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Abstract.  

The color is an interaction property: of the interaction of light with matter. 

Classically speaking it is therefore akin to the forces. But while forces 

engendered the mechanical view of the world, the colors generated the 

optical view. One of the modern concepts of interaction between the 

fundamental particles of matter – the quantum chromodynamics – aims to fill 

the gap between mechanics and optics, in a specific description of strong 

interactions. We show here that this modern description of the particle 

interactions has ties with both the classical and quantum theories of light, 

regardless of the connection between forces and colors. In a word, the light is 

a universal model in the description of matter. The description involves 

classical Yang-Mills fields related to color. 
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 Introduction 

 There are two contemporary concepts which, coming from the physics of past, carry, in our opinion, a 

special meaning for the physics of future: the concept of asymptotic freedom and the holographic principle. 

The first one helped rounding the quantum chromodynamics (QCD) as a science of strong interactions of 

what are currently considered fundamental material particles. It advocates, roughly speaking, the light-like 

behavior of the particles involved in strong interactions. The second one, closely correlated to the idea of 

asymptotic freedom, but aiming to cover the whole range of fundamental forces, advocates the idea of two 

degrees of freedom in the description of fundamental interactions. This, again, is a fundamental classical 

characteristic of light. 

 These two modern principles stand witness to the fact that the analogy in theoretical physics is still the 

main tool that works at any level, in any physical theory. Taken as such they would then point out that the 

light should be part of a universal model in the theory of fundamental interactions of matter, and thus it 

should become a standard in the modern analogy leading to fundamental forces. We aim to show here that 

both these principles hold indeed a manifest classical character, whose roots are to be found, with equal 

chances, both in the classical Newtonian theory of light and in the quantum theory of light as it was 

constructed by Planck at the beginning of the last century. In other words, the two modern principles carry 

the burden of continuity with respect to the two physical theories considered nowadays the quintessence of 

the classical theoretical physics. 

 Along the analysis to be presented here, it will become clear that the light is indeed a model of any 

interaction in the universe, inasmuch as it can be revealed by an obvious interaction: the one giving the 

colors. This interaction has an exquisite classical description, involving only two degrees of freedom, and 

that description can be done by continuous Lie groups from the SL(2,R) family. There are thus Yang-Mills 

type fields describing the colors, in the spirit of the classical theory of light established by Hooke and 

Newton. This turns out to be also a characteristic of light from the quantum mechanical point of view. 
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 The Classical Theory of Light: an Abridged History 
 First, let us review the classical theory of light, up to the point where it was brought by Hooke and 

Newton. Following the line of thought given by the idea of analogy, we primarily find the standard of the 

classical analogy which led to the theory of light itself: this is given by the waves on the surface of quiet 

water, induced by a stone falling into water. One can say that the making of the theoretical model of light is 

nothing more than elaborations, at any of its significant moments, on one or another of the parts of that 

experience. The phenomenology which was the basis of these elaborations for the first theoretical model of 

light comprises two basic observable facts: reflection and refraction of light. Let‟s review the original 

significant moments of the making of concept of light. 

 First, it was the explanation of the propagation of light. To the extent where it can be explained as a 

motion, that classical standard of analogy shows that it is a „motion of a motion‟, so to speak, but not only 

that. The concentric water waves show indeed a motion perpendicular to the water surface, which 

nevertheless „multiplies‟, in order to allow for the growth of the circles representing waves. The 

propagation is therefore a „motion of the periodic motion‟ but, being accompanied by a continual growth of 

the waves, it indicates also a continual generation of that periodic motion, along the very circles 

representing the crests of waves. 

 In the case of light, though, the analogous of water surface is missing, to say nothing to the effect that, 

as a matter of fact, even the analogous of the water is missing. To make up for the want of an equivalent to 

water, the ether was invented: the light waves are waves in ether. However, the water surface was hard to 

replace, for the propagation of light takes place in all directions but in space not in a plane, and apparently 

there is no physically distinguished surface to play the part of an equivalent of water surface, like a space 

„section‟ as it were. The Huygens theory of the wave surface of light simply supresses the need of that 

equivalent of water surface, going directly over to space matters, with the help of the concept of light ray. 

 In space the analogous of circles depicting the waves on the surface of quiet water, was first the so-

called „orb‟, defined by Thomas Hobbes as the material portion between two concentric spheres of close 

radii, which extends continuously by propagation (Hobbes, 1644). What really matters in this definition is 

only the uniform continuous growth of the sphere, equivalent to the growth of circles on the surface of 

water, thus giving what seems to be the essence of the propagation phenomenon of light in space. One 

therefore loses, by simple suppression from the model – thus foreshadowing the later principle of Huygens 

– the local oscilatory motion characterizing the waves on the face of quiet water. As such, nothing assures 

us here that the motion of light “within orb” would be a vibratory motion. On the contrary, what seems to 

be obvious on logical grounds is that such a motion is rather uniform, matching the uniform extension of 

the orb in space. Further on, Hobbes also defines an extremely important concept that played a fundamental 

part in the development of the whole theory of light. Disregarding even the evidence of the geometrical 

divergence of the light rays, he defined the so-called light line, which would represent what happens within 

the surface of water – therefore along the very circles depicting the water waves. This led implicitly to the 

concept of physical ray of light, which is a plane figure formed by two parallel straight lines – ideal 

geometric rays delimiting the physical ray – joined perpendicularly, in each one of their corresponding 

points, by the light line. The propagation of light could now be defined as a transportation of the light line, 

and thus it gained some other, more subtle nuances, than the standard given by water waves. 

 First, the lack of a detailed explanation of the differential properties of this light line started to be 

noticed. We have reasons to say that to Hobbes the propagation of light is simply the parallel transport of 

this segment in the Euclidean sense, therefore a transportation which maintains the property of 

orthogonality with respect to limiting rays all along the physical ray. As long as the light goes straight there 

are no problems. We have to face them only in the case of change of direction of light, like in reflection and 
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refraction phenomena. Here the transport of the light line must be defined accordingly, and indeed Hobbes 

does it by methods prefiguring those which established the parallel transfort of the modern differential 

geometry (Levi-Civita, 1927, pp. 100–102). As Hobbes conceives the transport in propagation of light only 

within classical synthetic geometry, the problem of extension of the light segment within the orb – which is 

a problem of deformation proper in modern views – remained in suspension. It obviously popped up later 

on, requiring specific solutions related to the idea of gauge. 

