∞
a
ρ
= 1] ∩ [0

a
ρ
= ∞]=( A ∧ B ) ∩ ( B ∧ A). From this and equation (3) follows that

(A ∩B)◦ = ( A ∧ B ) ∩ ( B ∧ A).
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QED

(8.18) Corollary Let T be a meridian aggregate of a libra L. Let A and B be skew elements of T .
Then

{x∈L : B = bx,A, xc} = (A ∩B)◦. (1)

Proof. This follows from (6.19.i) and (8.17.ii). QED

(8.19) Theorem Let T be a meridian aggregate of a libra L. Let K be an element of L(L). Then
the following four statements are pairwise equivalent:

(i) (∃A∈T ) K ∪K◦ ⊂ A;
(ii) (∃A∈T ) K ⊂ A and K◦ ∩A 6=∅;
(iii) (∃!B∈T ) K ⊂ B;

(iv) (∃A∈T ) {E∈T : K ∩ E =∅}={D∈A ∪ A : D 6=A}.
If these four statements hold, then

(v) (∀ n∈K) K ∩ n� =∅.
Proof. (i)=⇒(ii): Trivial.

(ii)=⇒(iii): Suppose that (ii) holds and that a is in K◦ ∩ A. We have K⊂a� ∩ A and so by Theorem
(8.14.i), K =a� ∩ A. If ba,A, ac were not A, they obviously would be a skew pair and so Theorem (8.17.i)
would imply that K =A ∩ ba,A, ac, which would imply that a∈K ∩ K◦, which would violate (8.13.iii). It
follows that A=ba,A, ac. Thus, if B were any element of TK distinct from A, then B and A would be a-skew,
and so Theorem (8.6)(ii) would imply that A ∩B ∩ a� were a singleton: an absurdity. Thus (iii) holds.

(iii)=⇒(iv) and (i): Suppose that (iii) holds. Let 0, 1, ∞, q and r be as in Lemma (8.10). Since a is

in B and
a
ρ
a is the identity mapping, there exists m∈M such that B= [m

a
ρ
= m]. If m were in F , then for

all e, d∈M such that e2 6=qrd2,

(
e rd
qd e

) m=m. This is evidently impossible, so m must be ∞. It follows

that q=0 6=r. That

{D∈B ∪ B : D 6= B} ⊂ {E∈T : K ∩ E = ∅}

follows from he fact that B and B are partitions of L. Let E∈T have void intersection with K, and

assume that E is in neither B nor B . Then there exist j, k∈F such that E = [j

a
ρ
= k]. But(

1 k−j
r r

k−j
r q 1

)
(j) =

(
1 k − j
0 1

)
(j) = k =⇒ K ∩ E 6= ∅ : a contradiction.

It follows that (iv) holds. It follows from Lemma (8.10) that the image by
a
ρ of anything in K◦ is of the

form

(
e −dr
0 −e

)
and so it is evidently in [∞

a
ρ
= ∞]=B. Thus (i) holds.

(iv)=⇒(iii): trivial.

(i)=⇒(v): Suppose that (i) holds. Since A and A are partitions of L, it is trivial that

{D∈A ∪ A : D 6= A} ⊂ {E∈T : K ∩ E = ∅} (1).

Suppose that B∈T is neither a left nor a right translate of A. Let a be an element of K◦. Since a is in A,
we have A=ba,A, ac which implies that A and B are not a-skew. By (8.6.ii) we know that a� ∩ A ∩ B is a
singleton. But a� ∩A=K, which implies that K ∩B is a singleton. Thus the set containment symbol in (1)
can be replaced by an equals symbol. Thus (v) holds. QED
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Fig. 19: A Parabolic Line K and its Polar Showing the Rules of their Plane

(8.20) Definition We shall say than an element of L(L) which satisfies (8.19.iii) is parabolic. If
K ∈L(L) is contained in more than one element of T we shall say that it is elliptic. If K ∈L(L) is neither
parabolic nor elliptic, we shall say that it is hyperbolic.

Fig. 20: An Elliptic Line K and its Polar

(8.21) Theorem Let T be a meridian aggregate of a libra L. For K ∈L(L), the following are pairwise
equivalent statements:

(i) K is elliptic;
(ii) #{A∈T : K ⊂ A}=2;
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(iii) (∃A,B∈T ) K =A ∩B;
(iv) K◦ is elliptic;
(v) (∃A,B∈T skew) K ={x∈L : bx,A, xc=B}.

Proof. (i)⇐⇒(ii): Suppose that (i) holds. Assume that A,B,C ∈T are distinct and that K is a subset
of each. Since A is a partition of L, A is its only member with L as a subset. Consequently neither B nor
C is in A , whence follows that A cannot equal B nor can it equal C . Similarly, B cannot equal C .
Since L is a meridian, it follows from the Fundamental Theorem that there exists exactly one element

x of L such that x
T  A =A , x

T  B =B , and x
T  C =C . Evidently each k∈K can serve for x in these

last three equalities, and by (8.11.i) K has at least three elements: an absurdity. Thus (ii) holds. That (ii)
implies (i) is trivial.

(ii)=⇒(iii): Suppose that (ii) holds and that A and B are the elements of T of which K is a subset.
From Theorem (8.17.i) we know that A ∩ B is a line trace and so, by (8.11.iv), it must be K. Thus (iii)
holds.

(iii)=⇒(i): trivial.

(i)⇐⇒(iv): Suppose again that (i) holds, and let A and B be the elements of TK . From Theorem (8.17)

we know that K◦=( A ∩ B ) ∩ ( B ∩ A). This implies that { A ∩ B, B ∩ A} ⊂ TK◦. It follows that

(iv) holds. Since K =K◦◦, we also have that (iv) implies (i).

(i)=⇒(v): Suppose that (i) holds and that A and B are the elements of TK . Assume K ∩C =∅ for C ∈T
but that C 6∈ TK . Let a be in K◦. We saw above that ba,A, ac=B and so the pair A and C are a-skew. It
follows from Theorem (8.6.ii) that a� ∩ A ∩ C is a singleton. But a� ∩ A contains K, and so by (8.14.i) is
precisely K. It follows that the singleton a� ∩A ∩ C must be in K, which is absurd. We thus have

{C ∈T : K ∩ C = ∅} ⊂ {D∈T : K◦ ⊂ D}. (1)

On the other hand, if D in TK◦ contained an element of K, Theorem (8.19.ii) would imply that K were
parabolic. It thus follows that the containment symbol in (1) may be replaced by an equality symbol.
Consequently, (v) holds.

(iv)⇐⇒(v): From Theorem (6.19.ii) and Theorem (8.16.ii) follows that, for any skew A,B∈T

{x∈L : bx,A, xc = B} = ( A ∧ B ) ∩ ( B ∧ A) = (A ∩B)◦.

Thus (v) is equivalent to the statement that K =(A∩B)◦ for some A,B∈T . If K◦ is elliptic, then K◦=A∩B
for some some A,B∈T by (iii), which in turn implies that K =K◦◦=(A ∩ B)◦. On the other hand, if (vii)
holds, then K◦=(A ∩B)◦◦=A ∩B and so K◦ is elliptic. QED

(8.22) Discussion Let K be an elliptic line trace. Then K◦ is elliptic too and so there are precisely

two elements A and B of T containing K◦ as a subset: in fact we have K◦=A ∩ B. Let C≡ A ∧ B and

D≡ B ∧ A . Then C and D are the two elements containing K as a subset: K =C ∩D. We have

{X ∈T : K ∩X =∅}={X ∈ C ∪ C ∪ D ∪ D : X 6∈ {C,D}}={X ∈ A ∪ B ∪ C ∪ C : X 6∈ {C,D}}.
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Fig. 21: A Hyperbolic Line K and its Polar

(8.23) Theorem Let T be a meridian aggregate of a libra L. For K ∈L(L), the following are pairwise
equivalent statements:

(i) K is hyperbolic;
(ii) K◦ is hyperbolic;
(iii) (∀A∈T ) K ∩A 6=∅;
(iv) (∀A∈T ) K ∩A is a singleton.

Proof. (i)⇐⇒(ii): Suppose the (i) holds. From (8.19.i) follows that K◦ cannot be parabolic. From
(8.21.iii), we know that K◦ cannot be elliptic. Thus (ii) holds. That (ii) implies (i) follows now by inter-
changing the roles of K with K◦.

(iii)=⇒(i). Suppose that (iii) holds. That K cannot be parabolic follows from (8.19.iv). That K cannot
be elliptic follows from (8.21.iv). Thus (i) holds.

(i)=⇒(iv). Suppose that (i) holds. Let a and b be distinct points of K. Let 0 be any element of M and

let ∞≡
a
ρb

0. Then there exist r, s, l∈F such that
a
ρb=

(
r l
s 0

)
. It follows that

K◦ = {x∈L : (∃ p, q∈F )
a
ρx =

(
p q

−qs− pr −p

)
}.

From this follows that

K = K◦◦ = {x∈L : (∃w, z∈F )
a
ρx =

(
w z
sz w − rz

)
}.

Let A be any element of T . Then there exist m,n∈M such that A= [m

a
ρ
= n]. Evidently a is in [m

a
ρ
= n]

whenever m=n. If any other k∈K were in [m

a
ρ
= n] for m=n, then all of K would be as well, and so K would

not be hyperbolic. Thus we may and shall suppose that m6=n. If m=∞ we set z≡ l and w≡ l+ rn to obtain

x∈ [m

a
ρ
= n]. If n=∞ we set w≡ l and z≡ −m to obtain x∈ [m

a
ρ
= n]. If neither m nor n is ∞, we set z≡m−n

and w≡ sm− rn− l to obtain x∈ [m

a
ρ
= n]. It follows that (iv) holds.

(iv)=⇒(iii): Trivial. QED
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(8.24) Theorem Let T be a meridian aggregate of a libra L. Let a be in L and b be in a� . Then
(i) b� ∩ a� ∈L(L);
(ii) (∀ c∈b� ∩ a�) c� ∩ b� ∩ a� is a singleton {d} and b=bc, a, dc;
(iii) if a, b is elliptic, (∃ c∈b� ∩ a�)(∃ d∈c� ∩ b� ∩ a�) a, c is elliptic, c, d is elliptic and b=bc, a, dc;
(iv) if a, b is hyperbolic, (∃ c∈b� ∩ a�)(∃ d∈c� ∩ b� ∩ a�) a, c is elliptic, c, d is hyperbolic and b=bc, a, dc.

Proof. Let 0∈M be such that
a
ρb does not fix it. Let ∞≡

a
ρb

0 and choose 1∈M distinct from 0 and
∞. Then there exists e∈M such that

a
ρb =

(
0 1
e 0

)
(1).

It follows that

{
a
ρx : x∈a� ∩ b�} = {

(
x y
−ey −x

)
: x, y∈F}. (2)

This implies that

b� ∩ a� = c, d where
a
ρc =

(
1 0
0 −1

)
and

a
ρd =

(
0 1
−e 0

)
which proves (i). That (ii) holds now follows from direct calculation.

If a, b is elliptic, then it is contained in two elements A and B of T and so in particular a, b∈A ∩ B:

there equal m and 1 distinct in M such that
a
ρb

1=1 and
a
ρb

m=m. Thus

a
ρb =

(
0 1
1 0

)
,
a
ρc =

(
1 0
0 −1

)
and

a
ρd =

(
0 1
−1 0

)
.

Evidently a, c⊂[0

a
ρ
= 0] ∩ [∞

a
ρ
= ∞] and so a, c is elliptic. Evidently c, d⊂[1

a
ρ
= −1] ∩ [−1

a
ρ
= 1], which implies

that c, d is elliptic. Thus (iii) holds.

If a, b is hyperbolic, then it is contained in no element of T . In particular, the equation t=
a
ρb

t= 1
e·t

has no solution for t. From equation (2) we know that
a
ρc is of the form

(
x y
−ey −x

)
and

a
ρd is of the form(

r s
−es −r

)
. The equation

a
ρd

t= aρc
t resolves into e · t2= − 1. Hence the c, d is hyperbolic as well. If we

choose c to be such that
a
ρc=

(
1 0
0 −1

)
, then evidently a, c ⊂ [0

a
ρ
= 0] ∩ [∞

a
ρ
= ∞] and so a, c is elliptic. This

establishes (iv) QED

(8.25) Theorem Let T be a meridian aggregate of a libra L. Let K be a line trace and a an element
of K. Then

(∃ k∈K distinct from a : k∈a�)⇐⇒ K is not parabolic. (1)

Proof. =⇒ This follows from (8.19.v).
⇐= Let b∈K be distinct from a, and suppose that K is not parabolic. If b is in a� , we are done, so we

shall presume that b is not in a� . By Lemma (8.10) there exists an a-representation
a
ρ, a choice of basis, and

q, r∈F such that

K = {
(
e rd
qd e

)
: e, d∈F}, and

a
ρb =

(
1 r
q 1

)
.

Evidently an element of K is in a� if and only if it is of the form

(
0 r
q 0

)
. For this it is necessary and

sufficient that q 6=06=r. But one easily checks that

q = 0 =⇒ K ⊂ [∞
a
ρ
= ∞] and r = 0 =⇒ K ⊂ [0

a
ρ
= 0]

both of which are absurd, since K is not parabolic. QED

(8.26) Theorem Let a and b be distinct elements of L. Then
(i) a, b is hyperbolic⇐⇒ (∃ c, d∈a�) a, c is elliptic, c, d is hyperbolic, and b=bc, a, dc;

70



(ii) a, b is elliptic⇐⇒ (∃ c, d∈a�) a, c is elliptic, c, d is elliptic, and b=bc, a, dc;
(iii) a, b is parabolic⇐⇒ (∃ c, d∈a�) a, c is elliptic, c, d is parabolic, and b=bc, a, dc;

Proof. Suppose first that b is in a� . If a, b were parabolic, then Theorem (8.19.v) would imply that
b∈a�∩a, b=∅: an absurdity. Thus a, b is either hyperbolic or elliptic, and so (ii) and (iii) follow from Theorem
(8.24.iv) and (8.24.iii) respectively.

In the remainder of this proof we shall suppose that b is not in a� . Suppose that a, b is elliptic. Then

a, b is contained in two distinct elements of T , which means that
a
ρa and

a
ρb agree on two distinct elements

of M . This means that
a
ρb has two fixed points, and so is a dilation. By (4.20.iii) there exist π, σ∈Π

M
agreeing on two distinct points of M and such that π is a dilation and such that

a
ρb=π◦σ . Choose c, d∈a�

such that
a
ρc=π and

a
ρd=σ. We have

bb
a
ρc,

a
ρa,

a
ρdcc =

a
ρc ◦

a
ρd = π ◦ σ =

a
ρb =⇒ b = bc, a, dc. (1)

Since
a
ρc=π has two fixed points, it agrees with

a
ρ at two points – hence the line a, c is elliptic. Since

a
ρc and

a
ρd agree on two distinct points, it follows that c, d is elliptic. This proves (ii).

Now suppose that a, b is hyperbolic. This means that a and b are in no common element of T : that
a
ρb

leaves not point fixed, and so is a rotation. By (4.20.iv) there exist π, σ∈Π
M agreeing on no point of M ,

such that π is a dilation, and such that
a
ρb=π◦σ . Choose c, d∈a� such that

a
ρc=π and

a
ρd=σ. As before, it

follows that (1) holds and that a, c is elliptic. This time however, c, d is hyperbolic since
a
ρc and

a
ρd agree on

no point of M . This proves (i).
Finally we suppose that a, b is parabolic. This means that a and b are in a single element of T : that

a
ρa and

a
ρb agree on at a single point of M : that

a
ρb has exactly one fixed point: that

a
ρb is a translation. By

(4.20.ii) there exist π, σ∈Π
M with a single common fixed point of M , such that π and σ are dilations, and

such that
a
ρb=π◦σ . Choose c, d∈a� such that

a
ρc=π and

a
ρd=σ. As before, it follows that (1) holds and that

a, c is elliptic. This time however, c, d is parabolic since
a
ρc and

a
ρd agree on a single point of M . This proves

(iii). QED

(8.27) Corollary Let a be an element of L. Then

L = {bx, y, zc : x, y, z∈a�}.
In particular, L is a polar libra.35.

Proof. By Theorem (8.24) there exist b, c, d∈a� such that b=bc, a, dc. It follows that a=bd, b, cc. Corol-
lary (8.27) now follows from Theorem (8.26). QED

(8.28) Discussion The final three theorems of this section will be needed infra in discussing the
connection of L with three dimensional projective space.36

(8.29) Theorem Let A be in T and let K and V be distinct line traces in A. Then either K
intersects V or

(∃X ∈ A ∪ A) K◦ ∪ V ◦ ⊂ X. (1)

Proof. Let a be in K. Referring to the notation of (8.8) we let ∞≡µ
 A . We have

a
ρ
∞ = ν

aT µ−1∞ = ν
aT  A  = ν

A
and so

[∞
a
ρ
= ∞] = (µ−1(∞)) ∧ (ν−1(ρa

∞)) = A ∧ A = A.

