
J. R. Yablon 

1 
 

Fitting the 6Li, 7Li, 7Be and 8Be Binding Energies to High Precision based 
Exclusively on the Up and Down Quark Masses 

 
Jay R. Yablon 

jyablon@nycap.rr.com 
June 25, 2013 

 
We extend the results of an earlier recent letter by expressing the 6Li, 7Li, 7Be and 8Be binding 
energies, each independently and each to about parts-per-million or small parts-per-100,000 
accuracy, exclusively as a function of the up and down current quark masses.  
 
PACS:  21.10.Dr; 27.10.+h; 14.65.Bt; 14.20.Dh; 27.40.+z; 14.60.Cd; 26.20.Cd 
 
1.  Introduction 

 
In a recent letter [1] the author showed based on the Koide mass formula [2], [3] how a 

“Koide matrix” K defined as: 
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 (1.1) 

 
with the up and down quark mass assignments 1 dm m= , 2 3 um m m= =  for a proton P ABK  and  

1 um m= , 2 3 dm m m= =  for a neutron N ABK  (see (3) in [1]) can be used to formulate 

relationships accurate to about parts-per-million AMU for the binding (and related fusion-
release) energies of the 2H, 3H, 3He and 4He (1s shell) light nuclides as well as for the neutron 
minus proton mass difference.  Specifically, for 4He (observed 0.030376586499 u), 3He 
(observed 0.008285602824 u), 3H (observed 0.009105585412 u) and 2H (observed 
0 002388170100 u. ) respectively, it was reviewed in (25) through (28) of [1] that the following 
close retrodictions can be made using only up and down quark masses (1.12) and (1.13) infra:  
 
4 : 2 2 2 0 030373002032 uP N u dHe E E m m .⋅ ∆ + ⋅ ∆ − = , (1.2) 
3 : 2 0 008320783890 uu u dHe m m m .+ = , (1.3) 

( )
3
23 : 4 2 / 2 0 009099047078 uu µ dH m m m π .− = , (1.4) 

2 : 0.002387339327 uuH m = , (1.5) 

 

where ( ) ( )2 1.52Tr Tr / 2P P PE K K π∆ ≡ −  and ( ) ( )2 1.52Tr Tr / 2N N NE K K π∆ ≡ −  are given in eqs. 

(12) and (13) of [1] by (with numeric energy values below updated here to reflect the 
“recalibration” of the up and down quark masses in (22) of [1]): 
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( ) ( )1.5
2 4 4 / 0.0082006064812   uP d u d u d uE m m m m m m π∆ = + − + + = , (1.6) 

( ) ( )1.5
2 4 4 / 0.0105319992  770uN u d u u d dE m m m m m m π∆ = + − + + = . (1.7) 

 
Other (recalibrated) relationships reported in [1] are as follows:  For energy E released 

during the fusion reaction 2
1 Energyp p H e ν++ → + + +  (observed 0.000451141003 u), see 

(17) of [1]:  
 

( )
3
2 0.000452 2 0310230µ dm m / π u= . (1.8) 

 
For the energy E released during the fusion reaction 2 3

1 1 EnergyH p H e ν++ → + + +  (observed 

0.004780386215 u), see (18) of [1]: 
 

0.004774678 5u42 6um = . (1.9) 

 
For the neutron minus proton mass difference N PM M−  (postulated exact), see (19) of [1]: 

 

( ) ( )
3
23 2 3 / 2 0.001388449188 u=u d µ d u N Pm m m m m π M M− + − ≡ − . (1.10) 

  
Among the up and down quark and electron masses (postulated exact), see (9) of [1]: 
 

( ) ( )1.5
3 / 2 0 000548579909 ud u em m m .π− ≡ = . (1.11) 

 
And, for recalibrated up and down masses, based on (1.10) and (1.11), see (23) and (24) of [1]: 
 

0 002387339327 uum .= , (1.12) 

0 005267312526 udm .= . (1.13) 

 
While these results originated from theoretical rationales in four recent papers [4], [5], 

[6], [7], the more recent letter [1] strictly reported these objective numeric relationships among 
phenomenological masses and energies based solely on Koide matrices of the form (1.1).  The 
author’s forbearance from theoretical discussions was intended to enable others in the nuclear 
and particle physics communities to evaluate these results based on the data alone, and perhaps 
develop modified or alternative theories as to the physics which might be underlying these very 
accurate empirical retrodictions. 
 