 At this moment the important intervention of Robert Hooke led to the first rational idea of color, which 

appears in the case of interaction of light with matter, as represented by refraction and reflection 

phenomena. Apparently Hooke defines the color by noticing first of all that the physical ray of Hobbes is 

actually an ideal case. Indeed, in reality the geometrical rays delimiting a physical ray of light should 

certainly be divergent. They can only be approximately parallel, the approximation being closer to the ideal 

situation as the distance from the light source grows (Hooke, 1665, 1705). Therefore the light line of 

Hobbes is in reality not perpendicular to the rays delimiting a physical ray of light. However, at great 

distances from the source of light they can be considered very nearly perpendicular, which in practice is 

quite sufficient. To Hooke the light line acquires even a special name – orbicular pulse – which suggests 

the idea of motion characterizing the light within the orb. The idea of pulse would have been suggested to 

Hooke by a study of Hobbes, who describes the creation of light as a pulsating phenomenon of the kind of 

systole and diastole, observed in the case of heart (see Shapiro, 1973, 1975 and the works cited there for an 

elaboration on the manner in which Hooke could have been influenced by Hobbes). However, this 

„orbicular pulse‟ means a great deal more in the hands of Hooke, along the idea of representation of the 

way in which the light motion takes place within the orb. 

 For, as we have noticed, the idea of propagation in space has suppressed the oscillatory motion, which, 

regardless of its direction, is essential in the clasical standard of analogy that led to the concept of light: the 

circular waves on the face of quiet water. Even the idea that some motion, other than that directly 

representing the propagation per se, might be associated with the light was momentarily lost: the light line 

of Hobbes is a purely geometric concept after all! Hooke calls back into question the problem, and solves it 

once and for all: within the orb we have definitely motion; the problem is to decide what kind of motion 

this is. And he reaches, speculatively, the epoch-making conclusion, that the motion characterizing the light 

within orb is vibratory, therefore an oscillatory motion, like that of the waves on water, perpendicular to its 

surface. Hooke‟s reasoning is quite simple, speculating on the fundamental idea that the light is material. In 

broad lines, one could say that he just notices that if the light would be characterized by a continuous 

motion within a body – like the Hobbes‟ orb – this would lead to rupture, as it surely happens in the 

processes of continual deformation of materials. As, however, no transparent body is apparently destroyed 

by the light passing through it, one should conclude that the motion characterizing the light is vibratory, 

with a very small amplitude (“short” to Hooke), reestablishing periodically the matter in every one of its 

points. This motion is localized along the light line of Hobbes so that this one is actually an „orbicular 

pulse‟, approximately perpendicular to the geometrical rays defining the physical ray. 

 Here Hooke introduces the first rational concept of color ever, and thus begins the modern history of 

theoretical chromodynamics, as understood mot à mot according to its Greek name: the dynamics of color. 

First, the color is not revealed but only by light, when it touches the material bodies, i.e. by interaction. 

According to Hooke, the color is explained by the fact that through refraction the orbicular pulse acquires 

an inclination on the limiting rays, becoming slightly nonorthogonal to the geometrical rays, to a specific 

extent though, depending on the color carried by them. Due to this, in a natural ray, the orbicular pulse is 

“broken” into segments, each one representing a homogeneous ray of specific color. So, for the natural 

light, the orbicular pulse appears as a broken, even folded line, joining the defining geometrical rays, which 
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carry two fundamental colors – red and blue – from which all the other colors are constructed by the action 

of matter upon light. 

 This idea – the first true physical theory of colors – was killed in the cradle, so to speak, by Newton‟s 

observations to the effect that the orbicular pulse is actually a cross-sectional surface phenomenon. It is 

indeed performed transversally with respect to the direction of light ray, but not in a definite plane 

containing that direction. In other words, the color is indeed a parameter of homogeneity of the physical ray 

of light, but spatial not planar. A physical ray of light of a given color is symmetrical around the direction 

of propagation – in modern terms it has axial symmetry (Newton, 1952). So if one speaks about Hooke‟s 

fragmentation of the orbicular pulse, with each fragment representing a color, this process does not 

preserve the axial plane of the original pulse in the transversal section of the physical ray. The physical ray 

itself is therefore not a plane figure, as Hobbes and Hooke presented it, but has a volume as the experience 

on light shows. If the light carries many colors, for instance if it is white, then it is transversally 

inhomogeneous, i.e. it is no more axially symmetric, although not as geometrical shape, but with respect to 

color. As such, it is indeed composed from axially symmetric color-homogeneous rays, that can be 

exhibited as an elongated spectrum, when passing the light ray through a prism. This is, in broad strokes, 

the newtonian conclusion of the celebrated prism experiments, and the ground for Newton‟s discussion on 

colors, which later on, during 19
th

 century, generated the physical theory of light spectrum, and implicitly 

led to the theory of quanta. 

 This moment of our knowledge has a particular significance when judged through the formulation of 

the modern holographic principle („t Hooft, 1993; Susskind, 1994). Indeed by the physical ray of Hoobes 

and Hooke, the idea of planeness, as contained in the waves on the water, is certainly preserved. Newton‟s 

intervention sets things in order according to the observations on the light itself. Formulated in modern 

terms, the Newtonian conclusion is: the physics of light itself shows that the planeness is not preserved in 

the geometrical form of the physical ray of light, but in a general property of symmetry, abstract we might 

say, that can be expressed in two variables. In other words two degrees of freedom suffice to describe the 

light! Let‟s elaborate a little more on this statement. 

 Quite obviously, Newton realized that, from the point of view of the experience on light itself, 

something is missing in the concept of physical ray of Hooke. That concept cannot explain the fact that the 

experimental white light ray is spatially homogeneous and isotropic in the cross section, when the ray is 

constructed by appropriate circular holes. According to Hooke‟s idea, the cross section should appear on a 

screen differently colored on a certain direction of that screen. It appears this way indeed, but only when 

one complicates the construction of the ray by passing the light through a prism. Only this procedure 

isolates homogeneous, axially symmetric, “sub-rays” of the same color, in terms of which one can explain 

the elongated spectrum in the manner of Hooke. This is, however, a general idea of symmetry, and it does 

not refer by any means to the geometrical shape of the ray. In other words: it is the variation of light color 

that has two-dimensional extension, not the ray itself. Thus, one can say that the study of light per se adds 

this important conclusion to the very idea of wave, above and beyond the classical standard of analogy that 

helped constructing the concept thus far. 

 Another important point in Newton‟s observations is the one usually connected with the particle theory 

of light. True, sometimes – and quite often at that, one might say – Newton slips into the direct association 

of light with material particles, but his definition of the light ray, which starts the celebrated Opticks, is 

extremely cautious and does not reduce by any means to the idea of particle in the classical connotation. So 

much the less reduces it to the geometrical concept of straight line. It certainly pays to reproduce here that 

definition (Newton, 1952, p.1; see also the French edition from 1787), for it comprises a whole philosophy, 

which later, with the occasion of quanta of light, was labelled as „revolution‟: 



 5 

By the Rays of Light I understand its least Parts, and those as well 

Successive in the same Lines, as Contemporary in several Lines. 