Let b be an element of K distinct from a and let c be an element of V not in K. Then c6=a and so there

exists some point 0∈F such that 1≡
a
ρc

0 is not 0. Let s≡
a
ρb

0 and r≡
a
ρb

1− s. Then we have

a
ρa =

(
1 0
0 1

)
and

a
ρb =

(
r s
0 1

)
.

35 Cf. (7.6).
36 Cf. Section (10) infra.
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If r=1, then
a
ρa and

a
ρb agree only at the one point ∞ of M , which implies that K is parabolic. Direct

calculation shows that

{a, b}◦={x∈L : (∃ t∈F )
a
ρ(x)=

(
−1 t
0 1

)
} and K =a, b={x∈L : (∃ t∈F )

a
ρ(x)=

(
1 t
0 1

)
}. (2)

If r 6=1, then
a
ρa and

a
ρb agree also at the point s

1−r and so K is elliptic with

K = {x∈L : (∃ t∈F )
a
ρx =

(
t+ (1− t)r (1− t)s

0 1

)
}. (3)

Recalling that 1=
a
ρc

0 we choose q∈F such that
a
ρc=

(
q 1
0 1

)
. Let d be an element of V distinct from

0,and choose u, v∈F such that
a
ρd=

(
u v
0 1

)
. If q=u, arguing as above we find that V is parabolic and

c, d = {x∈L : (∃ t∈F )
a
ρx =

(
q t
0 1

)
}. (4)

If q 6=u, then
a
ρc and

a
ρd agree also at v−1

q−u and so V is elliptic and

c, d = {x∈L : (∃ t∈F )
a
ρ(x) =

(
tq + (1− t)u t+ (1− t)v

0 1

)
}. (5)

Case I: (2) and (4) hold. Here (1) holds with X≡A.

Case II: (2) and (5) hold. If y∈L satisfies
a
ρy =

(
1 1−u

q−u
0 1

)
, then y∈K ∩ V .

Case III: (3) and (4) hold. We have

(
q 1−q

1−rx
0 1

)
=

(
t+ (1− t)r (1− t)s

0 1

)
when t≡ q−r

1−r .

Case IV: (3) and (5) hold. Suppose first that s
1−r =

v−1
q−u . If

a
ρc(

v−1
q−u ) equals v−1

q−u , then

K = [∞
a
ρ
= ∞] ∩ [

s

1− r

a
ρ
=

s

1− r
] = [∞

a
ρ
= ∞] ∩ [

v − 1

q − u

a
ρ
=
v − 1

q − u
] = V

which is absurd. Thus e6=f where f≡
a
ρc(

v−1
q−u ) and e≡ v−1

q−u . We have

K = [∞
a
ρ
= ∞] ∩ [e

a
ρ
= e] and V = [∞

a
ρ
= ∞] ∩ [e

a
ρ
= f ]

which implies

K◦ = [∞
a
ρ
= e] ∩ [e

a
ρ
= ∞] and V ◦ = [∞

a
ρ
= f ] ∩ [e

a
ρ
= ∞]

which in turn implies (5) where X≡ [e

a
ρ
= ∞].

Now we suppose that s
1−r 6=

v−1
q−u . Then e≡ i − v + q−u

1−r s is not 0 and we may define t2≡
u−r
1−r s+s−v

e and

t1≡
t2(q−u)+u−r

q−u to obtain(
t1 + (1− t1)r (1− t1)s

0 1

)
=

(
t2q + (1− t2)u t2 + (1− t2)v

0 1

)
.

QED

(8.30) Theorem Let a be in L and let K and V be distinct lines in in a� . Then either K intersects
V or

(∃X ∈T ) K◦ ∪ V ◦ ⊂ X. (1)

Proof. The line trace K◦ contains a and so by (8.10) there exists a choice {0, 1,∞} of basis for M and
q, r∈F such that

{
a
ρx : x∈K} = {

(
x −ry
qy −x

)
: x, y∈F and x2 6=qry2}. (2)
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Let c be an element of L◦ distinct from a, and choose t, u, v, w∈F such that
a
ρc =

(
t u
v w

)
. Since

V = {a, c}◦, direct computation shows that if t 6=w,

{
a
ρx : x∈V } = {

(
uy + vx (t− w)x
(t− w)y −uy − vx

)
: x, y∈F and (uy + vx)2 + (t− w)2xy 6=0}. (3)

If (uq+vr)2 6=rq(w−t)2 then there exists d∈L such that
a
ρd=

(
uq + vr −r(w − t)
q(w − t) −(uq + vr)

)
. Direct computation

with (2) and (3) shows that d is in K ∩ V . If (uq + vr)2=rq(w − t)2, we have the following cases:

Case q=0: Since (uq + vr)2=rq(w − t)2, we have v=0 as well. This implies that
a
ρc

∞=∞, whence

follows that V ◦ ⊂ [∞
a
ρ
= ∞]. If ć ∈L is such that

a
ρ(ć )=

(
1 r
0 1

)
, then the fact that q=0 implies that ć is

in K◦. Since

(
1 r
0 1

)
(∞)=∞=

(
1 0
0 1

)
=
a
ρa, it follows that K ⊂ [∞

a
ρ
= ∞].

Case r=0: Since (uq+vr)2=rq(w− t)2, we have u=0 as well. This implies that
a
ρc

0=0, whence follows

that V ◦ ⊂ [0

a
ρ
= 0]. If k∈L is such that

a
ρk =

(
1 0
q 1

)
, then the fact that r=0 implies that k is in K◦. Since(

1 0
q 1

)
(0)=0=

(
1 0
0 1

)
=
a
ρa, it follows that K ⊂ [0

a
ρ
= 0].

Case rq 6=0: From (uq + vr)2=rq(w− t)2 follows that r
q =(q uq+vrw−t )2. Let e∈L satisfy

a
ρe=

(
0 r
q 0

)
. The

equation
a
ρe

x=x for x∈F is the same as x2= rq . Thus it has the solutions x= ± 1
q
uq+vr
w−t . In particular we

have e∈ [ 1
q
uq+vr
w−t

a
ρ
= 1

q
uq+vr
w−t ], which since a is there as well, implies V ◦ ⊂ [ 1

q
uq+vr
w−t

a
ρ
= 1

q
uq+vr
w−t ]. On the other

hand we have(
t u
v w

)
(
1

q

uq + vr

w − t
)=

1

q

uq + vr

w − t
⇐⇒ t

q

uq + vr

w − t
+ u=(

v

q

uq + vr

w − t
)2 +

w

q

uq + vr

w − t
⇐⇒

v
r

q
=
w

q

uq + vr

w − t
− t

q

uq + vr

w − t
− u⇐⇒ v

r

q
=
uq + vr

q
− uq

q

which last is obviously true. It follows that
a
ρc is in [ lq

uq+vr
w−t

a
ρ
= l

q
uq+vr
w−t ]. Since

a
ρa is as well, we have

V ◦ ⊂ [ 1
q
uq+vr
w−t

a
ρ
= 1

q
uq+vr
w−t ]. We have established (8.30) for the case t 6=w.

Suppose that t=w. Choose d∈L such that
a
ρd=

(
1 0
0 −1

)
. From (2) we know that d is in K. Direct

computation shows that d is in c� , and so, since it evidently is in a� , d is in V . QED

(8.31) Theorem For each a∈L, we have

a�◦ = {a}. (1)

Proof. That a∈a�◦ is trivial. Assume that there existed b in a�◦ distinct from a. Then

a, b∈a�◦
by (7.3.i) and by (7.3.iv)⇒ a�⊂{a, b}◦ = {a, b}◦◦◦ by (7.3.i) and by (7.3.iv)⇒ {a, b}◦◦⊂{a}

which by (8.13.i) implies that the singleton {a} has a line as a subset: an absurdity. QED
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9. Product Libras

(9.1) Discussion, Definitions and Notation Let L be a libra. The injection

L 3 x ↪→ ´
`
x, x`

´
∈ L×L

of L into its symmetrization libra37 L×L is only an isomorphism if L is abelian. When L is non-abelian, the
subset {´

`
x, x`

´
: x∈L} is not balanced, but one may consider the intersection of all balanced subsets of L×L

containing it:
L�L ≡ {| ´

`
x1, x1

`
´
, . . . , ´

`
x2k−1, x2k−1

`
´
| : {xi}2k−1

i=1
⊂L, k∈N}. (1)

From (5.15.3) we have

L�L = {´
`
bx1, . . . , x2k−1c, bx2k−1, . . . , x1c`

´
: {xi}2k−1

i=1
⊂L, k∈N}. (2)

Reversing the order of the elements of the sequence in (2), one sees that

L�L = {´
`
x, y`

´
: ´
`
y, x`

´
∈ L�L}. (3)

Related to L�L is the subgroup of J(L,L) generated by {xπx : x∈L}:38

L~L ≡ {x1
πx1
◦. . .◦x2k−1

πx2k−1
: {xi}2k−1

i=1
⊂L, k∈N}. (4)

Expanding, one also has

L~L = {bx1,...,x2k−1cπbx2k−1,...,x1c : {xi}2k−1
i=1

⊂L, k∈N}. (5)

(9.2) Theorem For any libra L, L�L is a normal balanced subset of L×L.
Proof. For m,n, l∈L,

| ´
`
m,n`

´
, ´
`
l, l`

´
, L�L | = {| ´

`
m,n`

´
, ´
`
l, l`

´
, ´
`
x1, x1

`
´
, . . . , ´

`
x2n−1, x2n−1

`
´
| : {xi}2n−1

i=1 , n∈N} =

{´
`
bm, l, x1, . . . , x2n−1c`

´
, bx2n−1, . . . , x1, l, nc : {xi}2n−1

i=1 , n∈N} =

{´
`
bm, l, x1, l,m,m, l, . . . ,m, l, x2n−1, l,m,m, lc`

´
, bl, n, n, l, x2n−1, l, n, . . . , l, n, n, l, x1, l, nc : {xi}2n−1

i=1 , n∈N}=

{´
`
bbm, y1,mc, . . . , bm, y2n−1,mc,m, lc, bl, n, bn, y2n−1, nc, . . . , bn, y1, ncc`

´
: {yi}2n−1

i=1 , n∈N} =

{´
`
bzl, . . . , z2n−1,m, lc, bl, n, z2n−1, . . . , z1c`

´
: {zi}2n−1

i=1 , n∈N} =

{| ´
`
x1, x1

`
´
, . . . , ´

`
x2n−1, x2n−1

`
´
, ´
`
m,n`

´
, ´
`
l, l`

´
| : {zi}2n−1

i=1 , n∈N} = | L�L, ´
`
m,n`

´
, ´
`
l, l`

´
|.

We have shown that every left coset of L�L is a right coset of L�L. QED

(9.3) Example We return to the example of (2.27): M ≡ {a, b, c} for distinct points a, b, and c,
and L≡Γ

M is the family of permutations of M . We abbreviate:

ι≡
[
a

a

b

b

c

c

]
, α≡

[
a

a

c

b

b

c

]
, β≡

[
c

a

b

b

a

c

]
, γ≡

[
b

a

a

b

c

c

]
, ρ≡

[
b

a

c

b

a

c

]
, and λ≡

[
c

a

a

b

b

c

]
.

There are two non-trivial balanced subsets of L: ∆≡{α, β, γ} and Θ≡{ι, λ, ρ}. Direct calculation shows
that

{´
`
χ, χ`

´
: χ∈L} ∪ (∆×∆) ∪ (Θ×Θ) is a balanced subset of L×L

and that
{´
`
χ, χ`

´
: χ∈L} ∪ (∆×∆) ∪ (Θ×Θ) = L�L 6= L×L.

(9.4) Theorem If L�L=L×L, then

(∀ x, y∈L)(∃ φ ∈ L~L) φ
x = y. (1)

Proof. Let m and n be in L. By hypothesis and (9.1.4) there exists k∈N and {xi}2k−1
i=1

⊂L such that
´
`
m,n`

´
= ´

`
bx1, . . . , xkc, bxk, . . . , x1c`

´
.

Consequently

bx1,...,xkcπbxk,...,x1c
n = bx1, . . . , xk, bxk, . . . , x1c, xk, . . . , x1c =

37 Cf. (5.15).
38 Cf. (3.12) for the definition of xπy.
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bx1, . . . , xk, x1, . . . , xk, xk, . . . , x1c = bx1, . . . , xkc = m.

From (9.1.5) follows that φ≡ bx1,...,xkcπbxk,...,x1c is in L~L. QED

(9.5) Lemma Let L be a meridian libra and let s, x, y∈L be such that

sπs
y = x. (1)

Then there exist r, t ∈ L such that

| ´
`
r, r`

´
, ´
`
s, s`

´
, ´
`
t, t`

´
| = ´

`
x, y`

´
. (2)

Proof. By (8.26) there exist

t, r∈w� (3)

such that

bt, s, rc = y. (4)

Then

x
by (1) bs, y, sc by (4) bs, bt, s, rc, sc = bs, r, s, t, sc by (3) bs, s, r, s, rc = br, s, tc.

Thus
´
`
x, y`

´
= ´

`
br, s, tc, bt, s, rc`

´
= | ´

`
r, r`

´
, ´
`
s, s`

´
, ´
`
t, t`

´
|.

QED

(9.6) Theorem Let L be a meridian libra. Then

L�L=L×L⇐⇒ (∀ x, y∈L)(∃ φ ∈ L~L) φ
x = y. (1)

Proof. In view of (9.4) we need only show that L�L=L holds if (9.4.1) holds.
We presume then that (9.4.1) holds, that m and n are generic elements of L, and proceed to deduce

that ´
`
m,n`

´
is in L�L. Towards this end we select φ as in (9.4.1) and then apply (9.1.‘tCL0106’) to obtain

k∈N and {xi}2k−1
i=1

⊂L such that

n = x1
πx1
◦. . .◦x2k−1

πx2k−1

m =⇒ m = x2k−1
πx2k−1

◦. . .◦x1
πx1

n. (2)

We define b0 ≡ n and, for i=1, . . . , 2k− 1 we shall abbreviate xi
πxi
◦. . .◦x2k−1

πx2k−1
to bi. From Lemma (9.5)

we know that

(∀ i=1, . . . , 2k − 1) ´
`
bi, bi−1

`
´
∈L�L. (3)

It follows from (9.1.5) that

(∀ i=1, . . . , 2k − 1) ´
`
bi−1, bi `

´
∈L�L. (4)

Since L�L is balanced, it follows that | ´
`
b0, b1 `

´
, ´
`
b2, b1 `

´
, . . . , ´

`
b2k−2, b2k−3

`
´
, ´
`
b2k−2, b2k−1

`
´
| is in L�L. Fur-

thermore

| ´
`
b0, b1 `

´
, ´
`
b2, b1 `

´
, . . . , ´

`
b2k−2, b2k−3

`
´
, ´
`
b2k−2, b2k − 1`

´
| by (9.1.2)

´
`
bb0, b2, . . . , b2k−2, b2k−2c, bb2k−1, b2k−3, . . . , b1, b1c`

´
= ´

`
b0, b2k−1

`
´

= ´
`
n,m`

´

and so ´
`
n,m`

´
is in L�L. From (9.1.5) follows that ´

`
m,n`

´
is in L�L. QED

(9.7) Example Let M be the circle meridian and let L≡Γ(M). Each projectivity in Γ(M) either
preserves or reverses the orientation of the circle M . Involutions which have two fixed points reverse the
orientation. Let m be a projectivity which preserves orientation and let n be a projectivity which reverses
it. Assume that ´

`
m,n`

´
were in L�L. By (9.1.3) there would then exist k∈N and {xi}2k−1

i=1
⊂L such that

m = bx1, . . . , x2k−1c and n = bx2k−1, . . . , x1c.
But each of the compositions bx1, . . . , x2k−1c = x1◦. . .◦x2k−1 and bx2k−1, . . . , x1c = x2k−1◦. . .◦x1 has the
same number of preservation and reversal components as the other. Hence m and n either both preserve the
orientation of M or reversexx it: an absurdity. It follows that

L�L 6= L×L. (1)

We shall see infra that in this example L�L has exactly one coset.
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(9.8) Example Let M be the sphere meridian and let L≡Γ(M). Let m and n and be distinct
generic elements of Γ(M). Then m,n is either elliptic or parabolic, there being no hyperbolic lines in this
example.