 The author continues this work in this letter by developing similarly accurate 
relationships for the 2s shell nuclides 6Li, 7Li, 7Be and 8Be, on empirical grounds, with minimal 
if any theoretical discussions as to the meaning of these results except as is necessary for their 
immediate derivation.  The results reported below are new; they have not been previously 
reported anywhere else. 
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2.  Mass / Energy Relationships for the 6Li, 7Be and 7Li Nuclides 
 
 The first nuclide we consider is 6Li.   In doing so, we observe, for example from [8], that 
there are no stable nuclides with 5A Z N= + = .  One 5A =  candidate for possible stability, 5He, 
has a half-life of 700(30)×10−24 s and immediately sheds the extra neutron decay into the 4He 
alpha.  The other candidate, 5Li, has a half-life of 370(30)×10−24 s and sheds the extra proton to 
decay into the 4He alpha.  If we seek stability, the lightest stable nuclide in the 2s shell is 6Li. 
 
 Let us therefore now consider the process 4 6

2 32 EnergyHe p Li e ν++ → + + +  whereby 

one fuses an alpha particle with two protons in order to create a stable 6Li nuclide plus a positron 
and neutrino.  The energy released during this hypothetical fusion event is: 
 

4 6
2 3 0.002033478Ene 2  rg uy p eM M M m= + − − = , (2.1) 

 
where 4

2 4.001506179125 uM =  is the observed nuclear weight of the 4He alpha, 

1.007276466812 upM =  is the observed proton mass, 6
3 6.013477055 uM =  is the observed 6Li 

nuclear weight, and the electron mass is given in (1.11). 
 

It was reported in [1] that um ,  dm  and u dm m , which are the nine non-zero components 

of the outer products P P P AB PCDK K K K⊗ =  and N N N AB N CDK K K K⊗ = , as well as the foregoing 

divided by the natural number ( )1.5
2π , are the “energy numbers” based exclusively on the up and 

down quarks masses that we need to look to, to try to fit the binding and fusion energy data.  We 
again do the same here.  It is readily determined that: 

 

( )1.5
0.0029 / 2 026396 uu dm m π = , (2.2) 

 
is extremely close to (2.1), differing by a mere 67.08153 10  u−× , that is, about 7 parts per million 
AMU.  Might this be a “significant” relationship, and not merely a close coincidence? 
 
 Here, we need to be cautious.  The question is whether coefficient “9” in (2.2) has some 
physical significance in relation to the Koide matrix (1.1) and/ or the physical properties of the 
“target nuclide” 6Li, which we are presently considering, and is not merely a fortuitous 
coincidence.  Of course, (1.1) is a 9 component matrix, and its outer products have exactly 9 
non-zero components.  But the significance of the coefficient “9” is more physically-direct when 
we consider that 6Li contains exactly 9 up quarks and 9 down quarks.  That is, “9” is the number 
of up/down quark pairs contained in a 6Li nuclide.   So if (2.2) is in fact a theoretical expression 
to 7 parts per million for the energy released to fuse an alpha with two protons into a 6Li, then 
this would mean that in order to bind together the 6Li nuclide, each of the nine up/down quark 

pairs in the target 6Li nuclide has to give up ( )1.5
1 / 2u dm m π⋅  “dose” of energy.  This suggests 

that perhaps “9” is not a random number but makes some physical sense. 
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So let us provisionally hypothesize that (2.2) correctly gives the fusion-release energy for 
the reaction (2.1), by writing: 
 

( ) ( )1.54 6 4 6
2 3 2 3Energy 2 Energy 2 9 / 2p e u dHe p Li e M M M m m mν π++ → + + + = + − − ≡ . (2.3) 

 
As noted, this is accurate to about 7 parts per million. 
 
 Now, having “built” a 6Li nuclide, let us consider the hypothetical isomeric fusion 
process 6 7

3 4 EnergyLi p Be+ → +  whereby a 6Li nuclide is fused with a proton to produce a 7Be 

nuclide.  For this event, the energy released is: 
 

6 7
3 4 0.006018011721 uEnergy pM M M= + − = . (2.4) 

 
where we use the empirical values 6

3 6.013477055 uM = , 7
4 7.014735510362 uM = , and the 

proton mass 63 6.013477055 uM = . 

 

 Comparing to our restricted set of ingredients um ,  dm  and u dm m  and these divided by 

( )1.5
2π , we find that: 

 

( )1.5
0.006019934830 u18 / 2dm π = . (2.5) 

 
This differs from (2.4) by 61.92310833848 10  u−× , or just under 2 parts per million.  What might 
be the significance of the coefficient “18,” to be certain that these are not just coincidental 
integer multiples?  Here, 6Li, which is now the “source nuclide to” which we wish to add a 
proton, contains 18 quarks in total.  So (2.5) may be explained on the basis that each of the 18 

quarks inside of a 6Li nuclide has to give up an energy “dosage” of exactly ( )1.5
1 / 2dm π⋅  in 

order to bind with a proton and yield a 7Be nuclide.  That is, each quark in 6Li has to give up 
some energy, precisely defined in relation to the down quark mass, in order to “motivate” the 
new proton to join the 2s shell and produce a 7Be nuclide.  This makes some physical sense as 
well, and especially so because a similar view was used to explain the energy released during the 
fusion event 4 6