A consideration of the subsequent text of Newton, explaining this definition, shows two further essential 

points of the Newtonian natural philosophy. First, Newton refers the definition of „parts‟ to the 

experimental possibility to build them: the “least Parts” should not, by any means, be understood as 

„particles‟ in the classical connotation. These last ones can exist „under our eyes‟ as it were, being stable at 

the time scale of the common experience. They do not require experimental action in order to be defined. 

On the other hand the „least Parts” of light must be defined accordingly, therefore experimentally. And 

their definition depends on the experimental capability to exhibit them. On one hand one has to have the 

physical possibility of discerning a direction of propagation of light, by holes in screens for instance, and 

on the other hand one should have the physical possibility to stop the light by a screen. It is the interplay of 

these two experimental procedures, obviously in an ideal theoretical form, that defines the least parts of 

light, the way Newton conceives them. 

 Therefore, coming again to the modern theoretical environment, Newton defines the rays of light in the 

modern manner in which the elementary particles are defined: only by experimental capability. Indeed the 

modern elementary particles are closer to the least parts of light as defined by Newton, than to the matter as 

intuitively understood. It is in this sense that one can talk indeed of a particle theory of light to Newton. But 

then one can demonstrate – and we will make this obvious in the present work – that as such the light can 

be theoretically considered the paradigm of any theory of fundamental interactions. The discovery of the 

asymptotic freedom just shows it. Of course, in order to do this, one has to use an explicit holographic 

principle. 

 A second point made explicit by Newton himself is that the idea of geometrical ray as a straight line is 

directly connected with the infinite speed of light. As, however, the experimental evidence of the epoch 

showed that the light has a finite speed, he declares that he was forced to concede to his definition of the 

ray reproduced above. It is here an essential point of the natural philosophy of light, that certainly needs 

elaboration and, we have to confess, we were unable to find it properly documented to Newton. The 

statement, of course, can be proved within the modern differential geometry, and constitutes one of the 

most subtle points of the wave-particle transition, seen, again, as an „asymptotic freedom‟. 

 Classical Light in Terms of Two Degrees of Freedom 

 In this section we present the Hooke‟s and Newton‟s results as geometrical theorems. Obviously, the 

classical theory of light is naturally correlated with the classical differential geometry of surfaces, by the 

very concept of wave surface. Thus a light ray in vacuum, for instance, can be imagined as a trajectory, in 

some relation with the local normal of the wave surface. The propagation of light, taken in the initial 

connotation as the process that should include naturally the reflection and refraction phenomena, can be 

imagined, first and foremost, as a variation of the normal direction to the evolving wave surface. Of course, 

with this concept we took a leap over time, coming closer to modern ones, where the Hobbes‟ idea of orb 

metamorphosed into that of wave surface, by bringing in the difraction among the experimental facts 

characterizing the light per se (Fresnel, 1827). However, the presentation of the development of concept in 

its historical continuity would not be helpful here, inasmuch as we follow a logical continuity, which can 

only be exhibited by a theory of colors. In order to reach that logical continuity Fresnel‟s theory had to be 

rounded, so to speak, by the idea of gauge, which, as we will show here, can be naturally supported only by 

such an idea of color, leading directly to a Yang-Mills type theory. And, of course, this idea can in turn be 

naturally extended to characterize the modern concept of particle. Only the classical theory of light, as 
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briefly reviewed in the previous section, would naturally allow for such an extension, an the present section 

shows the way to it. 

 The classical differential geometry of the surfaces is entirely constructed on a general manner of 

conception of the notion of neighborhood (Фиников, 1952). Any point of a surface belongs to a 

neighborhood of a certain order of another point. Between the neighborhoods of different orders, in the 

same surface, there is a connection, uniquely characterizing the surface. In order to see how this philosophy 

works, assume a formal Taylor expansion of the position vector on the surface, something of the form: 

 ...xdxdxdxr 32 


  

This formula suggests the orders of neighborhoods through the natural orders of the differentials of the 

positions r


 and x


. For instance, the second differential is the variation of the first differential, therefore 

the differential geometry on a first order neighborhood is given by vectors that are second order 

differentials. The third differential is the variation of the second differential, therefore it reflects a 

differential geometry for which the second order neighborhoods are the basic „showground‟, etc. However, 

it turns out that there is really only one essential „showground‟, namely the first order neighborhood, 

inasmuch as the whole geometry in a point of the wave surface, and the attached physics of course, can be 

described in terms of the first order differentials. 

 First, one can recognize the departure of r


 from the surface at the location x


 by the projection )xr(


  

along the normal to surface at x


, whose unit vector we denote n̂  as usual. We have 

 ...xdn̂xdn̂xdn̂)xr(n̂ 32 


 (1) 

This means that the vector )xr(


  does not belong to the surface in all of its local neighborhoods, but has 

departures of different orders from it, and these become apparent as we get closer to the surface in order to 

be able to distinguish its details. As by the very definition we have to admit that the vector xd


 is within the 

surface, the first term in equation (1) is null, so that 

 ...xdn̂xdn̂)xr(n̂ 32 


 (2) 

Therefore, the first-order neighborhood of the surface is characterized by this differential relation. The 

length of the first-order differential of the position vector is the first fundamental form of the surface, or the 

metric. The right hand side of the equation (2) represents details that become obvious as we gradually 

approach the point x


 of the surface. The first term in equation (2) is the second fundamental form of the 

surface. In the intrinsic geometry of the surface the invariants related to the second fundamental form are 

different measures of the local curvature of the surface. 

 We don‟t think that we can escape, in any physical problem, and so much the less in the case of light, 

from the bounds of analogy altogether. Here it comes with the idea of the coarsening of the wave surface 

due to matter. This is a phenomenon of „fragmentation‟ of surface, making it have a certain degree of 

„roughness‟. The „roughness‟ is reflected in the local variation of normal unit vector of the surface, and this 

is exactly what happens in the cases of reflection and refraction of light analyzed by Hooke and Newton. 

And, as well known, the variation of that unit normal is a vector within the surface, whose components are 

two differential 1-forms, designated here as 3

1  and 3

2 , which we call the curvature differential forms (see 

Flanders, 1989). Either this vector, or one related in a certain way to it, should be connected with the 

„orbicular pulse‟ of Hooke. Thus Hooke‟s idea of representation of the colors by an angle with respect to 

the position vector has, in the classical theory of surfaces, quite a natural representation. 