Suppose that m,n is elliptic. Then there are two elements 0 and ∞ of M which are fixed by all members
of m,n. Letting 1∈M be distinct from 0 and ∞ we have a basis for M . Let r≡m

1 and s≡n
1 Relative

to this basis,

m =

(
0 r
1 0

)
and n =

(
0 s
1 0

)
.

Let · be the multiplicative operation relative to the basis 0, 1, and∞ and choose w∈F such that w ·w=r · s.

Let a be the element of Γ(M) with basis matrix

(
0 w
1 0

)
. Then

ba, n, ac =

(
0 w
1 0

)
◦
(
0 s
1 0

)
◦
(
0 w
1 0

)
=

(
0 w · w
s 0

)
=

(
0 r
1 0

)
= m. (1)

Suppose now that m,n is parabolic. Then there is exactly one element ∞ fixed by all members of m,n.
This time we shall let 0 be any element of M distinct from ∞, 1≡m

0 and s≡n
0. Relative to the basis

0, 1 and ∞

m =

(
1 1
0 1

)
and n =

(
1 s
0 1

)
.

Let a≡
(
1 1−s

2
0 1

)
. Then

ba, n, ac =

(
1 1−s

2
0 1

)
◦
(
1 s
0 1

)
◦
(
1 1−s

2
0 1

)
=

(
1 1
0 1

)
= m. (2)

From (1) and (2) follows that ba, n, ac = m. Theorem (2.7) now implies that

L�L = L×L. (3)

(9.9) Notation and Definitions Let T be a cartesian aggregate of a libra L, and let ρ be any
representation of L on a cartesian product X×Y equivalent to the T -inner representation. For b∈Y , the
set Xb≡{´

`
x, b`

´
: x∈X} is an X-cross section, and for each a∈X, the set Y a≡{´

`
a, y`

´
: y∈Y } is a Y -cross

section. We write

(∀ ´
`
a, b`

´
∈X×Y ) L[a; ρ; b] ≡ {ρx|Xa

: x∈L and ρx
Xa

 = Y b}. (1)

It is trivial that each mapping39↔ρ´
`
r,s̀

´

, r, s∈L, maps X-cross sections to Y -cross sections and, if it sends Xb

onto Y a, its restriction to Xb is in L[a; ρ; b]. Bijections from X×Y to X×Y satisfying both these properties
will be called ρ-contravariant mappings on X×Y .

For a,m∈X and n, b∈Y we write

L[a,m; ρ] ≡ {ρu−1◦ρv|Xa
: u, v∈L and ρu

−1◦ρv
Xa

 = Xm} (2)

and

L[ρ;n, b] ≡ {ρu◦ρv−1|Y n
: u, v∈L and ρu◦ρv−1Y n = Y b} (3)

A function from X×Y to X×Y which sends X-cross sections onto X-cross sections, sends Y -cross sections
onto Y -cross sections, and such that if it sends Xa to Xm is in L[a,m; ρ], and if it sends Y n to Y b is in
L[ρ;n, b], will be called a ρ-covariant mapping on X×Y . If f and g are ρ-contravariant mappings on
X×Y , evidently f ◦g−1 is a ρ-covariant mapping. In particular, for r, s∈L, the function ρs

−1◦ρr is always
a ρ-covariant mapping.

(9.10) Theorem Let T be a cartesian aggregate of a libra L, and let ρ be any representation of L
on a cartesian product X×Y equivalent to the T -inner representation. Let φ be a ρ-contravariant mapping.
Then

(∃ r, s∈L)
↔
ρ´

`
r,s̀

´

= φ. (1)

39 Cf. (6.17). By definition ρ´
`
r,s̀

´

´
`
x, y`

´

=´
`
ρs
−1y, ρrx`

´
.
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Proof. Define f |X → Y and g|Y → X by

(∀ x∈X) φ
Y x = Xf

x and (∀ y∈Y ) φ
Xy

 = Y gy. (2)

Define θ|X×Y → X×Y by

(∀ ´
`
x, y`

´
∈X×Y ) {θ

´
`
x, y`

´

} ≡ Xf
x ∩ Y gy. (3)

For ´
`
x, y`

´
∈X×Y we have

{φ
´
`
x, y`

´

} = φ
Yx ∩ φXy

 by (2) and (3)⇒ {θ
´
`
x, y`

´

}. (4)

For b∈Y we have by hypothesis that φ equals
↔
ρ´

`
r,s̀

´

on Xb: to wit

(∀ x∈X) φ
´
`
x, b`

´

 =
↔
ρ´

`
r,s̀

´

´
`
x, b`

´

 = ´
`
ρs

b, ρrx`
´

by (2), (3) and (4)⇒

{´
`
ρs

b, ρrx`
´
} = Xf

x ∩ Ygb = {´
`
gb, fx`

´
} =⇒ ´

`
ρs

b, ρrx`
´

= ´
`
gb, fx`

´
. (5)

A priori the heritage of s and r depended on b∈Y , but it follows from (5) that ρr
x does not. Since ρ is

faithful, it follows that r does not. By an argument symmetric and analogous to the preceding, we see that
s is completely determined by as well, as so (1) holds. QED

(9.11) Corollary Let T be a cartesian aggregate of a libra L, and let ρ be any representation of
L on a cartesian product X×Y equivalent to the T -inner representation. Let γ be a ρ-covariant mapping.
Then

(∃ r, s, u, v∈L)
↔
ρ´

`
r,s̀

´

◦↔ρ´
`
u,v̀

´

= γ. (1)

Proof. Let u, v∈L and define φ≡γ◦↔ρ´
`
u,v̀

´

−1
. Then φ is ρ-contravariant and so Theorem (9.10) implies

that there exist s, r∈L such that (9.10.1) holds. If follows that (9.11.1) holds. QED

(9.12) Lemma Let T be a meridian aggregate of a libra L, and let ρ be any representation of L
on a cartesian product X×Y equivalent to the T -inner representation. Let φ∈Π

X – that is, let φ be an
involution of the meridian X. Then

(∀ a∈L)(∃ z∈a�) φ = ρa
−1◦ρz. (1)

Proof. Let a be an element of L. By definition of the meridian structure on X we have Γ
X =

{ρa−1◦ρz : z∈L}. Thus φ=ρa
−1◦ρz for some z∈L. Since φ is an involution, we have

ρa
−1◦ρz = (ρa

−1◦ρz)
−1

= ρz
−1◦ρa =⇒ ρz = ρa◦ρz−1◦ρa.

QED

(9.13) Theorem Let T be a meridian aggregate of a libra L, and let ρ be any representation of L
on a cartesian product X×Y equivalent to the T -inner representation. Let γ be a ρ-covariant mapping, and
let a be an element of L. Then

(∃ b, c, d, e∈L) a=bb, a, bc=bc, a, cc=bd, a, dc=be, a, ec and
↔
ρ´

`
a,a`

´

◦↔ρ´b̀e,a,cc,bd,a,bc̀́ = γ. (1)

Proof. By (9.11) there exist r, s, u, v∈L such that

γ =
↔
ρ´

`
r,s̀

´

◦↔ρ´
`
u,v̀

´

. (2)

The mapping ρs
−1◦ρu is in Γ

X and so by (4.19) ρs
−1◦ρu is either the identity function, an involution, or

a product of involutions. In the first case we set e≡ c≡a. In the second case we set e≡a and c≡ ba, s, uc.
In the third case we apply Lemma (9.12) to obtain c, e∈a� such that ρs = ρa

−1◦ρe and ρu = ρa
−1◦ρc. For

each of these cases,

ρs = ρe
−1◦ρa =⇒ ρs

−1◦ρu = ρa
−1◦ρe◦ρa−1◦ρc = ρa

−1◦ρbe,a,cc.

Reasoning similarly, we can find b, d∈L such that

a=bb, a, bc=bd, a, dc and ρr◦ρv−1 = ρa◦ρbd,a,bc
−1.

For any ´
`
x, y`

´
∈X×Y we have

↔
ρ´

`
a,a`

´

◦↔ρ´b̀e,a,cc,bd,a,bc̀́
´
`
x, y`

´

=´
`
ρa
−1◦ρbe,a,cc

x, ρa◦ρbd,a,bc−1y`
´
=´
`
ρs
−1◦ρu

x, ρr◦ρv−1y`
´
=
↔
ρ´

`
r,s̀

´

◦↔ρ´
`
u,v̀

´

´
`
x, y`

´


which, with (2) implies (1). QED
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(9.14) Corollary Let T be a meridian aggregate of a libra L, and let ρ be any representation of L
on a cartesian product X×Y equivalent to the T -inner representation. Let δ be a ρ-covariant mapping, and
let a be an element of L. Then

(∃ b, c, d, e∈L) a=bb, a, bc=bc, a, cc=bd, a, dc=be, a, ec and
↔
ρ´b̀d,a,bc,be,a,cc̀́ ◦

↔
ρ´

`
a,a`

´

= δ. (1)

Proof. Let δ≡γ−1 in Theorem (9.13) and observe that
↔
ρ´b̀d,a,bc,be,a,cc̀́ is the inverse of

↔
ρ´b̀e,a,cc,bd,a,bc̀́ . QED

(9.15) Corollary Let L be a libra with a meridian aggregate T . Let a be any element of L. Then40

Group
T  = {bu, a©T a, vc : u, v∈L}. (1)

Proof. By definition,

Group
T  = {(t©T m)◦(n©T w) : t,m, n,w∈L}. (2)

In view of (6.17.3) and (9.14), we can find u, v∈L such that (t©T m)◦(n©T w) = (u©T v)◦(a©T a). Thus (9.15.2)
implies

Group
T  = {(u©T v)◦(a©T a) : u, v∈L} by (6.7.2) {bu, a©T a, vc : u, v∈L}.

QED

(9.16) Example We return to the example of (8.5). We have a three-dimensional real projective
space S, a quadric surface Q, the family M of counter-clockwise upward rules in Q, and the family N of
clockwise upward rules in Q. The complement L of Q in S will be denoted L. Each element a of L inherits
two natural actions. One sends M to N as in Figure (11) of Section (1): a rule X in M , along with a
determines a plane, and this plane intersects Q in exactly one rule Y in N : we define the function ρa by

ρa
X ≡ Y.

The other action sends Q to itself as in Figure (10) of Section (1): a point x of Q, along with a, determines
a line which is either tangent to Q at y≡a or cuts through Q in one other point y: we define the function̂̂ax ≡ y.

Each plane in S not tangent to Q intersects Q in a circle. Since each rule in M cuts that circle at
exactly one point, this creates a bijection from M onto the circle, which in turn induces a meridian operator
on M . Furthermore the induced operator is the same for each such plane (or circle). Consequently we can
regard M as a meridian. Similarly, we may regard N as a meridian. We shall show in Section (10) that the
family {ρa : a∈L} constitutes the libra Γ

M,N
. Thus we may define a libra operator b, , c on L by

(∀ a,b, c∈L) ba,b, cc ≡ ρ−1ρa ◦ ρb−1 ◦ ρc
.

By definition, ρ is a libra representation. If we define T for this example by

T ≡ {[X ρ
= Y] : ´

`
X,Y`

´
∈M×N},

then each element [X
ρ
= Y] is the plane of S containing X and Y, and so is the plane in S tangent to Q at

the point X∧Y of intersection of X and Y. It is evident that ρ is equivalent to the left inner representation
of L relative to T . For q∈Q we define

6 6 6 6 6 6 q6 6 6 6 6 6 ≡ the element of M containing q,

\\\\\\q\\\\\\ ≡ the element of N containing q.

For a,b∈L, we define

(∀ x∈Q)
____
ab

x ≡ 6666 6 6 ̂̂bx6 6 6 6 6 6 ∧ \\\\\\̂̂ax\\\\\\

as illustrated in Figure (22).

40 Cf. (6.7).
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Fig. 22: The Value of
____
ab at a Point x of Q.

From Theorem (9.10) we know that these mappings
____
ab, for a,b∈L, are precisely the family of functions

φ which send Q to itself such that rules in M are sent to rules in N in such a way that, for each line N ∈M ,
the restriction of φ to N is a projective mapping.

From Corollary (9.14) we know that the mappings ____uv◦ ̂̂a, for a,u, v∈L, are precisely the family of
functions δ which send Q to itself such that rules in M are sent to rules in M , rules in N are sent to rules
in N and the restriction of δ to any rule is a projective mapping.

Fig. 23: The Value of ____uv◦̂̂a at a Point x of Q.
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10. Meridian Space

(10.1) Discussion, Notation, and Definitions We purpose in the present section to show, how
on the one hand, a meridian libra together with its meridian aggregate forms a three dimensional projective
space and how, on the other hand, quadric surfaces in three dimensional projective spaces may be viewed as
meridian aggregates.

Toward the first end we introduce the notion of a ‘‘space polar’’, which will provide us with a three
dimensional projective space. Let be a function sending each element s of a non-void set S to a subset s
of S. We call a pre-polar operator and adopt the following notation:

(i) (∀X⊂S) X• ≡
⋂

s∈X
s ;

(ii) (∀X⊂S) X•• ≡ (X•)•.
The function • will be called the polar operator induced by .41

We shall say that is a complete pre-polar operator if

(∀ s∈S) s • ≡ {s}, (1)

in which case • will be called a complete polar operator.42 We adopt the notation
(iii) P ≡ {s : s∈S};
(iv) L ≡ {{x,y}•• : x,y ∈ S distinct};

Elements of P will be called planes and elements of L will be called lines. Two subsets of S will be
said to cross if they are lines and have a single point in common. A triangular triple is an ordered triple
´
`
a,b, c`

´
of distinct points such that c 6∈ {a,b}••. A complete pre-polar operator for which the following

three requirements are met will be called space pre-polar operator, in which case • will be called a space
polar operator:

two lines of S cross if and only if their polars are lines which cross, (2)

(∀ ´
`
a,b, c`

´
a triangular triple) {a,b, c}••∈P, (3)

and
each line in S is a proper subset of S, with at least three points. (4)

(10.2) Theorem Let be a pre-polar operator on a set S containing more than one element. Then
(i) (∀X⊂Y⊂S) Y •⊂X•.
(ii) (∀ x∈X) x = {x}•;

If is a complete pre-polar operator, then
(iii) (∀X⊂S) X⊂X••;
(iv) (∀X⊂S) X••• = X•;
(v) S• = ∅;
(vi) (∀X⊂Y•⊂S) X••⊂Y•;
(vii) (∀ p,q∈S) p∈q ⇐⇒ q∈p .

Proof.
(i) and (ii)⇒ These follow directly from the definition (10.1.i).

(iii)⇒ Let x be in X and c be in X•. We have

c∈X•
by (i)⇒ c∈x

by (ii) {x}• by (i)⇒ {x}••⊂{c}• by (10.1.1) and (ii)⇒ {x}⊂c
Since c was a generic element of X•, it follows that x∈X•. Since x was a generic element of X, it follows
that (iii) holds.

(iv)⇒ From (iii) and (i) follows that X•••⊂X•. Substituting X• for X in (iii), we have X•⊂X•••. It
follows that (iv) holds.

(v)⇒ Assume that there did exist x∈S ∩ S•. Let y∈S be distinct from x. By (10.1.1) there exists s in
y such that x 6∈s . By (ii) this means that {x} 6⊂ {s}•. But x being in S• means that S=x and so

{s} ⊂ S = x
by (i) and (ii)⇒ {x} = x•• ⊂ {s}•,

41 The function � defined on the points of a libra, and the function ◦ defined on the subsets of a libra,
respectively, are examples, respectively, of a pre-polar operator, and of a polar operator: cf. (7.1).

42 When L is a meridian libra, the polar operator ◦ is complete: cf. (8.31).
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which is absurd.
(vi)⇒ We have

X ⊂ Y•
by (i)⇒ Y•• ⊂ X•

by (i)⇒ X•• ⊂ Y•••
by (iv)

Y•.

(vii)⇒ We have

p∈q
by (ii)⇒ {p} ⊂ {q}• by (i)⇒ {q}•• ⊂ {p}• by (ii)⇒ q∈p

and the reverse implication is proven analogously. QED

(10.3) Theorem Let be a space pre-polar operator on a set S with at least two points. Then S,
along with the family L (of lines), is a three dimensional synthetic projective space.

Proof. For a point x disjoint from a line K we shall adopt the notation

x,K ≡
⋃

y∈K

{x,y}••. (1)

We must show that the following axioms are satisfied43:
(i) there exists at least one point and one line in S;
(ii) each couple a and b of distinct points in S lie on some line;
(iii) there is not more than one line through any two distinct points of S;
(iv) if a, b, c, and d are distinct points of S such that {a,b}•• and {c,d}•• intersect, then {a, c}•• and

{b,d}•• intersect;
(v) each line has at least three distinct points of S;
(vi) the whole space S is not a line;

(vii) if a is a point not on a line N, then S 6= a,N ;

(viii) there exist points a and c and a line N such that a 6∈ c,N and S=
⋃

y∈ c,N
{a,y}••.