2 32 EnergyHe p Li e ν++ → + + + .  In fact, the results in (2.2) and  (2.5) appear to 

supplement one another and greatly reduce the probability of coincidence, because they each, 
independently, suggest that once we start building heavier nuclides on the stable “base” of an 
alpha 4He nuclide, are prescribed “dosages” of energy which the existing quarks and / or 
nucleons need to contribute and which are precisely described (to parts per million) in terms of 

u dm m  for 4He�6Li and in terms of dm  for 6Li�7Be. 

 
 Let us therefore also regard (2.5) to correctly specify the energy in (2.4) to parts per 
million, thus setting: 
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( ) ( )1.56 7 6 7
3 4 3 4Energy Energy 18 / 2p dLi p Be M M M m π+ → + = + − ≡ . (2.6) 

  
Now that we have “built” the 7Be nuclide, we take note that 7Be is comparatively stable, 

with a half-life of 53.22(6) days after which it will decay into the completely stable 7Li nuclide 
via electron capture.  So let us now turn to this β-decay reaction, which is more formally stated 
as 7 7

4 3 EnergyBe e Li ν+ → + + .  Again, as in (2.1) and (2.4) we calculate the associated energy: 

 
7 7
4 3 0.0009252800Energy 00 ueM M m= − + =  (2.7) 

 
using the empirical values 7

4 7.014735510362 uM = , 7
3 7.014358810272 uM = and the electron 

mass (1.11).  Here, using our ingredients um ,  dm  and u dm m  and ( )1.5
2π  divisor, we find: 

 

( )1.5
0.000909486 / 2 5124 uum π = . (2.8) 

 
This differs from the empirical number (2.7) by 51.579487551927 10  u−− × , or under two parts 
per 100,000.  Previously we came up the numbers 9 (up/down pairs in 6Li) and 18 (quarks in 
6Li).  Now we come upon the number “6” which is the number of nuclides in 6Li.  So (2.8) 
would appear, if meaningful, to say that each nuclide in the underlying 6Li nuclide gives up an 

energy dosage of ( )1.5
1 / 2um π⋅  to facilitate the isotopic beta decay of 7Be�7Li.   This too makes 

sense in terms of this number not being random, but bearing a genuine physical meaning for the 
nuclide in question.  Together with the result in (2.2) and (2.5), this seems to suggest that 
energies released to enable fusion or beta decay, at least in the 2s shell, come in discrete doses.  

For 4He�6Li the dose is ( )1.5
1 / 2u dm m π⋅  for each up/down quark pair in 6Li.  For 6Li�7Be 

the dose is ( )1.5
1 / 2dm π⋅  for each quark in 6Li.  Finally, for 7Be�7Li the dose is ( )1.5

1 / 2um π⋅  

for each nuclide in 6Li.  Notably, these respectively utilize the three ingredients ( )1.5
/ 2u dm m π , 

( )1.5
/ 2dm π  and ( )1.5

/ 2um π .  Taken all together, this suggests that the numbers “9,” “18” and 

“6” which were emerged by comparing these ingredients to the empirical data are all meaningful 
numbers based on the physical properties of 6Li itself. 
 
 So, we now take (2.8) to be a meaningful expression for the energy in (2.7) to under 2 
parts per 100,000, and so write: 
 

( ) ( )1.57 7 7 7
4 3 4 3Energy Energy 6 / 2e uBe e Li M M m mν π+ → + + = − + ≡ . (2.9) 

 
3.  Binding Energy for 8Be 
 
 Next, to complete the 2s shell, we turn to 8Be, which completes the 2s shell, providing 2 
protons and 2 neutrons in addition to four nucleons which already subsist in the 1s shell.  Despite 
having complete 1s and 2s shells and no extra nucleons, the 8Be isotope has a half-life of 
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6.7(17)×10−17 s, after which it alpha-decays via 8 4 4
4 2 2 EnergyBe He He→ + +  into two alpha 

particles.  For 4He, as noted in the introduction, the binding energy is observed to be 

( )4
2 0.030376586499 uB He = .  The empirical value of the 8Be binding energy is observed to be 

( )8
4 0.060654750 6u88B Be = .  And, the 4He alpha binding energy is fitted to under four parts 

per million by 2 2 2P N u dE E m m⋅ ∆ + ⋅ ∆ −  as reviewed in (1.2). 