 Now, in ordinary physical situations, the idea of roughness, is naturally connected with that of a friction 

force: the roughness is variable with the „friction‟ mechanically representing the interaction between matter 

formations. The „friction‟ is essentially a surface phenomenon. The „friction‟ force is usually zero 
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whenever the surface is smooth, a condition characterized, in a first instance, by the lack of variation of the 

unit normal to surface, therefore by the fact that the curvature differential forms are null. According to one 

of the Cartan lemmas (Фиников, 1948), this „friction‟ force, considered as a surface force, should be a 

differential 2-form, which can be written as 

 23

2

13

1f   (3) 

where 
1
 and 

2
 are two conveniently chosen differential 1-form, and „‟ means exterior multiplication of 

the differential forms. The equation (3) incorporates the previous logic, according to which the force is zero 

whenever there is not geometrical roughness, i.e. there is no variation of the normal to surface. However, 

this is only a necessary condition. 

 If the conveniently chosen auxiliary forms are the components of the first fundamental form, i.e. the 

components of the position vector xd


 in the tangent plane, s
1
 and s

2
 say, then equation (3) simply offers 

the definition of the curvature matrix as a limiting case where the „friction‟ forces are zero. Indeed, in the 

case of null „friction‟ force in equation (3), another one of the Cartan lemmas shows that we must have (see 

Guggenheimer, 1977) 

 












































2

1

3

2

3

1

s

s
 (4) 

with α, β, γ some parameters – the curvature parameters. This defines the classic symmetrical curvature 

matrix. The curvature parameters are thereby external parameters, a feature bestowed upon them by the 

Cartan lemma. They are always submitted to variation due to some physical causes contained in the matter 

interacting with light. Their geometrical evaluation can be made just by measurements on the surface as 

usual (Lowe, 1980). 

 If, however, the ‘friction’ force is permanent, like in the case of light through ether, i.e. it always exists 

and is nonzero by some physical reasons rather than geometrical, we can express it as a differential 2-form: 

 2,1,;ssf  


  

Then the equation (3) can be read in the form 

 0s)s(s)s( 21

21

3

2

12

12

3

1    

Applying again the Cartan lemmas‟ considerations, we have, in a compact „Dirac‟ writing 

 )(sss 33
ΦbbΦ    

where Φ is the 2×2 skew-symmetric matrix having the unique element Φ12 ≡ , b the usual curvature 

matrix from equation (4) and |s is the column vector from that equation. We do recognize here a curvature 

matrix which is no more symmetrical, but contains also a „twisting‟ naturally accompanying the 

„roughness‟ of surface. From among the usual measures of the curvature, the mean curvature of the surface 

remains unchanged by such physical forces, however its Gaussian curvature is changed: 

 22)det(K;)(trH2  ΦbΦb   

Such forces do not change the second fundamental form of the surface per se. In the case of light, they 

cannot appear therefore when the propagation of light is made without refraction or reflection, but should 

nevertheless be obvious in like processes. This fact validates, to a large extent, the electromagnetic image 

of light, even within the limits of the classical geometrical optics. It has, however, some other, more 

fundamental connotations related to the wave surface, which become apparent if we take into consideration 

the classical considerations of Hooke and Newton. 
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 Indeed, let‟s just consider the second fundamental form. It is represented by the first term in equation 

(2) which, in view of the orthogonality between the normal to surface and the elementary displacements 

within surface, can be written as: 

 s||sxdn̂dxdn̂ 2
b


 (5) 

In this expression we used the previous equation (4). This tells us that the second fundamental form of the 

wave surface, being a measure of the projection of the variation of normal unit vector to the displacements 

within the wave surface, can be taken as a measure of the color of light in the sense of Hooke. The 

orbicular pulse should therefore be taken in relation with the wave surface, according to Newton‟s 

conception of light. This will justify the modern idea of three-dimensionality of the manifold of colors: if 

the second fundamental form of the wave surface represents the color of light, then the color space is 

certainly a linear threedimensional space, as claimed in the modern theory of colors (Schrödinger, 1920). 

Indeed, one can prove that the binary quadratics do form a linear threedimensional space. 

 The variation of second fundamental form can generally occur by both the variation of the curvature 

parameters and by the variation of the components of the first fundamental form in the tangent plane of the 

wave surface. In a compact „Dirac notation‟ this variation can be written as 

 dsssdssdsII bbb   (7) 

Here II denotes the second fundamental form. We assumed that, in expressing this variation, the rules of 

usual differentiation apply. There are, therefore, two main contributions to the variation of the second fun-

damental form in this approach. One of them is due to the variation of the components of the first funda-

mental form in the tangent plane the other is due to the variation of the curvature matrix itself. This last var-

iation is the one we are after, for it represents the variation of the second fundamental form strictly due to 

some physical reasons, for instance the interaction of light with the material environment. The question 

arises therefore: when is the variation of the second fundamental form strictly due to the interaction with 

the medium hosting the light? 

 At least formally, the answer is quite obvious from equation (7): in those cases in which its variation is 

due strictly to the variation of the curvature matrix, i.e. when in equation (7) only the middle term remains. 

This can happen in cases where the sum of the two extreme terms from the right hand side of (7) is zero: 

 0dsssds  bb  (8) 

Assuming now the existence of an „evolution‟ of the vector |s, such that 

 sds a  (9) 

where a is a real matrix, the condition (9) becomes: 

 0s)(s t baba   

Here the superscript „t‟ stands for „transposed‟. In other words, when the position in the first order 

„showground‟ of a point of the wave surface evolves according to equation (9), then the second 

fundamental form varies strictly due to the curvature parameters if 

 0baba t

 
(10) 

A solution of this equation presents itself immediately in the form a = I·b, where I is the fundamental 

skewsymmetric 2×2 matrix. The condition (10) is satisfied in view of the symmetry of b and the 

antisymmetry of I. The projection of the vector |ds from equation (9) along vector |s is, in that particular 

case, the geodesic torsion of the surface. Incidentally, the condition (10) is satisfied also for the inverse of 

the matrix a. Then, if the curvature parameters are constants, the evolution (9) preserves the second 

fundamental form of the surface. In that particular case one can properly call the second fundamental form 



 9 

a wavelength. This is the classical way to description of color, leading, through the dispersion law, to the 

modern theory of coherence. 

 Nonconstant Curvature: the Case of Light Line Deformation 
 What about the cases when the curvature parameters are not constants? The physics of light is then 

dictated by both the current values of the curvature parameters and their variations. In the first order 

neighborhood of a certain point of the wave surface, the variations of the curvature parameters can be 

described by the deformations of the surface. This concept was left behind by Hooke – his orbicular pulse 

is strictly a periodic motion – and has not been even considered by Newton. Let us consider it here within 

the classical differential geometry of a wave surface. 