(i)⇒ : By hypothesis S has at least two points, and therefor a line.
(ii)⇒ : Evidently a,b∈{a,b}••.
(iii)⇒ : Assume that a and b are distinct points in S, K and N distinct lines in S, and a,b∈K∩N. We

know that {a,b}•• is a line, and without loss of generality we may assume that N6={a,b}••. There exist
u, v∈S such that N = {u, v}••. We have

a,b∈N
by (10.2.i)⇒ N•⊂{a,b}• by (10.2.i)⇒ {a,b}••⊂N•• by (10.2.iv)

N,

whence follows that there exists c∈N which is not in {a,b}••. Thus ´
`
a,b, c`

´
is a triangular triple and

(10.1.3) implies that {a,b, c}•• = d for some d∈S. Consequently

a,b, c∈N
by (10.2.i)⇒ N•⊂{a,b, c}• by (10.2.i)⇒ d = {a,b, c}••⊂N•• by (10.2.i, ii and iv)⇒

N = N•••⊂d • = {d},

which is absurd.
(iv)⇒ : If {a,b}•• equals {c,d}••, the conclusion of (iv) is trivial, so we shall presume that they are

distinct. The lines {a,b}•• and {c,d}•• have a point e in common. By (iii), ´
`
a,e, c`

´
forms a triangular

triple. Thus (10.1.3) implies that there exists p∈S such that {a,e, c}⊂p . From (10.2.vi) follows

({a,e}•• ∪ {c,e}••)⊂p by (iii)⇒ ({a,b}•• ∪ {c,d}••)⊂p =⇒ a,d,b, c∈p =⇒
({a, c}•• ∪ {b,d}••) ⊂ p =⇒ p∈({a, c}• ∩ {b,d}•)

(where we have used (10.2) freely). It follows from (10.2.iv) that the polars of the lines {a, c}•• and {b,d}••
cross, and so (10.1.2) implies that the lines themselves cross.

(v)⇒ : This follows directly from (10.1.4).
(vi)⇒ : By hypothesis S has at least two elements, and so it has a line, but by (10.1.4) this line is proper.

43 Cf. [A. Seidenberg] Chapter V, Section 1.
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(vii)⇒ : Choose u and v in S such that N = {u, v}••. Then ´
`
u, v,a`

´
is a triangular triple and so by

(10.1.3) there exists p∈S such that {u, v,a}•• = p . We have

{u, v}⊂{u, v,a} =⇒ {u, v,a}•⊂{u, v}• =⇒ N = {u, v}••⊂{u, v,a}•• = p

and so, for each n∈N,

n∈p =⇒ {n,a}⊂p =⇒ p •⊂{n,a}• =⇒ {n,a}••⊂p •• = p =⇒ a,N = ⊂p .

If p were equal to S, then

∅ by (10.2.v)
S• = p • = {p}•• = {p},

which is absurd. It follows that a,N 6=S.
(viii)⇒ : By hypothesis there exists a line N = {u, v}•• not equal to S and so there exists c∈S not in

{u, v}••. The triple ´
`
u, v, c`

´
is triangular and so (10.1.3) implies that there exists p∈S such that

{u, v, c}••=p . (2)

Assume that there were an s∈S not in
⋃

y∈ c,N
{a,y}••. If {s,a}•• intersected {u, v, c}•• at some point x,

then
u, v, x, c∈{u, v, c}•• = p =⇒ p∈{u, v, x, c}• = {u, v}• ∩ {c, x}•

which means that {u, v}• would cross {c, x}•. Then (10.1.2) would imply that {u, v}•• and {c, x}•• would
cross. If t were that crossing point, then

x∈{c, x}•• = {t, c}•• and t∈{u, v}•• = N =⇒ x∈ c,N

which, since s∈{s,a}•• = {x,a}••, would imply

s∈
⋃

y∈ c, N

{a,y}••: an absurdity.

It follows that {s,a}•• ∩ {u, v, c}•• = ∅. Consequently

∅ = {s,a}•• ∩ {u, v, c}•• = ({s,a}• ∪ {u, v, c}•)• by (2)
({s,a}• ∪ {p}••)• = ({s,a}• ∪ {p})•. (3)

Now p is either in {s,a}• or not. In the first case, (2) would imply that ∅ = {s,a}••, which is absurd. Thus

p 6∈ {s,a}•. (4)

The lines {s,a}•• and {v,a}•• cross so (10.1.2) implies in particular that the polar {s,a}• of {s,a}•• is a
line. Thus there exist w, z∈S such that

{s,a}• = {w, z}••. (5)

The triple (w, z,p) is triangular by (4), and so (10.1.3) implies that there exists q∈S such that

{w, z,p}•• = q . (6)

Now
{w, z,p}• = ({w, z} ∪ {p})• = {w, z}• ∩ p = {w, z}••• ∩ p

by (5) {s,a}•• ∩ p (7)

and so

{q} by (6)
({w, z,p}••)• = {w, z,p}• by (7) {s,a}•• ∩ p = ({s,a}• ∪ {p})• by (3) ∅

which is absurd. QED

(10.4) Discussion Let S be any three dimensional projective space. We write L for the family of
lines in S and P for the family of planes in S. A collineation of S is an incidence preserving bijection from
S ∪P to S ∪P which sends points to points and planes to planes. Since a line is the intersection of all
planes containing it, a collineation also sends lines to lines. A correlation of S is an incidence preserving
bijection from S ∪P to S ∪P which sends points to planes and planes to points.44 A correlation Φ such
that

(∀ x∈S) Φ
Φx = x

44 Collineations also send lines to lines.
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is called a polarity.
The space polar operator defined in (10.1) evidently induces a correlation of the induced space S.

Conversely, if Φ is any correlation polarity on S, the restriction of Φ to S is a space pre-polar and

(∀ P∈P) {Φ
P} = P•.

A quadric surface Q is a subset of S of the form {x∈S : x∈Φ
x}, where Φ is a correlation polarity,

or equivalently, a set of the form

{x∈S : x∈x }

for a space pre-polar operator . Some quadric surfaces contain lines, and some don’t. For instance, a sphere
in real projective space does not, and an elliptic hyperboloid does.

Those which contain lines are said to be ruled. These lines come in two families C and R, called reguli.
Each of C and R is a partition of Q, and each element of C intersects each element of R in exactly one
point. Thus a ruled surface may be identified with the product C×R.

There are many ruled quadric surfaces. In fact, for any triple of mutually disjoint lines, there is exactly
one quadric surface which contains that triple in one of its reguli.

Each ruled quadric surface Q induces a libra operator b, , c on its complement in S, which we shall now
describe. For a∈S not in Q and each C∈C, the plane determined by a and C intersects Q in exactly one
element â

C of R. Furthermore, for any three a,b, c∈S not in Q, there exists exactly one element d of

S (not in Q) such that d= â◦(b̂)
−1
◦ĉ. We set ba,b, cc≡d. The libra thus defined is a meridian libra and

it induces meridian operators on C and R. Rather than proving these statements here, we shall instead
show how a meridian libra per se, together with its meridian aggregate of cosets, generates a projective three
dimensional space.

(10.5) Definitions and Notation Let T be a meridian aggregate for a meridian libra L. We saw in
(6.17) that the members of T could be viewed as elements of a matrix, the columns of which being composed
of the members of and the rows of which being composed of the members of . This suggests forming
the cartesian product

Q ≡ × . (1)

It turns out that the pre-polar operator ◦ on L has a felicitous extension to the union

S ≡ L ∪Q (2)

We shall require some notation from (9.9):

(∀ C∈ ,R∈ ) C = {´
`
C,Y `

´
: Y ∈ } and R = {´

`
X ,R`

´
: X ∈ }. (3)

We begin our extension of the pre-polar operator by, for p = ´
`
X ,Y `

´
∈Q, letting p� be the element of T

such that {p�}≡X ∩ Y:

p� ≡ X ∧Y. (4)

Thus

(∀ p∈Q) p = ´
`
p� , p

� `
´
. (5)

Recalling the notation from (6.17), we also have

(∀ p∈Q) [ p�

T

= p�
] = p� . (6)

For p∈L we let

p� ≡ {q∈Q : p∈q�} (7)

and, for p = ´
`
X ,Y `

´
∈Q, we let

p� ≡
p�

∪ p� = {q∈Q : q� ∈ p� }. (8)

For general p∈S we let

p ≡ p� ∪ p�. (9)
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For general subsets U of S we define

U• ≡
⋂

p∈U

p , U◦ ≡ U• ∩ L and U� ≡ U• ∩Q. (10)

Thus, is a pre-polar operator on S with associated polar operator •.

(10.6) Lemma Let T be a meridian aggregate for a meridian libra L. For p∈L we have

(p�)� = ∅. (1)

Proof. For x∈p� we have x = x� ∪ {q∈Q : x∈q�} and so

(p�)• ∩Q = {q∈Q : p� ⊂ q�}.
If q were any element of Q such that p�⊂q� , it would follow from (10.5.4) and (8.17.i) that p� ∩ q� = q�

were a line trace, which by (8.13.i) and (8.16) is impossible. It follows that (1) holds. QED

(10.7) Theorem Let T be a meridian aggregate for a meridian libra L. Let p be an element of S.
Then

p • = {p}. (1)

In other words, the pre-polar is complete.
Proof. Suppose first that p is in L. If q is any element of p�, then p is in q� and so, by (10.5.7), we

have
p∈p�◦. (2)

From (10.5.10) we have
p • = (p� ∪ p�)• = (p�)• ∩ (p�)• =

(p�◦ ∪ p��) ∩ (p�◦ ∪ p��
)

by (8.31) , (10.6.1) and (2) {p}. (3)

Now suppose that p is in q. We first note that from the definition (10.5.8) follows that

{p} = p��
. (4)

From (8.16) follows that
p�◦ = ∅. (5)

From (10.5.10) we have

p�� =
⋂

x∈p�

x� by (10.5.7)
⋂

x∈p�

{q∈Q : x∈q�} = {q∈Q : p� ⊂ q�} = {p}. (6)

Consequently

p • = (p� ∪ p�)• = (p�)• ∩ (p�)• = (p�◦ ∪ p��) ∩ (p�◦ ∪ p��
)

by (4) and (5)

{p} ∩ (p�◦ ∪ p��
)

by (6) {p}.

From this last and (3) we have (1). QED

(10.8) Theorem Let T be a meridian aggregate for a meridian libra L. Let p be an element of Q.
Then

(∀q∈ p� ) {q,p}• = p� = ( p� )• = {q,p}•• (1)

and
(∀q∈

p�

) {q,p}• =
p�

= (
p�

)• = {q,p}••. (2)

Proof. For q∈ p� distinct from p we have

{q,p}⊂ p� =⇒ ( p� )•⊂{q,p}•. (3)

That q is in p� implies that

q� = q� ∧ q�
= p� ∧ q�

.
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Since q is distinct from p, it follows that q� and p� are distinct elements of the partition p� . Consequently

p� ∩ q� = ∅ (4)

and

p� ∩ q� by (10.5.8) {y∈Q : y� ∈ p } ∩ {y∈Q : y� ∈ q } = {y∈Q : y� ∈ p� } = p� . (5)

So we have

{q,p}• = q ∩ p
by (10.5.10)

(q� ∪ q�) ∩ (p� ∪ p�) = (q� ∩ p�) ∪ (q� ∩ p�)
by (4) and (5)

p� (6)

which, with (3), implies
( p� )• ⊂ p� . (7)

On the other hand, (6) implies

p� = {q,p}• ⊂ q =⇒ q∈( p� )•
since q is generic⇒ p� ⊂ ( p� )• (8)

as well as
{q,p}•• = ( p� )•. (9)

That (1) holds now follows from (6), (8) and (9).
An analogous argument shows that (2) holds as well. QED

(10.9) Theorem Let T be a meridian aggregate for a meridian libra L. Let N be a hyperbolic line
trace45 in L. Then

N• = N◦ and N•• = N. (1)

Proof. If N• 6=N◦, there would be p in Q∩N•, which would imply that N⊂p� . But p� is in T , which
contradicts (8.23.iii). Consequently N• = N◦.

From (8.23.ii) it follows that N• is a hyperbolic line trace. Thus, by what we have just shown,

N•• =
N•◦ =

N◦◦ by (8.13.ii)
N.

QED

(10.10) Theorem Let T be a meridian aggregate for a meridian libra L. Let N be a parabolic line
trace in L, and let T be the element of T such that N⊂T. Then

N• = N◦ ∪ {´
`
T , T `

´
} (1)

and

N•• = N ∪ {´
`
T , T `

´
}. (2)

Proof. For any line trace K we have

K•
by (10.5.10)

⋂
s∈K

s
by (10.5.9)

⋂
s∈K

(s� ∪ s�) = (
⋂
s∈K

s�) ∪ (
⋂
s∈K

s�)
by (10.5.7) and (10.5.8)

K◦ ∪ {q∈Q : K ⊂ q�} by (10.5.4)
K◦ ∪ {´

`
U , U `

´
: K ⊂ U∈T }. (3)

Substituting N for K in (3), we see that (1) holds.
Using the fact that the K◦ is a line trace too46, that K◦◦=K 47 and substituting K◦ for K in (3), we

obtain

(K◦)• = K ∪ {´
`
U , U `

´
: K◦ ⊂ U∈T }. (4)

Thus
K••

by (10.5.10)
(K◦ ∪K�)• = (K◦)• ∩ (K�)•

by (4)

(
K ∪ {´

`
U , U `

´
: K◦}

)
∩
(
(K�)◦ ∪ (K�)�

)
=
(
K ∩ (K�)◦

)
∪
(
{´
`
U , U `

´
: K◦ ⊂ U∈T } ∩ (K�)�

)
(5)

45 Cf. (8.12) and (8.20).
46 Cf. (8.13.i).
47 Cf. (8.13.ii).
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We have
K� by (10.5.10)

K• ∩Q
by (10.1.i)

⋂
x∈K

x� by (10.5.7)

⋂
x∈K

{´
`
U , U `

´
: x∈U∈T } = {´

`
U , U `

´
: K∈U∈T }. (6)

From (6) follows that K ⊂ (K�)◦ which with (4) and (5), yield

K•• = K ∪
(
{´
`
U , U `

´
: K◦∈U∈T } ∩ (K�)�

)
. (7).

We have

N� by (6) {´
`
T , T `

´
} =⇒ (N�)� by (10.5.8)

⋂
U∈ T

´
`
U , U `

´

and

{´
`
U , U `

´
: N◦∈U∈T } = {´

`
T , T `

´
}

and so substitution of N for T in (7) yields (2). QED

(10.11) Theorem Let T be a meridian aggregate for a meridian libra L. Let N be an elliptic line
trace in L, and let T1 and T2 be the elements of T such that N◦ = T1 ∩ T2. Then

N• = N◦ ∪ {´
`
T1 , T2 `

´
, ´
`
T2 , T1 `

´
} (1)

and

N•• = N ∪ {´
`
T1 , T1 `

´
, ´
`
T2 , T2 `

´
}. (2)

Proof. We have seen that, for any line trace K in L, (10.10.3), (10.10.6) and (10.10.7) hold. Substituting
N for K in (10.10.3), we obtain (1).

Substituting N for K in (10.10.6), we obtain

N� by (6) {´
`
T1 , T2 `

´
, ´
`
T2 , T1 `

´
} =⇒ (N�)� by (10.5.8)

⋂
U∈ (

T1 ∧ T2 ∩
T1 ∧ T2

)

´
`
U , U `

´
= {´

`
T1 , T1 `

´
, ´
`
T2 , T2 `

´
}

and

{´
`
U , U `

´
: N◦∈U∈T } = {´

`
T1 , T1 `

´
, ´
`
T2 , T2 `

´
}

and so substitution of N for K in (10.10.7) yields (2). QED

(10.12) Recapitulation and Definitions In (10.5) we defined a pre-polar and polar • and in
(10.7) we showed that the first axiom (10.1.i) of a space polar operator was satisfied.

In (10.8), (10.9), (10.10) and (10.11) we described the lines of the polar operator. To recapitulate, we
consider distinct points p and q of S. If both of them are in Q and q� is either a left or a right coset of p� ,
then (10.8) implies that all elements in the corresponding column or row comprise the set

{p,q}•• = {p,q}•. (1)

If p and q are in Q but not in a common row or column, then (8.13.ii) and (10.11.2) imply that

{p,q}•• ∩ L is an elliptic line trace. (2)

If p is in L and q is in Q, then either (2) holds or

{p,q}•• ∩ L is a parabolic line trace. (3)

If p and q are both in L, then either (2) holds, (3) holds or

{p,q}•• ∩ L is a hyperbolic line trace. (4)
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In the case of (1) we shall speak of a quadric line, in the case of (2) an elliptic line, in the case of (3) a
parabolic line and in the case of (4) a hyperbolic line.

We proceed to show that • is a space polar operator.

(10.13) Theorem Let T be a meridian aggregate for a meridian libra L. Two lines of S cross if and
only if their polars are lines which cross.

Proof. We already know that polars of lines are lines. Suppose that K and N are lines such that
K•∩N• is a singleton. It will suffice to show that N∩K is non-void. We consider the various cases seriatim.

K and N both quadric⇒ It is without loss of generality that we may presume that K is of the form
p�

.

By (10.8)

K• = K. (1)

If N• were of the form
q�

, then it would either be all of
p�

, or not intersect
p�

at all. Consequently

N• must be of the form q� for some q∈Q. By (10.8.1) we know that N = N•. Thus

N ∩K = q� ∩
p�

= {´
`
q� , p

� `
´
}.

K quadric and N elliptic⇒ As above, we presume that K is of the form
p�

and that (1) holds. Since N

is elliptic, by (10.11) there exist A,B∈T distinct such that

N = (A ∩ B) ∪ {´
`
A , B `

´
, ´
`
B , A `

´
} and N =

(
( A ∧ B) ∩ ( B ∧ A)

)
∪ {´

`
A , A `

´
, ´
`
B , B `

´
}.

Since N and K intersect, either ´
`
A , A `

´
or ´

`
B , B `

´
is in

p�

. Without loss of generality we shall

presume that it is ´
`
A , A `

´
: that A = p�

. It follows that ´
`
B , A `

´
is in

p�

, and so

N ∩K = {´
`
B , A `

´
}.

K quadric and N parabolic⇒ As before, we presume that K is of the form
p�

and that (1) holds. Since

N is parabolic, by (10.10) there exists T∈T such that

N = (T ∩N) ∪ {´
`
T , T `

´
} and N = (T ∩N•) ∪ {´

`
T , T `

´
}.

Since N and K intersect, it follows that ´
`
T , T `

´
is in

p�

. Consequently

N ∩K = {´
`
T , T `

´
}.

K quadric and N hyperbolic⇒ In view of (10.9), this case cannot occur.
polars not in Q but intersect in Q⇒ Let p be in K• ∩N• ∩Q. From (10.5.10) and (10.5.4) we know that(

(K ∩ L) ∪ (N ∩ L)
)
⊂ p�

by (10.5.5)⇒ p∈N ∩K.

polars do not intersect in Q⇒ Then there is an element p of L such that p∈K• ∩N•. From (8.30) follows
that either K ∩N ∩ L is non-void or there exists X ∈T such that K◦ ∪N◦⊂X. In the latter case we have

´
`
X , X `

´
∈(N ∩K).

QED

(10.14) Theorem Let T be a meridian aggregate for a meridian libra L. Let (a,b, c) be a triangular
triple, in the sense of (10.1.3). Then there exists p∈S such that {a,b, c}•• = p .
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Proof. Let K be the line {a,b}••, and let N be the line {a, c}••. We prove the theorem case by case:
(K ∪ {c})⊂Q

⇒ In view of (10.5.5) we may, without loss of generality, presume that

a� =b� . (1)

By (10.5.8) we have

{a,b, c} ⊂ ´
`
c , a� `

´

�

⊂ ´
`
c , a� `

´

by (10.2.vi)⇒ {a,b, c}•• ⊂ ´
`
c , a� `

´
. (2)

Since a� either equals b� or is disjoint from it, and since a and b are distinct, it follows from (1) that
a� ∩ b� =∅. Suppose that r∈Q is in a ∩ b . Then (10.5.8) implies that

r ∈ a� . (3)

Since c is not in K, we know that c cannot equal a� — thus c� ∩ a� = ∅.. Suppose that r∈Q is in also in

c . Then (10.5.8) implies that r ∈ c� . Consequently (3) implies that

r = ´
`
c� , a� `

´
=⇒ (a ∩ b ∩ c ) ⊂ ´

`
c� , a� `

´

by (10.2.i)⇒

´
`
c� , a� `

´
⊂ (a ∩ b ∩ c )• = {a,b, c}••.

This with (3) implies that

{a,b, c}•• = ´
`
c� , a� `

´

•. (4)

b∈Q and N⊂Q⇒ If we interchange the roles of b and c in the above, we obtain (4) again.
K⊂Q and c∈L⇒ Again we may presume that (1) holds. Since a� is a partition of L, one of its elements

P contains c. From (10.5.4) and (10.5.8) we obtain

{a,b, c}∈´
`
P , P `

´
. (5)

Suppose that r is in a ∩ b ∩ c . As above we have (3), and we also have from (10.5.7) that c∈r . Since

a� is a partition of L, it thus follows from (3) that

r = P =⇒ r = ´
`
P , P `

´
.

This means that

(a ∩ b ∩ c ) ⊂ {´
`
P , P `

´
} by (10.2.i)⇒ ´

`
P , P `

´
⊂ (a ∩ b ∩ c )• = {a,b, c}••

which, with (5), implies that

{a,b, c}•• = ´
`
P , P `

´

•. (6)

N⊂Q and b∈L⇒ Interchanging the roles of b and c in the above paragraph, we obtain (6) again.
a,b, c∈L⇒ The sets {a,b}◦ and {a, c}◦ are distinct line traces in a� . Either we have that

{a,b}◦ ∩ {a, c}◦ = ∅ (7)

or
(∃ p∈L) p∈({a,b}◦ ∩ {a, c}◦). (8)

Suppose that (7) holds. Then

{a,b, c}◦ = {a,b}◦ ∩ {a, c}◦ = ∅ (9)

and from (8.30) follows that there exists T∈T such that ({a,b}◦◦ ∪ {a, c}◦◦)⊂T. Consequently

{a,b, c} ⊂ ´
`
T , T `

´
. (10)

If r is in a,b, c�, then r is in a� ∩ b� ∩ c� and so {a,b, c}⊂r� . By (8.14.i) either r� =T or r� ∩ T is a line
trace. Since {a,b, c} cannot be a subset of a line trace, it follows that r� =T: we have

{a,b, c}� = ´
`
T , T `

´

by (9)⇒ {a,b, c}• = ´
`
T , T `

´
.
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Consequently

{a,b, c}•• = ´
`
T , T `

´

•. (11)

Now suppose that (8) holds. Then

p∈{a,b}◦ ∩ {a, c}◦ = {a,b, c}◦ ⊂ {a,b, c}•. (12)

Let r be any element of {a,b, c}◦. Then

r∈(({a,b}◦◦)◦ ∩ ({a, c}◦◦)◦) = {a,b}◦ ∩ {a, c}◦ by (8.11.iv)⇒ r = p (13)

since {a,b}◦ 6={a, c}◦. Assume that s were any element of {a,b, c}�. Then

a,b, c∈s�
by (8.15)⇒ ({a,b}◦◦ ∪ {a, c}◦◦) ⊂ s� . (14)

Furthermore, in view of (12), we have

({a,b}◦◦ ∪ {a, c}◦◦) ⊂ p�
by (14)⇒ ({a,b}◦◦ ∪ {a, c}◦◦) ⊂ p� ∩ s� .

But (8.14.i) implies that p� ∩ s� is a line trace: an absurdity. This with (13) implies that

{a,b, c}• = {a,b, c}◦ ∪ {a,b, c}� = {a,b, c}◦ = {p} =⇒ {a,b, c}•• = p . (15)

K 6⊂ Q, N 6⊂ Q and a,b, c∈Q⇒ Here K and N are elliptic lines in S. Thus we can replace a, b and c by
elements of L to obtain (15).

K 6⊂ Q, a,b∈Q and c∈L⇒ Here K is an elliptic line and N is either an elliptic or a parabolic line. Thus
we can replace a, b by elements of L to obtain (15).

N 6⊂ Q, b, c∈Q and a∈L⇒ . We can interchange a and c in the above to achieve the same result.
a∈Q and b, c∈L⇒ Here K is either an elliptic or a parabolic line and so we can replace a with an element

of L to obtain (15).
c∈Q and a, c∈L⇒ We may interchange a with c in the above to obtain the same result.

We have covered all the essentially differing cases, and so from (4), (6), (11) and (15) follows Theorem
(10.14). QED

(10.15) Theorem Let T be a meridian aggregate for a meridian libra L. Then the operator on S
is a space polar operator. Thus S and L constitute a three dimensional projective space.

Proof. It follows from (10.5.10) that • is the polar operator induced by the pre-polar operator on S. It
follows from (10.7), (10.13) and (10.14) respectively, that axioms (10.1.1), (10.1.2) and (10.1.3), respectively,
are fulfilled.

By definition48, a meridian aggregate of balanced sets has dimension49 at least 4. This dimension is
equal to the cardinality of each element of and of each element of . In particular it follows that each
quadric line has at least 4 elements.

Suppose that a and b are generic but distinct elements of L. It follows from Lemma (8.10) that there

exists a basis50 for the representation
a
ρ and elements q, r∈F such that

a
ρa =

(
1 0
0 1

)
, {a,b}◦◦ = {

(
e rd
qd e

)
: e2 6=qrd2}, and

a
ρb =


(
1 r
q 1

)
, if b 6∈a� ;(

0 r
q 0

)
, if b∈a� .

(1)

48 Cf. (8.4).
49 Cf. (6.17).
50 Cf. (8.8).
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Let e be any element of the representation space such that e2 6=qr and e 6=0. Define

W ≡


{a,b, (

a
ρ)
−1
(

1 − r
− q 1

)}, if b 6∈a� ;

{a,b, (
a
ρ)
−1
(

e − r
− q e

)}, if b 6∈a� .

Thus the cardinality of W is 3 in either case, and W⊂{a,b}◦◦. It follows that elliptic, parabolic, and
hyperbolic lines in S have cardinality at least 3. Consequently axiom (10.1.4) is fulfilled for •. QED

(10.16) Remarks The reader may wish to refer to Figure (11) of Section (1) in conjunction with
Theorem (10.17) infra, Figure (22) of Section (9) in conjunction with Theorem (10.19) infra and Figure (23)
of Section (9) with Theorem (10.20) infra.

(10.17) Theorem Let S be any three dimensional projective space wherein lines have at least four
elements. Let Q be a ruled quadric surface in S. Let L be the complement of Q in S. Let C and R be the
reguli associated with Q and let, for each a∈L, â be the function described in (10.4). Then there exists a
unique meridian libra operator on L such that

(∀ a,b, c∈L) ba,b, cĉ = = â◦(b̂)
−1
◦ĉ. (1)

Proof. The projective space S has a commutative coordinate field which is associated to a meridian by
(4.13). This meridian is associated to a meridian libra L with meridian aggregate T by (8.7). The libra set
L∪( × ) is given the structure of a three dimensional projective space by (10.15). Since three dimensional
projective spaces with the same underlying field are isomorphic, and since all ruled reguli are projectively
equivalent, we may identify S with L ∪ ( × ) and Q with × . The operation carried over from L is
evidently as in (1). QED

(10.18) Notation Let C and R be the reguli of a ruled quadric surface Q. For s∈Q we will write
6 6 6 6 s6 6 6 6 for the element of C containing s and \\\\s\\\\ for the element of containing s. For C∈C and R∈R we
write C ∧ R for the element of which the singleton is C ∩ R. For a,b∈L we define

anob|Q 3 s ↪→ (b̂
−1\\\\s\\\\) ∧ (â

6 6 6 6 s6 6 6 6 ) ∈ Q. (1)

Evidently each function anob sends elements of C to R and vice versa.

(10.19) Theorem Let S be any three dimensional projective space wherein lines have at least four
elements. Let Q be a ruled quadric surface in S. Let φ be any bijection of Q such that its restriction to any
element of C is a projective mapping onto an element of R. Then there exist elements a,b∈L such that

φ = anob. (1)

Proof. We saw in the proof of (10.17) that the complement L of Q in S can be identified with a libra
L, and Q with the product × . We do this and apply (9.10) for the case in which ρ is the T -inner
representation. Thus there exist a,b∈L such that

↔
ρ´

`
a,b`

´

=φ. From (5.15) and (10.18.1) follows that (1)
holds. QED

(10.20) Theorem Let S be any three dimensional projective space wherein lines have at least four
elements. Let Q be a ruled quadric surface in S. Let φ be any bijection of Q such that its restriction to any
element of C is a projective mapping onto another element of C. Let a be any point in S not in Q. Then
there exist p,q∈P but not in Q such that

φ = (pnoq) ◦ (anoa). (1)

Proof. Proceeding as in the proof of (10.19), but applying to (9.14) instead of (9.10), we obtain
b, c,d,e∈a◦ such that

↔
ρ´b̀e,a,cc,bd,a,bc̀́ ◦

↔
ρ´

`
a,a`

´

= φ.

We let p≡ be,a, cc and q≡ bd,a,bc. QED
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11. Arcs and Exponentials

(11.1) Notation Let M be a meridian. For each X,Y ∈M let

Π(X,Y )≡{ψ∈Π
M : ψ

X=Y } (1)

and

M(X,Y )≡{T ∈M : X 6=T 6=Y }. (2)

The libras Π(X,Y ) come in two non-isomorphic forms: those in which X and Y are distinct, and those
in which X =Y . It is an elementary consequence of the fundamental theorem that any two of the first
form are isomorphic, and any two of the second form are isomorphic.

(11.2) Theorem Let M be a meridian and let X,S,R∈M be such that S 6=R. Then there is no
libra isomorphism from Π(X,X) onto Π(S,R).

Proof. Assume that f were a libra isomorphism from Π(X,X) onto Π(S,R). Let T be an element of M
distinct from S and R. Recall from (4.4) that

S↔R
T↔T is the element of Π(S,R) which fixes T . It follows from

(2.40.iv) that there exists another element U of M fixed by
S↔R
T↔T . Then

S↔R
T↔U ◦ S↔RT↔T ◦ S↔RT↔U is in Π(S,R) and

S↔R
T↔U ◦ S↔RT↔T ◦ S↔RT↔U

U= S↔R
T↔U ◦ S↔RT↔T

T = S↔R
T↔U

T =U =
S↔R
T↔T

U by (2.30)⇒ S↔R
T↔U ◦ S↔RT↔T ◦ S↔RT↔U =

S↔R
T↔T . (1)

Let α, β be such that f
α= S↔R

T↔U and f
β= S↔R

T↔T . We’d have from (1)

f
β◦fα◦fβ = f

β =⇒ α◦β◦α = β.

By (4.4) α would have another fixed point P besides X. Then

β
P =α◦β◦αP =αβP  =⇒ β

P ∈{X,P}.
Since β

X=X, it follows that β
P  would have to be P . This, by (2.34), would imply that α would be β.

But that would be absurd since
S↔R
T↔U 6= S↔R

T↔T . QED

(11.3) Notation and Definitions Let M be a meridian, and let X, S and R in M be such that
S 6=R. It is trivial that each element of Π(X,X) has a fixed point. This is not the case however with Π(S,R),
and so we adopt the following notation:

Πfixed

(S,R) ≡ {ψ∈Π(S,R) : ψ has a fixed point in M} by (2.40.iv)⇒
Πfixed

(S,R) ={ψ∈Π(S,R) : ψ has two fixed points in M}. (1)

While there can be no isomorphism from Π(X,X) onto Π(S,R), it may happen that Πfixed

(S,R) is a balanced

subset of Π(S,R) and that there exists an isomorphism from Π(X,X) onto Πfixed

(S,R) . When this occurs, there
are potent consequences, but before examining these, we shall provide some examples. The most important
of these examples coming from fields, we introduce some facilitative notation:

A basis for M is an ordered triple b≡´
`
S,L,R`

´
. We denote

∞b
≡R , 1b

≡L, 0b
≡S, Fb

≡M(R,R) (2)

(∀X,Y ∈M(R,R)) X
b
+Y ≡ R↔R

S↔X ◦ R↔RS↔S ◦ R↔RS↔Y
S and X

b
-Y ≡ R↔R

S↔X
Y , (3)

(∀X,Y ∈M(S,R)) X b.Y ≡ S↔R
L↔X ◦ S↔RL↔L ◦ S↔RL↔Y

L and
X

Y
b≡ S↔R

L↔X
Y , (4)

M+

b
≡ {T b.T : T ∈M(0b,∞b)} (5)

and (∀A,B,C,D∈Fb :Ab.D
b
-B b.C 6=0b)

(
A B
C D

)
b

|M 3 X ↪→


A

b.X
b
+B

C
b.X

b
+D

b , ifX 6=∞b and C b.X
b
+D 6=0b;

A
C

b , ifX =∞b and C 6=0b;
∞b, ifX =∞b and C =0b;
∞b, ifX 6=∞b and C b.X

b
+D=0b.