 In the case of a symmetric curvature matrix, the equation (9) can be integrated even without considering 

a time parameter, thus leading to ellipses on the wave surface as dictated by constant distance from the 

tangent plane. This is in fact the classical case of interpretation of the second fundamental form of a surface 

(Struik, 1988). One can say that, in case we are able to discover a time, the motion dictated by equation (9) 

is a harmonic two-dimensional motion: just as Hooke claims for his orbicular pulse. However, the orbicular 

pulse should not be only this displacement. Indeed, as we already noticed, Hooke did not take into 

consideration the inherent deformation accompanying the expansion of wave, and one might even add that 

he could not do it. Yet, within the differential theory of surfaces the deformation of the orbicular pulse 

comes as quite a natural concept. We will illustrate this statement with the help of the classical idea of 

infinitesimal deformation of wave surface (Guggenheimer, 1977, pp. 245ff). 

 A deformation of the wave surface is infinitesimal if the first fundamental form in a point coincides 

with the first fundamental form in the corresponding point of the deformed surface. This definition 

mimicks what Hooke assumes happening inside transparent bodies penetrated by light. If the deformation 

can be expressed by a small parameter, say , in the form 

 zxr

   

then the first fundamental forms at r  and x   coincide when  is infinitely small. This sets important 

restrictions upon vector z


, amounting to the fact that its differential should be always perpendicular to xd


 

in the first order „showground‟. If this condition is expressed by a relation of the form 

 xdyzd


  (11) 

then the vector y   cannot be quite arbitrary: its component along the normal to surface needs to be constant, 

while the in-surface components have differentials that should be expressed linearly in the components of 

the fundamental 1-form: 

 
yd

v

v
;

s

s

CB

BA

v

v
2

1

2

1

1

2 


















































 (12) 

Then, as a consequence of the fact that yd


 is an exact differential vector, the parameters A, B, C must 

satisfy, besides other restricting differential relations, an algebraic apolarity with respect to the second 

fundamental form of the surface. It is this condition then, which is expected to prevail whenever the vector 

y


 is dictated by external circumstances of a physical nature imposed during the process of deformation of 

surface, because these circumstances are external and local. One should thus have: 

 0B2AC0vv 3

2

23

1

1   (13) 

 For an algebraic – and thus, in fact, physical – interpretation of this result, let‟s notice that, because dy   

is an „intrinsic‟ vector with respect to surface (its component along the normal to surface is null), the cross 

product of this vector with the elementary displacement on surface is oriented along the normal to surface. 

This vector is 
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 n̂})s(CsBs2)s(A{rdyd 222121 


 (14) 

Consequently its magnitude is a quadratic form, algebraically apolar to the second fundamental form of the 

surface. One can therefore say that it is added to the second fundamental form, thus changing the local 

curvature of the surface. According to Hooke‟s idea it changes the color of light. As the parameters A, B, 

C, just like α, β, γ, are introduced by external reasons they can be taken as representing the matter acting 

upon light. Is this image reasonable? 

 Within classical phenomenology, matter interacts with light only because of its space extension. 

Incidentally, one could say that, in the modern times, only the idea of material point made possible the 

electromagnetic theory of light. But, continuing the reasoning within the classical phenomenology, based 

on reflection and refraction experiments, an extended part of matter has naturally a surface separating it 

from the environment. The coefficients A, B, C can then be taken as representing the surface of matter from 

the very same point of view which refers to the wave surface, as described above, i.e. they are the 

coefficients of the second fundamental form of the surface of the matter interacting with light. In this 

situation the equation (14) carries an important dynamical connotation, occuring in the form of a theorem 

which appears as a working hypothesis to Newton. 

 The corollary of this whole classical theory would be that the matter itself behaves like light, inasmuch 

as it interacts with light through its surface, as it is actually the case. The quantitative expression of this 

interaction is then the bilinear form from equation (13) which is zero only in the case of infinitesimal 

deformations. The point is that the matter extension can be geometrically described just like the extension 

of light, by a second fundamental form, representing a color. This, again, corresponds to the natural fact 

that the color only appears at the interaction of the matter with the light. But then, a normal acceleration 

occurs at the interaction point, for the second fundamental form is a measure of an acceleration normal to 

surface (see equation (5) above). Or else, as in the case of matter acceleration means inertia, therefore, 

according to the classical principles, it means a force. Whence, the idea that the matter acts upon light with 

a force along the normal direction to its surface. This is a fundamental hypothesis to Newton, used by him 

to prove the laws of refraction (Newton, 1952, p. 79ff). As it turns out, it is actually a geometrical theorem. 

 Quantum Theory of Light 
 The classical theory of light, as extracted from the phenomenology comprising the experiments of 

reflection and refraction, is not the only one pointing explicitly to a holographic principle. The same 

happens with the quantum theory of light, whereby the two degrees of freedom appear to a more abstract 

level, while having also a more involved physical meaning. Indeed, from a purely statistical theoretical 

point of view, the Planck moment in the physics of light (Planck, 1900) reveals two distinct theoretical 

sides. The first one is the heuristic side, closely related to the Gaussian aspect of the statistics of light 

fluctuations. According to Max Born, this was the source of inspiration in establishing the famous 

connection between the fluctuations of the spectral density and the equilibrium temperature of the 

blackbody radiation, leading to the idea of quantum. The second side of the Planck moment of the physics 

of light is the proper quantum side, whereby the probability distributions characterizing the blackbody 

radiation are of the quadratic variance function type. The quantum is required here by the condition that the 

blackbody radiation spectrum should satisfy the Wien displacement law. The contemporary theory of light 

colors, and of colors in general, seems mainly related to the first side of this moment of physics. Let‟s show 

a way to it 

 Now, the two degrees of freedom involved in the holographic principle are more intricate, yet closer to 

the proper holographic description of light. Indeed, the Planck‟s original Gaussian, represents two 

processes of fluctuation, at low and high temperatures, and is uncorrelated (Mazilu, 2010). When 
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considered, however, in the general, correlated form, the probability density of this Gaussian would be 

something of the form: 
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where X and Y are, as we said, the two characteristic fluctuation processes, playing the part of the two 

degrees of freedom, originally constituting the thermal light at low and high temperature, respectively. The 

classical theory of color can be constructed on this statistics, as it has an interesting twist on it. 

 Indeed, in the classical theory of color, we don‟t specify these two random processes by temperature 

regimes, because in general we cannot associate a physical temperature with the color. The problem of 

associating a temperature to the color was not solved yet (MacAdam, 1977), and we don‟t think will ever 

be solved. For once, the thermodynamically defined absolute temperature is not physically supported for 

light as classically defined. This issue led to Planck theory in the first place. On the other hand, from a 

statistical point of view, the temperature goes into a parameter characterizing the distribution of colors in a 

more elaborate way than it does in the Planck‟s statistics. Thus, let‟s just say, for the sake of the present 

argument, that in the case of light measurements in general we have to do with two stochastic processes X 

and Y, participating in the composition of a color. If ever in need of a statistical evaluation of the 

parameters a, b, c of the density from equation (15) above, we have at our disposal the maximum 

information entropy principle, for instance, giving their values by 

 
2)]xy[cov()yvar()xvar(D,

D

)xycov(
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D
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D
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a   (16) 

Here „var‟ and „cov‟ denote the variance and the covariance of the experimental data on X and Y. 