∈M. (6)

When it is clear from context which basis is being considered, we shall usually omit the subscript b in the
above, and at times will omit the entire symbol b. as well.
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(11.4) Examples Suppose thatM is a meridian, that R and S are distinct elements ofM and that
f is a libra isomorphism from M(R,R) onto Πfixed

(S,R) . We shall form a basis b=´
`
0, 1,∞`

´
by letting

0 be S, ∞ be R and 1 be a fixed point for f
 R↔R
S↔S

. (1)

Now we define

ε|Fb 3 X ↪→ (f
 R↔R
S↔X

)1 ∈ Fb =⇒ f
 R↔R
S↔X

= S↔R
1↔εX . (2)

For X,Y ∈Fb we have
R↔R
S↔X ◦ R↔RS↔S ◦ R↔RS↔Y

by (11.3.3) R↔R
S↔X+Y (3)

and so

ε
X + Y

 by (2) and by (3)
(f
 R↔R
S↔X ◦ R↔RS↔S ◦ R↔RS↔Y

)1= f R↔RS↔X
◦f R↔RS↔S

◦f R↔RS↔Y
1 by (2)

S↔R
1↔εX ◦ S↔R1↔1 ◦ S↔R1↔εY 1 by (11.3.4)

ε
X · εY . (4)

In particular,
ε
0=1. (5)

The existence of such an isomorphism ε implies that

the characteristic p of the field Fb must be 0. (6)

For assume otherwise: that p were a prime integer. Then there would be K ∈Fb such that

ε
K=

(p−1) times︷ ︸︸ ︷
1 + 1 + · · · 1 .

Then

ε
K +K

=εK · εK=
(p2−2p+1) times︷ ︸︸ ︷
1 + 1 + · · · 1 =1=ε

0 =⇒ K +K =0 =⇒ p=2

and p=2 is precluded by the definition of meridian.
When for a basis b the field Fb is isomorphic to the field C of complex numbers, we shall say that M

is a sphere meridian. Since all elements of C have square roots, it is easy to show that Π(∞,0)=Π
fixed

(∞,0)
,

and so Theorem (11.2) implies that in this case Π(∞,∞) cannot be isomorphic with Πfixed

(∞,0)
.

When for a basis b the field Fb is isomorphic to the field R of real numbers, we shall say that M is a
circle meridian. In this case we can construct many libra isomorphisms from Π(∞,∞) onto Πfixed

(∞,0)
. Let

P be any positive real number. Then

Π(∞,∞) 3
(
−1 T
0 1

)
↪→
(
0 PT

1 0

)
∈ Πfixed

(∞,0)
(7)

is such a libra isomorphism. Each such isomorphism sends

(
−1 0
0 1

)
=
∞↔∞
0↔0 to

(
0 1
1 0

)
=
∞↔0
1↔1 and is

distinguished by its value at

(
−1 1
0 1

)
=
∞↔∞
0↔1 . This example motivates the following definition.

(11.5) Definitions Let ´
`
S,L,R`

´
be a basis for a circuitous meridianM. We introduce the notation

(S;L;R) ≡ {φ
L : φ∈Πfixed

(S,R)} and [S;L;R] ≡ {S,R} ∪ (S;L;R). (1)

At times we shall refer to (S;L;R) as an open arc with endpoints S and R, and to [S;L;R] as a closed
arc with endpoints S and R.

We shall say that M is a circuitous meridian if

(∃ ´
`
S,L,R`

´
a basis for M)(∀ P ∈(S;L;R), Q≡ R↔R

L↔P
S)(∃ f|Π(R,R) → Πfixed

(S,R) a libra isomorphism)

f
 R↔R
S↔S

= S↔R
L↔L and f

 R↔R
L↔L

= S↔R
L↔Q . (2)

The function f will be said to be a power involution isomorphism relative to the (ordered
quadruple) ´

`
S,R,L, P `

´
.
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We note the following equivalence:

Q≡ R↔R
L↔P

S⇐⇒ Q=1b + P. (3)

(11.6) Corollary Let b=´
`
S,L,R`

´
be a basis for a circuitous meridian M. Then Πfixed

(S,R) is an
operator libra and the field Fb has characteristic 0. In particular, M is infinite.

Proof. The first part follows directly fromΠfixed

(S,R) being the image of the libraΠ(R,R) by an isomorphism.

The second part follows from (11.4.6). QED

(11.7) Theorem Let (S;L;R) be an open arc in the circuitous meridian M. Then

(∀U ∈(S;L;R)) (S;L;R)=(S;U ;R). (1)

Proof. Let U, V ∈(S;L;R). Then

S↔R
L↔V ◦ S↔RL↔L ◦ S↔RL↔U

U= S↔R
L↔V ◦ S↔RL↔L

L= S↔R
L↔V

L=V.
In view of (11.6),

S↔R
L↔V ◦ S↔RL↔L ◦ S↔RL↔U is in Π(S,R) and so the above implies that

V ∈(S;U ;R). (2)

It follows that

(S;L;R) ⊂ (S;U ;R). (3)

Since V can be taken to be L, we have from (2) that L is in (S;U ;R). Thus the roles of L and U may be
interchanged in (3), whence follows

(S;U ;R) ⊂ (S;L;R). (4)

From (3) and (4) follows (1). QED

(11.8) Lemma Let X be in a meridian M and let α and β be in the operator libra Π(X,X). Then
there exists γ∈Π(X,X) such that

α=γ◦β◦γ. (1)

Proof. Since α is an involution with fixed point X, it follows from (2.40.iv) that there exists another
point A∈M(X,X) which is fixed by α. Similarly, there exists an element B∈M(X,X) which is fixed by β.

Then
X↔X
A↔B ◦β◦ X↔XA↔B and α both leave X fixed and

X↔X
A↔B ◦β◦ X↔XA↔B

A= X↔X
A↔B ◦β

B= X↔X
A↔B

B=A=α
A.

It follows from (2.34) that (1) holds for τ=
X↔X
A↔B . QED

(11.9) Theorem Let (S;L;R) be an open arc in the circuitous meridian M. Then

R↔R
S↔S

L 6∈ (S;L;R), (S;L;R) ∩ [S;
R↔R
S↔S

L;R]=∅ and M=(S;L;R) ∪ [S;
R↔R
S↔S

L;R]. (1)

Proof. Assume that
R↔R
S↔S

L were in (S;L;R). Then

(∃ σ∈Π(S,R)) σ
L= R↔R

S↔S
L. (2)

Evidently σ◦ R↔RS↔S ◦σ would be in Π(S,R) and

σ◦ R↔RS↔S ◦σ
L by (2)

σ◦ R↔RS↔S
 R↔R
S↔S

L=σL by (2) R↔R
S↔S

L by (2.34)⇒ σ◦ R↔RS↔S ◦σ= R↔R
S↔S . (3)

Let f be a power involution isomorphism relative to the quadruple ´
`
S,R,L, L`

´
and let α≡ f−1σ and

β≡ f−1 R↔R
S↔S

. From (3) would follow that

α◦β◦α=β. (4)

Let Y be the element of M(R,R) that would be fixed by α. Then

β
Y =α◦β◦αY =αβY  =⇒ β

Y ∈{R, Y },
{R, Y } being the set of points fixed by α. But β would be injective and β

R=R, so

β
Y =Y =α

Y . (5)
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But α and β both being in M(R,R), would leave R fixed. It would follow from (2.34) that α=β. Thus

σ= f
α= fβ= R↔R

S↔S =⇒ Π(S,R) ∩Π(R,R) 6=∅: which is an absurdity .

Our assumption being incorrect, it follows that
R↔R
S↔S

L 6∈ (S;L;R).

Assume that (S;L;R)∩ [S;
R↔R
S↔S

L;R] had an element X. Since S and R evidently are not in (S;L;R),

X would have to be in (S;
R↔R
S↔S

L;R). Thus

(∃ φ, η∈Πfixed

(S,R) ) φ
L=X =η

 R↔R
S↔S

L.
From (11.6) would follow that η◦φ◦ S↔RL↔L ∈Πfixed

(S,R) . Consequently

R↔R
S↔S

L=ηX=η◦φL=η◦φ◦ S↔RL↔L
L =⇒ R↔R

S↔S
L∈(S;L;R)

which in the preceding paragraph was demonstrated to be impossible. Hence (S;L;R)∩ [S;
R↔R
S↔S

L;R]=∅.
Let T be any element of M(S,R). To show that M=(S;L;R) ∪ [S;

R↔R
S↔S

L;R] it will suffice to show

that T is in either (S;L;R) or (S;
R↔R
S↔S

L;R). Evidently
S↔R
L↔L ◦ R↔RS↔S ◦ S↔RL↔L is in Π

M and leaves both S
and R fixed. Hence, by (2.34),

S↔R
L↔L ◦ R↔RS↔S ◦ S↔RL↔L =

R↔R
S↔S =⇒ S↔R

L↔L ◦ R↔RS↔S =
R↔R
S↔S ◦ S↔RL↔L =⇒

S↔R
L↔L

 R↔R
S↔S

L= R↔R
S↔S

 S↔R
L↔L

L= R↔R
S↔S

L. (6)

Let U be the fixed point of
S↔R
T↔T which is distinct from T . Since Πfixed

(S,R) is isomorphic to Π(R,R), it follows

from Lemma (11.8) that there exists ω∈Πfixed

(S,R) such that

S↔R
T↔T =ω◦ S↔RL↔L ◦ω

which implies both
S↔R
T↔T

ωL=ω◦ S↔RL↔L ◦ω
ωL=ωL

and
S↔R
T↔T

ω R↔RS↔S
L=ω◦ S↔RL↔L ◦ω

ω R↔RS↔S
L=ω◦ S↔RL↔L

 R↔R
S↔S

L by (6)
ω
 R↔R
S↔S

L
It follows that

{ω
L, ω R↔RS↔S

L}={T,U}.
If ω

L=T , then T ∈(S;L;R). If ω
 R↔R
S↔S

L=T , then T ∈(S;
R↔R
S↔S

L;R). QED

(11.10) Corollary Let S, R, T and U be distinct elements of a circuitous meridian M. Then

(S;T ;R)6=(S;U ;R)⇐⇒ (S;T ;R) ∩ (S;U ;R)=∅ (1)

and
M=(S;T ;R) ∪ [S;U ;R]. (2)

Proof. Suppose that (S;T ;R)6=(S;U ;R). From Theorem (11.7) we know that U 6∈ (S;T ;R). From

Theorem (11.9) it follows that U is in (S;
R↔R
S↔S

T ;R). From Theorem (11.7) we have

(S;
R↔R
S↔S

T ;R)=(S;U ;R).

From Theorem (11.9) we have

∅=(S;T ;R) ∩ [S;
R↔R
S↔S

T ;R]=(S;T ;R) ∩ [S;U ;R]

and

M=(S;T ;R) ∪ [S;
R↔R
S↔S

T ;R]=(S;T ;R) ∪ [S;U ;R].

QED

(11.11) Theorem Let ´
`
S,L,R`

´
be a basis for a circuitous meridianM, and let φ be in Γ

M. Then

φ
(S;L;R)

=(φ
S;φL;φR). (1)
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Proof. Evidently
Πfixed

(φ

R

,φ

R

) = {φ◦ψ◦φ−1 : ψ∈Πfixed

(S,R)}

and, for each ψ∈Πfixed

(S,R) ,

φ◦ψ◦φ−1φL=φψL
whence follows (1). QED

(11.12) Theorem Let ´
`
S,L,R`

´
be a basis for a circuitous meridian M, and let φ be in Πfixed

(S,R) .

Then one fixed point of φ is in (S;L;R) and one is not.

Proof. Since φ◦ R↔RS↔S ◦φ is in Π
M and fixes both S and R, it follows from (2.34) that

R↔R
S↔S =φ◦ R↔RS↔S ◦φ.

Let P and Q be the fixed points of φ. Then

φ
 R↔R
S↔S

P =φφ◦ R↔RS↔S ◦φ
P = R↔R

S↔S
P .

Since P is neither S nor R, we know that
R↔R
S↔S

P  6=P , whence follows that
R↔R
S↔S

P =Q. From Theorem
(11.9) follows that (S;P ;R) ∩ (S;Q;R) = ∅ and M=(S;P ;R) ∪ (S;Q;R) ∪ {S,R}. From Corollary (11.10)
we know that either (S;L;R)=(S;P ;R) or (S;L;R)=(S;Q;R). QED

(11.13) Theorem Let b be a basis of a circuitous meridian M. Then

(0b; 1b;∞b)=M+

b
.

Proof. Let T be in (0; 1;∞). There exists φ∈Πfixed

(∞,0) such that φ
1=T . The operator φ can be written

in the form

(
0 K
1 0

)
for K ∈M(∞,0). Let P be the fixed point of φ which lies in (0; 1;∞). Then

P =φ
P =

(
0 K
1 0

) P =K
P

=⇒ K =P 2.

Consequently

T =φ
1=

(
0 K
1 0

) 1=
(
0 P 2

1 0

) 1= P
2

1
=P 2.

Now let R≡Q2 for Q∈M(0,∞). The operator

(
0 R
1 0

)
is evidently in Π(∞,0). Furthermore(

0 R
1 0

) Q= R
Q
=
Q2

Q
=Q =⇒

(
0 R
1 0

)
∈Πfixed

(∞,0) .

Thus

R=
R

1
=

(
0 R
1 0

) 1 =⇒ R∈(0; 1;∞).

QED

(11.14) Corollary Let ´
`
0, 1,∞`

´
be a basis for a circuitous meridianM, and let P be an element of

(0; 1;∞). Then 1
P is in (0; 1;∞).

Proof. By (11.13) there exists K ∈M(∞,0) such that K2=P . We have 1
P = 1

K ·
1
K and so (11.13) implies

that 1
P is in (0; 1;∞). QED

(11.15) Lemma Let ´
`
S,R, T `

´
be a basis of a circuitous meridian M. Then

(S;L;R) ∩ (L;R;S) ∩ (R;S;L) = ∅ (1)

Proof. Assume that P were an element of (S;L;R) ∩ (L;R;S) ∩ (R,S, L). Then there were unique
elements α∈Πfixed

(∞,0) , β∈Πfixed

(0,1) and γ∈Πfixed

(1,∞) such that

α
1=β∞=γ0=P. (2)

Elementary calculations show that

α=

(
0 P
1 0

)
, β=

(
P −P
1 −P

)
and γ=

(
−1 P
−1 1

)
.

95



The binomial equation leads to the following formulae for the fixed points of α, β and γ, respectively,

X = ±
√
P , Y =P ±

√
P 2 − P and Z =1±

√
1− P , respectively.

Since α, γ and β would each have a pair of fixed points, there would be elements A, B and C of M(∞,∞)

such that
A=
√
P , B=

√
P 2 − P , and C =

√
1− P .

It would follow that
A2 · C2= −B2. (3)

By Theorem (11.13) we know that A2 ·C2 and B2 would be in (0; 1;∞). From Theorem (11.10) would follow
that −B2 would not be in (0; 1;∞). But this would be inconsistent with (3). QED

(11.16) Lemma Let ´
`
S,R,L`

´
be a basis for a circuitous meridian M, and let P be an element of

(S;L;R). Then there exists a power involution isomorphism relative to the quadruple ´
`
S,R,L, P `

´
.