 This characterization of the color measurements – the so-called dichromatic characterization – is 

closely related to a plane centric affine geometry. This is to say that if one insists in characterizing the 

measurements of light in a plane, which is obviously the natural way to consider these measurements ever 

since the first ideas on light came out (Hoffman, 1966), the geometry of this plane is the centric affine 

geometry. The group of this plane geometry is given by the infinitesimal generators 
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while the group of the space of values a, b, c is given by infinitesimal generators 
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These are two realizations of the same sl(2,R) algebraical structure. The second one has intransitive action, 

which allows transitivity only along specific manifolds, given by constant discriminant of the quadratic 

form from the exponent of equation (15). 

 The probability density (15) itself can be presented as a joint invariant of the two actions (17) and (18), 

with the help of Stoka theorem (Stoka, 1968). According to this theorem, any joint invariant of the two 

actions is an arbitrary continuous function of the two algebraic formations 

 
222 bac,cybxy2ax   (19) 

Obviously (15) is only a special case of this theorem. By the same token, the straight lines through origin x 

= y = 0 can be presented as joint invariants of two actions (17), while the joint invariants of two actions 

(18), one in the variables a, b, c, the other in the variables α, β, γ, say, are arbitrary functions of the 

following three algebraic formations (Mazilu, 2004): 

  b2ca,bac, 22
 (20) 
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These facts can give good reasons for a few further observations related to the classical theory of colors. 

 The argument along these lines allows us to put forward, both in a classical Hooke-type theory, and in 

the modern theory of fluctuations of light, the Newtonian idea of a general two-dimensional symmetry 

involved in the description of light and matter. This leads further to a representation of color in connection 

with MacAdam discovery of the meaning of quadratic forms for which the discriminant from equation (19) 

is positive (MacAdam, 1942). First of all, we have to be a little more specific about the probability 

densities like that from (15). Thus, for instance, consider that the background light color in a measurement 

process on a certain plane has the normal density 
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in two variables X and Y, of which we don‟t know too much for now, other than that they are characterized 

by the statistics α, β and γ, as suggested before. All we know for sure is that, in practice, X and Y are some 

kind of projections on unspecified planes, that happen to be experimentally realizable, and that they 

represent two colors (the so-called property of dichromacy). At this moment, the theory is therefore 

dichromatic. Now, let us say that the two processes are jointly participating to give a third process, and all 

we know of this participation is that it is some kind of addition of them. More specifically, we will suppose 

that this third process is a kind of weighted sum of the two processes, having the general form 

 YXZ   (22) 

This is, for instance, the case of initial conditions in the case of the harmonic oscillator, under the condition 

of a proper gauging of light. The participations μ and ν are, in this particular case, given by the two 

solutions of a second order differential equation. The problem now is to find the probability density of the 

stochastic process Z. This can be done by following a known statistical routine, and the final result is 
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This is a Gaussian type probability density, having a zero mean and the variance 

 2

22
2

Z

2




  (24) 

Such a probability density is particularly attractive in constructing the one related to characterizing the 

differentials of the three statistics, given their values. 

 Indeed, the equation (24) is indication of the nature of an „intensity variable‟ so to speak. It obviously 

satisfies the Stoka theorem, and indicates that the quadratics are essential in the statistics related to the 

„trichromacy‟ theory of colors. One can see directly that the trichromacy is due to the fact that there is a 

„dichromatic‟ moment in the theory of color space, related to the experimental procedures. Indeed, as we 

mentioned before, from algebraical point of view, the set of binary quadratics like those occuring in the 

exponent of a bivariate Gaussian, is a linear three-dimensional space. Whence the basic theoretical support 

for the idea that the color space should be three-dimensional, even though not necessarily Euclidean. This, 

of course, gives even more reasons for considering the quadratic as fundamental in the theory of light 

colors. 

 There should be, therefore, a way to the color of light, giving consistency to the ideas regarding the 

trichromacy of light colors directly through a general quadratic statistical variable Z(X, Y), obtained, by 

dichromacy, in the measurement process of its values: 

 )cybxy2ax(
2

1
)y,x(z 22   (25) 



 13 

This statistical variable then characterizes a specific plane of illumination, no matter of the orientation of 

that plane, because the quadratic is form-invariant by any central projection. We have thus to find the 

probability density of this variable, under condition that the plane of light is characterized by the a priori 

probability density as given, for instance, in equation (21). That probability density satisfies, of course, the 

Stoka theorem, and the probability density of Z should also satisfy that theorem, in the precise sense that it 

must be a function of the algebraical formations from equation (20). This leaves us with a functionally 

undetermined probability density though, even if we impose some natural constraints in order to construct 

it. 

 Proceeding nevertheless directly, in the usual manner of the statistical practice, we are able to solve the 

problem, at least in this particular case. Thus, we have to find first the characteristic function of the variable 

(25). As known, this is the expectation of the imaginary exponential of Z, using (21) as probability density. 

Performing this operation directly, we get: 
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In view of (20), this characteristic function certainly satisfies the Stoka theorem, which thus reveals its right 

place in the physical theory. Like the Wien displacement law in the case of selection of the physically 

correct spectrum for blackbody radiation, the Stoka theorem should also serve for the selection of the right 

probability density in the case of light colors in general. Anyway, the sought for probability density can 

then be found by a routine Fourier inversion of (26), based on tabulated formulas (Gradshteyn, Ryzhik, 

1994; 2007, the examples 3.384(21); 6.611 (18); 9.215(16)&(17)): 
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Here I0 is the modified Bessel function of order zero, and A, B are two constants to be calculated from the 

formulas 

 BA;
bac

AB;
bac

cab2
BA

2

2

2










  (28) 

Again, this probability density obviously satisfies the Stoka theorem, as it is a function of the joint 

invariants from equation (20). And so do the mean and the standard deviation of the variable Z, for they can 

be calculated as 
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We thus have the interesting conclusion that the essential statistics related to variable Z do not depend but 

on the coefficients of the background color distribution, and the values of the parameters entering the 

expression of the color Z. On one hand, this means that the geometry of the color space is dictated by the 

statistical characteristics of the plane of projection and by the physics describing the color, naturally 

incorporated in the variable Z. For instance Z can represent the energy of a harmonic oscillator, or even the 

wavelength of light when described by the wave surface. On the other hand, our result shows that the color 

space is actually characterized by a Riemannian metric of negative curvature, which is the current tenet in 

the theory of color. Let‟s show this. 