Proof. By the definition of circuitous meridian there exists a basis ´
`
A,B,C `

´
in M such that, for all

D∈(A;B;C), there exists a power involution isomorphism relative to the quadruple ´
`
A,C,B,D`

´
. By the

fundamental theorem there exists φ∈Γ
M such that

φ
A=S, φ

B=L, and φ
C=R. (1)

Let
D≡φ−1P  (2)

and let f be a power involution isomorphism relative to ´
`
A,B,C,D`

´
. We further define

h|Γ
M 3 θ ↪→ φ◦θ◦φ−1 ∈ Γ

M (3)

whence follows
h−1|Γ

M 3 θ ↪→ φ−1◦θ◦φ ∈ Γ
M. (4)

We have
(∀ θ∈Π(R,R)) (h−1θ)C=φ−1◦θ◦φ

C by (1)
φ−1◦θ

R=φ−1R by (1)
C (5)

and
(∀ θ∈Π(S,R)) (h−1θ)A=φ−1◦θ◦φ

A by (1)
φ−1◦θ

S=φ−1R by (1)
C

whence follows

h−1(Π(R,R))=Π(C,C) and h−1(Π(S,R))=Π(A,C) =⇒ h(Π(C,C))=Π(R,R) and h(Π(A,C))=Π(S,R). (6)

Direct computation with (1) and (3) yields

h
 A↔A
C↔C

= R↔R
S↔S , h

 A↔C
B↔B

= S↔R
L↔L , and h

 A↔A
B↔B

= S↔S
L↔L . (7)

Setting E≡ C↔C
B↔D

A and Q≡ R↔R
L↔P

S we have

Q=
R↔R
L↔P

S by (4.6) R L
S

P R

by (4.25)
φ
 C B

A
D C

 by (4.6)
φ
 C↔C
B↔D

A=φE.

and so direct computation again yields

h
 A↔C
B↔D

= S↔R
L↔Q . (8)

Defining
g ≡ h◦f◦h−1 (9)

and applying (7), (8), (3) and (4) we obtain

g
 R↔R
S↔S

= S↔R
L↔L and g

 R↔R
L↔L

= S↔R
L↔Q . (10)

It follows that g is a power involution isomorphism relative to the quadruple ´
`
S,R,L, P `

´
. QED

(11.17) Lemma Let ´
`
0, 1,∞`

´
be a basis for a circuitous meridian M. Then

(∞;
∞↔∞
1↔1

0; 1)={T 2 + 1 : T ∈M(∞,∞)}. (1)
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Proof. We first note that

∞↔∞
1↔1 =

(
−1 2
0 1

)
=⇒ ∞↔∞

1↔1
0=2. (2)

Let X be in (∞;
∞↔∞
1↔1

0; 1). Then (2) implies that X =θ
2 for some θ∈Πfixed

(∞,1)
. Since θ is in Π(∞,1),

it is of the form

(
1 B
1 −1

)
for some B∈M(∞,∞). Since θ has a fixed point, it follows from the quadratic

formula that B + 1 has some square root T . Thus

X =θ
2=

(
1 B
1 −1

) 2= 2 +B

2− 1
=2 +B=B + 1 + 1=T 2 + 1.

Conversely, presume that X≡T 2+1. Setting B≡T 2−1, direct calculation shows that

(
1 B
1 −1

)
is in

Πfixed

(∞,1)
and that X =

(
1 B
1 −1

) 2, whence follows that X is in (∞;
∞↔∞
1↔1

0; 1). QED

(11.18) Theorem Let ´
`
S,L,R`

´
be a basis for a circuitous meridian M. Then{

{S}, (S;
R↔R
S↔S

L;R), {R}, (R;
R↔R
L↔L

S;L), {L}, (L;
L↔L
S↔S

R;S)
}

is a partition of M. (1)

Proof. We first show

{S,R,L} ∪ (S;
R↔R
S↔S

L;R) ∪ (L;
L↔L
S↔S

R;S) ∪ (R;
R↔R
L↔L

S;L)=M. (2)

Let T be an element of M distinct from S, L and R. If T were not in (S;
R↔R
S↔S

L;R), then by Theorem

(11.9) it would be in (S;L;R). Similarly, if T were not in (L;
L↔L
S↔S

R;S) it would be in (L;R;S). And

if T were not in (R;
R↔R
L↔L

S;L), it would be in (R;S;L). By Lemma (11.15) these things cannot occur
consistently. It follows that (2) holds.

Assume that the constituents of (2) were not pairwise disjoint. Without loss of generality we may

assume that (R;
R↔R
S↔S

L;S) and (L;
L↔L
R↔R

S;R) had a common element X. Thus

X ∈(∞;
∞↔∞
0↔0

1; 0) ∩ (1; 1↔1∞↔∞
0;∞). (3)

From Lemma (11.17) follows that

X =1 + C2 (4)

for some C ∈M(∞,∞). From (11.13) follows that P≡C2 would be in (R;L;S). By Lemma (11.16) there
would exist a power involution isomorphism relative to the quadruple ´

`
S,R,L, P `

´
. In particular

f
 R↔R
L↔L

= R↔S
L↔Q where Q≡ R↔R

L↔P
S. Then

Q=
∞↔∞
1↔P

0=
(
−1 1 + P
0 1

) 0=1 + P

whence

f
 R↔R
L↔L

= R↔S
L↔Q =

∞↔0
1↔1+P =

(
0 1 + P
1 0

)
=⇒

(
0 1 + P
1 0

)
∈Πfixed

(R,S) .

Thus (
0 1 + P
1 0

) 1=1 + P =1 + C2 is in (R;L;S)
by (11.10)⇒ 1 + C2 6∈ (R;

R↔R
S↔S

L;S). (5)

Evidently (3), (4) and (5) are incompatible. Thus the constituents of (2) are pairwise disjoint. QED

(11.19) Corollary Let ´
`
S,L,R`

´
be a basis for a circuitous meridian M. Then

(i) (S;
L↔L
S↔S

R;L) ∪ {L} ∪ (L;
R↔R
L↔L

S;R) is a partition of (S;L;R);

(ii) (L;
R↔R
L↔L

S;R) ∪ {R} ∪ (R;
R↔R
S↔S

L;S) is a partition of (L;R;S);

(iii) (R;
R↔R
S↔S

L;S) ∪ {S} ∪ (S;
S↔S
L↔L

R;L) is a partition of (R;S;L).
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Proof. We prove only the first, the other two being susceptible to analogous argument. It follows from
(11.18) that{

{S}, (S;
R↔R
S↔S

L;R), {R}, (R;
R↔R
L↔L

S;L), {L}, (L;
L↔L
S↔S

R;S)
}

is a partition of M. (1)

It follows from (11.9) that{
{S}, (S;L;R), {R}, (S;

R↔R
S↔S

L, R)
}

is a partition of M. (2)

It follows from (1) and (2) that (i) holds. QED

(M ;
M↔M
S↔S

R;S) ∪ {M} ∪ (R;
R↔R
M↔M

S;M) partitions (S;M ;R). (3)

Applying (11.11) with φ=
R↔R
S↔S to (3) we obtain (i). QED

(11.20) Corollary Let b be a basis for a circuitous meridian M. Then

M+

b
is closed under both + and ·. (1)

Proof. That M(∞,∞)
+

is closed under multiplication follows from the fact that X2 · Y 2=(X · Y )2 for
all X,Y ∈M(∞,∞). Note that Theorem (11.13) implies that

M(∞,∞)
+
=(0; 1;∞). (2)

Let X,Y ∈M(∞,∞). From (2) and (11.17.1) follows that 1+ Y 2

X2 is in (∞;
∞↔∞
1↔1

0; 1). From (11.19.1) then

follows that 1 + Y 2

X2 is in (0; 1;∞). Thus X2 + Y 2=(1 + Y 2

X2 ) ·X2 is in (0; 1;∞) as well. QED

(11.21) Notation Let M be a meridian. We denominate

ΠR
M ≡ ΠM ∩ ΓRM={π∈ΠM : π has no fixed point.} (1)

Let b be a basis for M. For R, T, U, V ∈Fb we denominate

detb

(
R T
U V

)
≡ Rb.V

b
-T b.U. (2)

(11.22) Theorem Let b=´
`
0, 1,∞`

´
be a basis for a circuitous meridian M. Let π be an element of

Π
M. Let A,B,C ∈Fb be such that π=

(
A B
C −A

)
. Then

π∈ΠR
M⇐⇒ detb

(
A B
C −A

)
∈M+

b
. (1)

Proof. The binomial formula implies that the operator

(
A B
C −A

)
has a fixed point iff

A2 +B · C ∈M+

b
. Thus

(
A B
C −A

)
has no fixed point iff −A2 −B · C ∈M+

b
. But

−A2 −B · C =detb

(
A B
C −A

)
.

QED

(11.23) Theorem Let M be a circuitous meridian. Then Let ρ∈Γ
M be a rotation51 but not an

involution. Then there exists a translation τ∈Γ
M and an involution π∈ΠR

M such that ρ=π◦τ.

Proof. By Lemma (8.10) there exists a basis b and R,Q∈Fb such that ρ=

(
1 R
Q 1

)
. The fixed point

equation for ρ then is X +R=(QX + 1)X, which implies that√
R

Q
does not exist =⇒ R

Q
6∈M+

b
by (11.9) and by (11.13)⇒ −RQ∈M+

b
. (1)

Hence, by (11.20), 1−RQ is in M+

b
, whence follows that there exists M ∈M+

b
such that M2=1−RQ. Let

P ≡ 2−RQ+ 2M

R2

by (11.20)⇒ P ∈M+

b
. (2)

51 The operator ρ has no fixed point.
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It is a direct calculation to check that

Q2 + 2PRQ+ P 2R2 − 4P =0

and is equal to the discriminant of the quadratic equation

PX2 + (Q+ PR)X + 1.

Since the equation for the fixed points of the operator τ≡
(
Q 1
−P −PR

)
is just

PX2 + (Q+ PR)X + 1=0,

it follows that that operator τ has exactly one fixed point, and so is a translation. The operator π≡
(

0 1
−P 0

)
is, in view of (2) and (11.22), in ΠR

M. We have

ρ=

(
1 R
Q 1

)
=

(
0 1
−P 0

)
◦
(
Q 1
−P −PR

)
=π◦τ.

QED

(11.24) Lemma Let M be a circuitous meridian. Then any translation in Γ
M is a composition

of nine elements from ΠR
M.

Proof. Let τ be a translation. Let∞ be its fixed point and let 0 be any other point inM. Let 1≡ τ−10
and b≡´

`
0, 1,∞`

´
. Then

τ=

(
1 −1
0 1

)
.

We have by direct calculation(
0 −6
1 0

)
◦
(
0 −5
1 0

)
◦
(
1 −1
2 −1

)
◦
(
4 −5
5 −4

)
◦
(
0 −4
1 0

)
◦
(
0 −1
1 0

)
◦
(
1 −1
2 −1

)
◦
(
0 −5
1 0

)
◦
(
0 −6
1 0

)
=τ.

That each of the constituent operators above is in ΠR
M follows from (11.22). QED

(11.25) Theorem Let M be a circuitous meridian. Let b be a basis for a circuitous meridian M.
Then, for all A,B,C,D∈Fb such that A ·D 6=B · C

detb

(
A B
C D

)
∈M+

b
⇐⇒

(
A B
C D

)
is a composition of elements from ΠR

M. (1)

Proof. If

(
A B
C D

)
is a composition of elements of ΠR

M, it follows from (11.22) and the fact that

the determinant of a product of matrices is the product of the determinants that detb

(
A B
C D

)
will have a

square root. Thus we only have to show that

detb

(
A B
C D

)
has a square root =⇒

(
A B
C D

)
is a composition of elements of ΠR

M.

The identity element of Γ
M always is equal to

(
1 0
0 1

)
and so has determinant 1, and is the compo-

sition of any element of ΠR
M with itself.

Let φ≡
(
A B
C D

)
. If φ is an involution, then (1) holds by (11.22). If φ is a translation, then (1) holds

by (11.24). If φ is a rotation, then (1) holds by (11.23) and (11.24).

Thus we may presume that φ is a non-involution dilation such that detb

(
A B
C D

)
has a square root.

From (4.19.iii) it follows that there exist π, σ∈Π
M agreeing on two distinct points such that π has a fixed

point and such that φ=π◦σ. Without loss of generality we shall presume that ∞ and 0 are two points on
which π and σ agree, and that 1 is a fixed point for π. Thus there exists P ∈M(∞,∞) such that

π=

(
0 1
1 0

)
, σ=

(
0 P
1 0

)
and φ=

(
1 0
0 P

)
. (2)
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We have

detb

(
A B
C D

)
=detb

(
0 1
1 0

)
· detb

(
0 P
1 0

)
=(−1) · (−P )=P.

Since detb

(
A B
C D

)
has a square root by hypothesis, it follows that P does as well. We have

detb

(
0 −1
1 0

)
=1 and detb

(
0 −P
1 0

)
=P =⇒

(
0 −1
1 0

)
,

(
0 −P
1 0

)
∈ΠR

M
and (

0 −1
1 0

)
◦
(
0 −P
1 0

)
=

(
−1 0
0 −P

)
=

(
1 0
0 P

)
by (2)

φ.

QED

(11.26) Definition and Notation Let M be a circuitous meridian. We shall say that an element
of Γ

M is orientation preserving if it is a product of elements of ΠR
M. We adopt the notation

Γ
M+ ≡ {φ∈Γ

M : φ is orientation preserving}. (1)

It is evident from (11.25) that

Γ
M+ is a subgroup of Γ

M with exactly one coset Γ
M−. (2)

We shall say that two bases b and c have the same orientation provided there exists some φ∈Γ
M+

such that c=b. Evidently having the same orientation is an equivalence relation for which there exists two
equivalence classes. We shall write

c∼◦ b iff the two bases c and b have the same orientation. (3)

(11.27) Corollary We collect some facts about orientation for later use: in a circuitous meridian
M

(i) translations are in GC
M+;

(ii) rotations are in GC
M+;

(iii) involutions with fixed points are in GC
M−;

(iv) (∀ ´
`
S,L,R`

´
a basis for M)(∀M ∈(S;L;R)) ´

`
S,L,R`

´
∼◦ ´

`
S,M,R`

´
;

(v) (∀ ´
`
S,L,R`

´
a basis for M)(∀M 6∈ [S;L;R]) ´

`
S,L,R`

´
∼◦6 ´

`
S,M,R`

´
;

(vi) (∀ ´
`
S,L,R`

´
a basis for M) ´

`
S,L,R`

´
∼◦ ´

`
R,S, L`

´
∼◦ ´

`
L,R, S `

´
∼◦6 ´

`
S,R,L`

´
∼◦ ´

`
R,L, S `

´
∼◦ L, S,R.

Proof. (i): Follows from (11.24).
(ii): Follows from (i) and (11.23).
(iii): Follows from (11.22) and (11.25).
(iv): Let M be in (S;L;R). Then there exist φ∈Πfixed

(S,R) such that φ
L=M . By (11.22) φ is in GC

M−.

Similarly,
R↔S
L↔L is in GC

M−. Thus φ◦ R↔SL↔L is in GC
M+, and so

´
`
S,M,R`

´
=´
`
φ◦ R↔SL↔L

S, φ◦ R↔SL↔L
L, φ◦ R↔SL↔L

R`
´
∼◦ ´

`
S,L,R`

´
.

(v): Now let M not be in [S;L;R]. Let φ∈Π(S,R) be such that φ
L=M . By (11.22) φ is in GC

M+.

Thus φ◦ R↔SL↔L is in GC
M−, and so

´
`
S,M,R`

´
=´
`
φ◦ R↔SL↔L

S, φ◦ R↔SL↔L
L, φ◦ R↔SL↔L

R`
´
∼◦6 ´

`
S,L,R`

´
.

(vi): By (iii) we know that
L↔S
R↔R is in GC

M− and so

´
`
S,R,L`

´
=´
`

L↔S
R↔R

L, L↔SR↔R
R, L↔SR↔R

S`
´
∼◦6 ´

`
L,R, S `

´
.

The other relations of (iv) follows by analogous arguments. QED

(11.28) Definition and Notation Let b be a basis for a circuitous meridian and (S;L;R) an arc.
We denominate

(S,R)b ≡
{

(S;L;R) if ´
`
S,L,R`

´
∼◦ ´

`
0b, 1b,∞b

`
´
;

(S;
R↔R
S↔S

L;R) if ´
`
S,L,R`

´
∼◦6 ´

`
0b, 1b,∞b

`
´
,

(1)

[S,R)b ≡ {S} ∪ (S,R)b, (S,R]b ≡ (S,R)b ∪ {R} and [S,R]b ≡ {S} ∪ (S,R)b ∪ {R}. (2)
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(11.29) Corollary Let b be a basis for a circuitous meridian M and (S,R)b an arc. Then
(i)

{
{S}, (S,R)b, {R}, (R,S)b

}
is a partition of M;

(ii) (∀L∈(S,R)b)
{

(S,L)b, {L}, (L,R)b
}

is a partition of (S,R)b;

(iii) (∀L∈M(S,R) :L 6∈ (S,R)b)
{

(R,L)b, {L}, (L, S)b
}

is a partition of (R,S)b.

Proof. (i): Follows from (11.27.iii) and (iv).

(ii): From (11.19.i) we have that{
(S;

L↔L
S↔S

R;L), {L}, (L;
R↔R
L↔L

S;R)
}

is a partition of (S;L;R). (1)

We have

b∼◦ ´
`
S,L,R`

´

by (11.27.vi)⇒ ´
`
S,R,L`

´
∼◦6 b∼◦6 ´

`
L, S,R`

´

by (11.27.iii)⇒ ´
`
S,

L↔L
S↔S

R, L`
´
∼◦ b∼◦ ´

`
L,

R↔R
L↔L

S, R`
´

and so (1) becomes just (ii).