 Light as a Stochastic Process 

 One usually insists, and with good reasons at that, upon the fact that the geometry of the color space is 

not an Euclidean one, but a general Riemannian geometry (see Schrödinger, 1920; English translations of 
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these works in MacAdam, 1970; see also Wyszecki, Stiles, 1982 for a pertinent comprehensive review of 

the theories of colors in all their aspects). In such circumstances, the Riemannian metric carries a special 

statistical significance whereby the components of the metric tensor are covariances of the three color 

coordinates (Silberstein, 1938, 1943). However, this meaning of the metric does not seem to be 

theoretically secured. Yet one works this way, and the results confirm the manner of approach everywhere 

in the classical theory of color. There should be therefore some fundamental truth there, whose formal 

expression is not yet obvious. And there is, of course, a fundamental truth here, giving deeper physical 

grounds to the holographic principle in an unexpected form related to the classical theory of colors. 

 First, the previous statistical theory can help us secure, from a theoretical point of view, a purely 

statistical connotation in the color space. Assume indeed, that a, b and c are some variations of the 

„background‟ parameters α, β and γ, respectively. It thus turns out that this variation, dZ say, of the color 

measure Z, is dictated only by the variations of its coefficients, and it is a process having, according to 

equation (29), the following expectation and variance: 
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(30) 

Here a bar over the symbol means average using the probability density given by equation (27). From these 

formulas we get a statistic having a special geometrical meaning: 
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(31) 

The right hand side of this formula carries indeed a special meaning: it is the Riemannian metric which can 

be built by the methods of absolute geometry for the space of the 2×2 matrices, having the singular 

matrices as points of the absolute quadric (Mazilu, Agop, 2012). In fact, one can prove, and we will show 

this immediately, that the quadratic form (31) is just the Cartan-Killing metric of the certain action of the 

2×2 real matrices. This is indeed of the quadratic form 
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(32) 

where ω1,2,3 are three 1-forms representing three conservation laws of the SL(2,R), and has the exquisite 

interpretation already mentioned. Meanwhile, let‟s notice that, from a stochastic point of view, the process 

of physical variation of the parameters of the quadratic form is „almost‟ a Lévy-type process with three 

parameters (Lévy, 1965), in the sense that the elementary distance is decided by the variance function. This 

validates indeed the statistical interpretation of the metric of the space of colors, but raises instead another 

problem related to the coordinates representing the colors. This problem indicates, in turn, the feasibility of 

another, more special, approach of the geometry of colors, leading to the idea of Yang-Mills fields even in 

the classical case. 

 Resnikoff’s Special Theory of Colors 

 Notice indeed that, actually, it is not the variable dZ we are after, but the parameters dα, dβ and dγ, and 

they can be assumed to have zero averages, without any problem. Equations (30) and (31) are then just 

constraining control equations, related to a space coherence of light for instance. Indeed, we usually 

measure the wavelength in order to get the characteristics of light and, when referred to the wave surface, 

the wavelength is a quadratic form in the parameters of the plane of dichromatic measurements. Howard 
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Resnikoff introduced as representative for what he calls the „perceptual lights‟ a set of 2×2 symmetric 

matrices (Resnikoff, 1972): 
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involving directly the second-order statistics. The determinant of this symmetric matrix is taken as the 

brightness variable of the light, to be constructed from the three basic color perceptions. Resnikoff suggests 

that the entries of the matrix (33) are to be taken as color coordinates. In that case the coordinate β can be 

chosen to be the regular „B‟ – the quantifier for the „blue‟ color in an RGB color scheme – of course, in the 

cases where the brightness of light thus calculated is positive. For a certain situation β has therefore to play 

the part of a correlation when statistically considered in the case of dichromatic basic variables. The choice 

is not unique, for there are three manners of calculating this brightness on a certain range of the color 

parameters RGB, in order to satisfy the positivity requirement, but let us go with it just for the sake of 

illustration. Thus, if we take, in the manner of Resnikoff: 
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the matrix (33) becomes 
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In this case we have by direct calculation: 
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and the Resnikoff metric is just the Cartan-Killing metric of this group of matrices, given by: 
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Now, the matrix (36) has the general form: 
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and carries a special meaning in the geometrical theory of color. In order to reveal this meaning let‟s 

consider the quadratic forms in their utmost generality, from the general standpoint that their coefficients 

do represent lights or color coordinates, as suggested by Resnikoff. 

 Differential Dichromacy: the MacAdam Ellipses 

 The general equation of a conic section is a quadratic equation of the form 

 0cby2ax2yxy2x)y,x(f 22   (39) 

This time in the quadratic form we have included the possibility of an arbitrary center – not just the origin – 

whose coordinates are related to the coefficients a, b through a linear homogeneous relation determined by 

α, β and γ. There is a merit, given by handling simplicity among others, in using again the „notation of 

Dirac‟. This also allows for a suggestive interpretation of the final geometrical results. In such notation the 

equation (39) can be written as 

 0cxa2xx)y,x(f  α  (40) 

where we used the following identification: 
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b
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a
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t
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








   

This vector represents the relative position of the center of the conic in the known geometrical sense: 

 ax0ax 1

cc

 αα  (41) 

If we refer the conic to this center, by means of the translation 

 






















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


c

c

c
xx

y

x

y

x
  

the equation (40) becomes purely quadratic in coordinates, although otherwise inhomogeneous: 

 0cxx cc  αα  (42) 

This algebra is now used in constructing an argument for the matrix representation of colors. 

 Within the framework of Resnikoff representation presented above, the problem of identification of a 

center of color in a plane of measurement – what we would like to call the MacAdam‟s problem 

(MacAdam, 1942) – has an explicit algebraical expression. Indeed, we can simply represent the repeated 

targeting of “the same geometrical color center” by the differential equations dxc = dyc = 0. Then the 

condition (41) comes formally down to the following matrix differential equation: 

   daa)d(ad0 111   ααα  (43) 

Obviously this equation limits the set of possible conics having the same geometric center. Using the 

definition of the inverse of a matrix, to the effect that α
–1
α is the identity matrix, one can easily prove by 

direct differentiation the matrix differential relation dα
–1

 = –α
–1
dαα

–1
, so that from equation (41) we must 

have 

 a)d(da 1 αα  (44) 

Thus the condition of fixed center comes actually down to a certain evolution of the vector |a, dictated by 

the matrix of the quadratic form from the equation of the conic section and its variation. In detail, the 

equation (44) can be written as 

 































b

a

dddd

dddd1

db

da
2

 (45) 

The matrix governing the evolution in the right hand side of this equation can be further adjusted to a 

special form: 

 
2

23

12
;

2

2

10

01
)(lnd 




















Ω  (46) 

 is therefore the determinant of α, i.e. Resnikoff‟s brightness squared, and we denoted 

 















dd
;

dd
;

dd
321  (47) 

three differential forms generated by the elements of the matrix of quadratic form representing the family 

of local colors, and their differentials. When calculated in the coordinates from equation (34) these 

differential forms are 

 
2

22

32221
v

uvdv2du)vu(
;

v

vdvudu
2;

v

du 



  (48) 

showing explicitly that the matrix from equation (46) is the transposed of that from equation (38) 
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 Thus, the proposed representation of Resnikoff‟s has actually a firm physical basis, in relation to 

MacAdam‟s ellipses. Indeed, assume that we are to identify a certain center, as in MacAdam experiments. 

The center is the one position satisfying equation (41), and therefore asks for the differential correlation 

(44), which turns out to be an equation of motion for the vector |a. When the Resnikoff‟s matrix is taken as 

shown, i.e. representing an ellipse, then the motion of the center |a itself is along an ellipse, which is the 

real case with MacAdam results. Therefore, the MacAdam‟s ellipse gives indeed a statistical interpretation 

to differentials of the elements of color in Resnikoff‟s representation. 

 A General Dynamics of Color 
 Now, a few algebraical relations among the differential forms (48) are in order. They form a basis of a 

sl(2,R) algebra. The following differential relations can be directly calculated: 

 













 321 d;

2
d;d  (49) 

where Θ is the differential 2-form 

 
23

dddddd




  (50) 

The 2-form Θ is closed because it is the exterior differential of a 1-form: 

 















  2

tand;d 1  (51) 

representing the Hannay angle of this problem. In our context it gives a way to „objectify‟, so to speak, the 

subjective experimental evaluations of colors, and has certainly everything in common with the original 

angle (Hannay, 1985; Berry, 1985).  

 On the other hand, we can verify the following relations: 

 













 133221 ;;  (52) 

Thus, from (49) and (52) we have the characteristic equations of a sl(2,R) structure: 

 0)(2d;0d;0d 132323211   (53) 

Using these relations we can draw an important conclusion: the quadratic forms associated with the matrix 

in Resnikoff representation of light perceptuals are actually fluxes of color in the color space, induced by 

the „subjective‟ uncertainty in determining a color. Indeed, the quadratic form conserved along MacAdam‟s 

evolution can be written as a|ω|a, where ω is a symmetric matrix of 1-forms in Resnikoff‟s perceptuals. 

One can thus construct the 2-form 

 
















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32

21

2

2
;aaada ωαω  (54) 

where we have used the equations (49). As the 2-form Θ is a flux, the analogous of the solid angle in the 

usual Euclidean space, the quadratic form a|α|a is indeed the intensity of a flux of colors in the color space 

thus defined. One might say that the human eye is driven, in evaluating the light, by a flux of colors 

correlated to Hannay‟s angle. 

 Conclusions and Outlook 

 The concepts, especially the physical ones have their internal dynamics. The present work advocates 

the idea of a continuity of this dynamics: first of the quantum theory with respect to classical theory, then 

of both theories as regarded through the modern idea of the holographic principle. Resuming this last 
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principle, one could say that the light is a universal model of the physical world. We just tried to make this 

statement more explicit. 

 In order to conclude the work nothing would come better than a few words excerpted from the articles 

that founded the holographic principle in its modern form. First, the words of Gerardus ‟t Hooft: 

We would like to advocate here a somewhat extreme point of view. We 

suspect that there simply are not more degrees of freedom to talk about than 

the ones one can draw on a surface… The situation can be compared with a 

hologram of a three dimensional image on a two-dimensional surface. The 

image is somewhat blurred because of limitations of the hologram technique, 

but the blurring is small compared to the uncertainties produced by the usual 

quantum mechanical fluctuations. The details of the hologram on the surface 

itself are intricate and contain as much information as is allowed by the 

finiteness of the wavelength of light – read the Planck length. (’t Hooft, 

1993; our Italics). 

Involving the quantum mechanics here has raised problems. Leonard Susskind advocates no existing 

contradiction, and is even more precise as to the involvement of the quantum limit: 

According to ‟t Hooft it must be possible to describe all phenomena within V 

by a set of degrees of freedom which reside on the surface bounding V. The 

number of degrees of freedom should be no larger than that of a two 

dimensional lattice with approximately one binary degree of freedom per 

Planck area. In other words the world is in a certain sense a two dimensional 

lattice of spins (Susskind, 1994; our Italics). 

We have shown that these statements do have a historical lineage, starting with Newton, and continuing 

with the quantum theory of light, which occasioned the idea of holography in the first place. The present 

work showed that Newton‟s theory of light means actually that the light supports the idea of an abstract 

symmetry related to color. The corollary of Newton‟s work can be properly understood by referring it to 

Hooke‟s rational theory of colors. In short it states: is not the geometrical form of the light ray that should 

prevail, but the general two-dimensional symmetry. The Planck‟s theory of quanta points out to the very 

same general symmetry property of physical fields. No wonder then, the holography, as well as its quantal 

basis, should have roots in the classical theory of light, and the holographic principle thus turns out to be a 

physically sound universal principle, inasmuch as the light carries the information in the universe. But there 

is more to it. 

 First, the light can be taken as a sound physical model of the theory of interactions of material particles, 

defined in the modern way, i.e. experimentally, which is plainly a Newtonian way of seeing the particles. 

The particles here are not material points in the classical sense, but have a space extension. Thus they have 

a surface, and this surface is the one through which the interaction takes place. The present work shows that 

the interaction is then described by a sl(2,R) Lie algebra. This approach offers a rationale to the classical 

theory of color, seen as a theory of interaction of light with the matter. Moreover, it offers a general view of 

the theory of fundamental interactions by what we call a Resnikoff-type of representation of interactions. 

 But the implications of a theory that uses a Resnikoff‟s representation of colors, whereby they are 

quantitatively described by the entries of a 2×2 symmetric real matrix, are far more intricate from physical 

theoretical point of view. Indeed, such a representation has an outstanding theoretical meaning. A matrix is 

obviously an element of a noncommutative algebra, which can be simply a Yang-Mills field. It turns out 

that this classical theory of colors is plainly a Yang-Mills theory. It completes the classical theory of light 

in a natural way, by including the color in it. The classical electromagnetic theory, even though 
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undoubtedly a gauge theory, is not a Yang-Mills theory yet. The present work shows that it takes 

considerations of color of light in order to render to the theory of light a plain Yang-Mills character. The 

modern „technicolor‟ for instance, should be a genuine classical concept. From this point of view, the light 

itself actually enters the realm of quantum chromodynamics, as it should naturally do, for the everyday 

color is related to light. But there is more to it: if the mechanism of color is the one explaining the strong 

interactions, then this color should be classical too. Thus one might figure out why the noncommutativity is 

the essential ingredient allowing asymptotic freedom in the case of strong interactions: after all, the light is 

a model of interaction everywhere in the universe, at any level! 
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