(iii): If we interchange the rolls of S and R in (ii), we obtain (iii). QED

(11.30) Theorem Let b be a basis for a circuitous meridian M. Let (S,R)b and (Q,P )b be arcs
in M. Then

(i) if Q=S or if P =R, then the arcs (S,R)b and (Q,P )b are nested52;
(ii) if R=Q then either (S,R)b ∩ (Q,P )b=∅ or (S,R)b ∩ (Q,P )b=(S, P )b;
(iii) if S =P then either (S,R)b ∩ (Q,P )b=∅ or (S,R)b ∩ (Q,P )b=(Q,R)b;
(iv) if Q,P ∈(S,R)b then (Q,P )b ⊂ (S,R)b or (S,R)b ∩ (Q,P )b=(Q,R)b ∪ (S, P )b;
(v) if S,R∈(Q,P )b then (S,R)b ⊂ (Q,P )b or (S,R)b ∩ (Q,P )b=(S, P )b ∪ (Q,R)b;
(vi) if Q∈(S,R)b and P 6∈ [S,R]b then (S,R)b ∩ (Q,P )b=(Q,R)b;
(vii) if Q 6∈ [S,R]b and P ∈(S,R)b then (S,R)b ∩ (Q,P )b=(S, P )b.

Proof. (i): We presume that Q=S, the other case being analogous. Suppose that P ∈(S,R)b. By
(11.29.ii) (S,R)b=(S, P )b ∪ {P} ∪ (P,R)b and so (Q,P )b ⊂ (S,R)b.

Now suppose on the other hand that P 6∈ (S,R)b. If P =R, then of course (Q,P )b=(S,R)b, so by
(11.29.i) we may presume that P is in (R,S)b. From (11.29.ii) we know that (P,Q)b ⊂ (R,S)b. From
(11.29.i) follows that (S,R)b ⊂ (Q,P )b.

(ii): Here we presume that R=Q. Suppose first that P is in (S,R)b. It follows from (11.29.ii) that S is
not in (P,R)b=(P,Q)b. Thus (11.29.i) implies that S is in (Q,P )b and in fact that (Q,S)b ⊂ (Q,P )b.

Now we suppose on the other hand that P is not in (S,R)b. If P =S, then (S,R)b∩(Q,P )b=∅ by (11.29.i).
Thus by (11.29.i) we may presume that P is in (R,S)b. From (11.29.ii) it follows that (Q,P )b=(R,P )b ⊂
(R,S)b. By (11.29.i) it follows that (S,R)b ∩ (Q,P )b=∅.

(iii): The proof for (iii) is analogous to that for (ii).

(iv): Here we presume that Q,P ∈(S,R)b. From (11.29.ii) we know that (B,Q)b∪{Q}∪(Q,R)b=(S,R)b.
If P is in (Q,R)b, then (Q,P )b∪(P,R)b=(Q,R)b and so (Q,P )b ⊂ (S,R)b. Thus we may presume that P is
in (B,Q)b. We have by (11.29.ii) that (B,P )b∪(P,Q)b=(B,Q)b. So

{
(B,P )b, {P}, (P,Q)b, {Q}, (Q,R)b

}
is

a partition of (S, P )b. Since (11.29.i) implies that (Q,P )b ∩ (P,Q)b=∅, it follows that
(S,R)b ∩ (Q,P )b=(Q,R)b ∪ (S, P )b.

(v): The proof for (v) is analogous to that for (iv).

(vi): Here we have Q∈(S,R)b and P ∈(R,S)b. By (11.29.i)
{
{S}, (S,R)b{R}, (R,S)b

}
is a partition of

M. By (11.29.ii)
{

(S,Q)b, {Q}, (Q,R)b
}

is a partition of (S,R)b and
{

(R,P )b, {P},bP, S
}

is a partition
of (R,S)b. Putting these pieces together we find that{

{S}, (S,Q)b, {Q}, (L,R)b, {R}, (R,P )b, {P}, (P, S)b
}

is a partition of M.

Evidently (S,R)b ∩ (Q,P )b=(Q,R)b.

(vii): The proof for (vii) is analogous to that for (vi). QED

(11.31) Definition It follows from (11.30) that the family of all arcs in a circuitous meridian is a
sub-basis for a topology, which we shall call the arc topology. A necessary and sufficient condition for a
subset of a meridian to be open relative to arc topology is for it to be a union of arcs. We recall that a
topological space is compact if each open covering has a finite sub-covering.

52 One is a subset of the other.
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(11.32) Theorem Let M be a circuitous meridian which is compact relative to the arc topology.
ThenM is isomorphic as a meridian to the circle meridian. In particular, relative to the arc topology,M is
homeomorphic to a circle. Furthermore, if b is any basis for M, then Fb is isomorphic as a field to the field
R of real numbers.

Proof. Let b be a basis for M. For the field Fb we define the linear ordering ≺b as follows:

(∀X,Y ∈Fb) X ≺b Y ⇐⇒ ´
`
X,Y,∞b

`
´
∼◦ b ⇐⇒ Y

b
-X ∈M+

b
. (1)

It is a consequence of (11.20) that relative to ≺b, Fb is an ordered field.52 Since Fb is compact (by hypothesis),
it is elementary to show that it is complete as an ordered field.53 It has long been known that such a field,
if it is also Archimedean ordered54, is isomorphic to the field of real numbers.55 In such a case M of course
is a circle meridian.

We shall show that Fb is Archimedean ordered. Assume that it were not. Then there would exist
P,Q∈M+

b
such that

Q 6∈
⋃
n∈N

(−nP, nP )b. (2)

It follows from the compactness of M and (2) that the set in (2) would be an arc (−W,W )b, where W is
some element of M+

b
. Then (2) is sharpened to

W 6∈
⋃
n∈N

(−nP, nP )b. (3)

The family {(−nP, nP )b ∪ (W − nP,W + nP )b : n∈N} would be an open cover of the closed (and therefor
compact) subset [0b,W ]b of M. Since that family would be a nest, there would exist some m∈N such that
[0b,W ]b ⊂ (−mP,mP )b∪(W−mP,W+mP )b. In view in (3), we would have mP ≺b W . It follows that mP
would be in [0b,W ]b and so, since it cannot be in (−mP,mP )b, it would have to be in (W −mP,W +mP )b.
Thus

W ≺b mP +mP =2mP

which would violate (3). QED

(11.33) Alternate Definition Let S and R be distinct points of a meridianM. The libra Π(S,R) is
an inner involution libra on the setM(S,R) in the sense of (3.16). It follows from (3.17) that M(S,R) carries
a libra operator b, , c satisfying

(∀X ∈M(S,R))(∀ α, β, γ∈Π(S,R)) bα
X, βX, γXc=α◦β◦γX. (1)

For any basis ´
`
S,L,R`

´
of M then

(S;L;R) is a balanced subset of the libra M(S,R) if Πfixed

(S,R) is a balanced subset of Π(S,R). (2)

Suppose that P is in ´
`
S,L,R`

´
and that f is a power involution isomorphism relative to ´

`
S,R,L, P `

´
, and let

Q≡ R↔R
L↔P

S. We define

expQ|M(R,R) 3 X ↪→ f
 R↔R
S↔X

Q ∈ (S;L;R). (3)

Then expQ is an example of an ‘‘exponential function’’ on M(R,R).
More precisely, for a basis b=´

`
S,L,R`

´
, a b-exponential functionM(R,R) is a libra isomorphism ε of

M(R,R) onto (R;L;S) such that ε
S=L. The value ε

L is the Napierian base of ε. The example expQ
above has Napierian base Q.

Given a b-exponential function ε, the function

Π(R,R) 3
R↔R
S↔X ↪→ R↔S

L↔εX ∈ Π(S,R)

is a libra isomorphism. Thus the Definition (11.5) is equivalent to the following: a meridian is a circuitous
meridian if there exists a basis b=´

`
S,L,R`

´
ofM such that, for each P ∈(S;L;R), there exists a b-exponential

52 Cf. [Hewitt & Stromberg] (5.10).
53 Cf. [Hewitt & Stromberg] (5.25).
54 Cf. [Hewitt & Stromberg] (5.17).
55 Cf. [Hewitt & Stromberg] (5.34) and (5.35).
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function ε with Napierian base
R↔R
L↔P

S. The content of Lemma (11.16) is that the basis b of the definition
can be replaced by any other basis for M.
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12. Libras as Scales

(12.1) Introduction The old Latin word for a set of scales or balances was libra. These often were
depicted as two round plates suspended from a balance beam. In making a mathematical model of this idea
we posit that the objects we weigh come from a certain set L and that we distinguish between different
elements of L only in so far that they have different effect on the scales. In particular, if we place one object
from L in the center of each plate, then the plates will be in equilibrium just when the objects are the same.
Thus any non-trivial use of the libra will require at least two objects on each of the two scales.

Fig. 24: Libra: a Set of Scales

For precision we shall assume that each of the two scales has two opposing marks to indicate where
weights from L are to be placed: little black disks on the left-hand scale, and little red disks on the right-hand
scale:

©•• and©• • .

The weights on these two scales pull against one another, and so one may alternatively visualize them as
being super-imposed with the weights on the black marks pressing down, and the weights on the red marks
pulling up:

©• • •• .

We shall assume that rotating the these superimposed scales will make no difference in determining equilib-
rium.

When we place objects on the scales we shall color them black to indicate they are on the black disks
and red to indicate that they are on the red disks. We shall color the boundary of the scales green to indicate
that the scales are in equilibrium. For example, our first postulate for our mathematical model of a libra
will be that when a common element a of L is placed on each disk, then the scales are in equilibrium:

©a a
a

a
. (1)

Besides preservation of equilibrium under rotation of the scales,

©a b
c

d
⇐⇒©d a bc ⇐⇒©c d ab ⇐⇒©b c

d
a

we shall also postulate that equilibrium is preserved when permuting the disks via the ‘‘Klein-4’’ permuta-
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tions: for all a, b, c, d ∈ L,

(∀ a, b, c, d ∈ L) ©a b
c

d
⇐⇒©b a dc ⇐⇒©c d ab ⇐⇒©d c

b
a

. (2)

Postulate 3 formalizes the assertion that elements of L differ only in so far as they influence equilibrium of
the scales:

(∀ a, b, c ∈ L)(∃! d ∈ L) ©a b
c

d
. (3)

We have yet to decide what it means for scales with with more that two objects apiece to be in equilibrium
— we shall do so in terms of the scales with two objects apiece. Suppose that we have three objects on each
scale, and so six on the superimposed scales:

©uvw x y
z .

The upper half elements determine an element r of L such that©v u zr and the lower half determine another

element s such that©w s
y

x
. We shall define equilibrium for©uvw x y

z to mean that r = s. In view of the

equivalences

©w s
y

x
⇐⇒©x w s

y
⇐⇒©w x

y
s

the definition becomes

©uvw x y
z ⇐⇒ (∃ r ∈ L) ©v u zr and©w x

y
r

.

In devising this definition of equilibrium of six objects we separated the scales by an imaginary horizontal
line down the center. This was somewhat arbitrary however as this is just one of three ways to effect such a
separation:

©uvw x y
z ©uvw x y

z/ ©uvw x y
z

∖
.

If we had chosen the middle separation above, the definition would have been

©uvw x y
z ⇐⇒ (∃ s ∈ L) ©z y xs and©u v

w
s

while if we had chosen the right-hand separation, the definition would have been

©uvw x y
z ⇐⇒ (∃ t ∈ L) ©x w vt and©y z ut .

In order to make these three prima facie different definitions equivalent, our fourth and last postulate for a
libra will be that, for all u, v, w, x, y, z ∈ L

(∃ r ∈ L)©v u zr and©w x
y

r
⇐⇒ (∃ s ∈ L)©z y xs and©u v

w
s
⇐⇒ (∃ t ∈ L)©x w vt and©y z ut . (4)

105



This libra which we have just defined has a rather elegant characterization within the context of algebra.
Postulate 3 begs introduction of a notation for d in terms of a, b, and c: we denominate d with ba, b, cc:

(∀ a, b, c ∈ L) ©a b
c

ba,b,cc
.

We collect some properties of this trinary operator b, , c. First consider a, b ∈ L and set c ≡ ba, a, bc. By

(1) we have©a a
a

a
and by (3) we have©a a

b
c

, which by (2) implies©c b
a

a
. Thus©aa

c
b
a
a , which in turn

implies that there exists s ∈ L such that©a a
b

s
and©a a

c
s

. By (2) we have©a a
s

b
and©a a

s
c

. By (3)

we have b = c: that is,
ba, a, bc = b.

Setting d ≡ bb, a, ac we have©b a ad and so©a b
d

a
which, with©a a

a
a

, implies©aa

b d
a
a . Thus there exists

s ∈ L such that©a a
b

s
and©a a

d
s

. It follows that©a a
s

b
and©a a

s
d

, which implies that b = d: that is

bb, a, ac = b.

Now we investigate n ≡ bba, b, cc, d, ec for a, b, c, d, e ∈ L. Letting m ≡ ba, b, cc we have

©a b
c

m
and©m d

e
n

=⇒©n e
d

m
=⇒©ba

n e d

c =⇒ (∃ s ∈ L)©c d es and©b a ns =⇒©a b
s

n
.

It follows that s = bc, d, ec and n = ba, b, sc, which means that

bba, b, cc, d, ec = ba, b, bc, d, ecc.

(12.2) Definitions and Notation The three properties we have just derived for the trinary operator
b, , c on L motivate the definition of (3.2): that a libra operator is a trinary operator on a set L satisfying
the following

(∀ a, b ∈ L) ba, a, bc = bb, a, ac = b; (1)

(∀ a, b, c, d, e ∈ L) bba, b, cc, d, ec = ba, b, bc, d, ecc. (2)

In this case, if a, b, c, d ∈ L and d = ba, b, cc, we shall write

©a b
c

d
or©d a bc .

(12.3) Theorem Let b, , c be a libra operator for a set L. Then the four postulates enunciated in
(12.1) hold.

Proof. That (12.1.1) holds follows directly from (12.2.1). To prove (12.1.2) we have the following series
of implications:

©a b
c

d
=⇒ d = ba, b, cc =⇒ bb, a, dc = bb, a, ba, b, ccc = bbb, a, ac, b, cc = bb, b, cc = c =⇒©b a dc ;

©b a dc =⇒ c = bb, a, dc =⇒ bc, d, ac = bbb, a, dc, d, ac = bb, a, bd, d, acc = bb, a, ac = b =⇒©c d ab ;

106



©c d ab =⇒ b = bc, d, ac =⇒ bd, c, bc = bd, c, bc, d, acc = bbd, c, cc, d, ac = bd, d, ac = a =⇒©d c
b

a
;

©d c
b

a
=⇒ a = bd, c, bc =⇒ ba, b, cc = bbd, c, bc, b, cc = bd, c, bb, b, ccc = bd, c, cc = d =⇒©a b

c
d

.

That Postulate (12.1.3) holds follows from the definition of©a b
c

d
. That Postulate (12.1.4) holds follows

from the three following series of implications:

(∃ r ∈ L)©v u zr and©w x
y

r
=⇒ bv, u, zc = r = bw, x, yc =⇒

z = bu, u, zc = bbu, v, vc, u, zc = bu, v, bv, u, zcc = bu, v, bw, x, ycc =⇒

bz, y, xc = bbu, v, bw, x, ycc, y, xc = bu, v, bbw, x, yc, y, xcc = bu, v, bw, x, by, y, xccc =

bu, v, bw, x, xcc = bu, v, wc =⇒ (∃ s ∈ L)©z y xs and©u v
w

s
;

(∃ s ∈ L)©z y xs and©u v
w

s
=⇒ bz, y, xc = s = bu, v, wc =⇒

x = by, y, xc = bby, z, zc, y, xc = by, z, bz, y, xcc = by, z, bu, v, wcc =⇒

bx,w, vc = bby, z, bu, v, wcc, w, vc = by, z, bbu, v, wc, w, vcc = by, z, bu, v, bw,w, vccc =

by, z, bu, v, vcc = by, z, uc =⇒ (∃ t ∈ L)©x w vt and©y z ut ;

and

(∃ t ∈ L)©x w vt and©y z ut =⇒ bx,w, vc = t = by, z, uc =⇒

v = bw,w, vc = bbw, x, xc, w, vc = bw, x, bx,w, vcc = bw, x, by, z, ucc =⇒

bv, u, zc = bbw, x, by, z, ucc, u, zc = bw, x, bby, z, uc, u, zcc = bw, x, by, z, bu, u, zccc =

bw, x, by, z, zcc = bw, x, zc =⇒ (∃ r ∈ L)©v u zr and©w x
y

r
.

QED
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i� [libra polar of a point] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.1)
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(S,R)b [open arc oriented relative to a basis b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11.28)
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