 
 It is nothing new to note that the 8Be binding energy is almost twice as large as the 4He 
binding energy, and specifically, that the empirical ratio: 
 

( ) ( )8 4
4 2 1.996759 5/ 93B Be B He = . (3.1) 

 
So, we know at the outset that if we simply double the 4He binding energy and write  

( ) ( )8
4 2 2 2 2P N u dB Be E E m m≅ × ⋅ ∆ + ⋅ ∆ − , we will get a close approximation to under 1%.  

Certainly then, an expression of the form ?4 4P NE E E⋅ ∆ + ⋅∆ −  should give us the result we want, 

that is, one would hope that P NZ E N E⋅ ∆ + ⋅ ∆  with Z=4 and N=4, minus some unknown energy 

? 4 u dE m m≅  will give us the 8Be binding energy to within at least parts per 100,000, matching 

the accuracy for the other foregoing results.  The question is, how do we determine ?E  using the 

same ingredients um ,  dm  and u dm m  and the ( )1.5
2π  divisor? 

 
 First, it is physically very important that (3.1) is not equal to 2 but is less than 2 by about 
0.32%.  Since it appears that physically, stable nuclides are those which tend toward higher 
rather than lower binding energies, the ratio (3.1) tells us that two 4He will have more binding 
energy in total than one 8Be, and for this reason, 8Be will split into two 4He in order to maximize 
this total binding energy.  That is, there is more binding energy in two separate 4He than in a 
single 8Be and apparently nature prefers this.  So the very existence of the alpha decay 
8 4
4 22Be He→ ⋅  as a preferred transition over 4 8

2 42 He Be⋅ →  appears to depend on the ratio (3.1) 

being slightly less than 2.  Consequently, this small diminution from 2 needs to be understood 
and not simply neglected by approximating to ( ) ( )8 4

4 2/ 2B Be B He ≅ . 

 
 Next, as to “numbers” that would make sense in the same way as “9,” “18” and “6” in the 
previous section, we note that 8Be has A=8 nucleons.  So certainly, “8” is a number that would be 
of interest.  Now, we have used the 3-dimensional Gaussian integration number  

( )1.5
15.749602 99457π =  throughout without elaboration simply to report close fits between 

empirical binding data and certain expressions built from of up and down quark masses via 

products of Koide-type matrices (1.1).  But, if an expression like 2 u dm m  was an ingredient in 

successfully matching the 4He binding energy to parts per million and a ( )1.5
1 / 2u dm m π⋅  

energy dose per quark pair in 6Li successfully reproduced the 4 6
2 32 EnergyHe p Li e ν++ → + + +  

reaction also to parts per million, we see that both ( )1.5
/ 2u dm m π  and u dm m  are ingredients 
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that provide suitable energy doses.  So because ( )1.5
15.749609945 162 7π = ≅ , this means that 

( )1.5
16 / 2u d u dm m m mπ⋅ ≅ .  For a nuclide 8Be with 8 nucleons, a coefficient “16” which 

approximates ( )1.5
2π  in fact becomes physically relevant and not just random. 

 
With this in mind, given that ( )4

2 2 2 2P N u dB He E E m m= ⋅ ∆ + ⋅ ∆ −  as reviewed in 

(1.3), and given that we need an ? 4 u dE m m≅  for 8Be, let us use the close approximation 

( )1.5
16 / 2u d u dm m m mπ⋅ ≅  to form another energy number: 

 

( ) ( )1.5 4
22 2 32 / 2P N u dB E E m m B Heπ′ ≡ ⋅ ∆ + ⋅ ∆ − ⋅ ≅ . (3.2) 

 
that is close to ( )4

2B He  of (1.2), but not exactly the same.  Now, let us conduct the gedanken of fusing 

two 4He into one 8Be.  Of course, this will split into two 4He after 6.7(17)×10−17 s, but this is still useful to 
think about.  One of the two 4He will have to form the 1s shell.  The other will need to overlay “around” 
the 1s shell and form the 2s shell.  Let us suppose that the 4He which forms the 1s shell retains the 

( )4
2B He  shown in (1.2).  But let us suppose that the other 4He which goes into the 2s shell instead 

carries with it the energy number (3.2) which is very close to, but not the same as, ( )4
2B He .  

Accordingly, we now use (3.2) and (1.2) together to construct a hypothesized: 
 

( ) ( )1.58
4 4 4 2 32 / 2 0.0606332509 uP N u d u dB Be E E m m m m π= ⋅ ∆ + ⋅ ∆ − − = . (3.3) 

 
This differs from the empirical ( )8

4 0.060654750 6u88B Be = by 52.1500027391 10  u−− × , 

just over two parts in 100,000.  So the accuracy is in the desired range.  But does this make sense 
in other ways, so it is not just a coincidental guess but has physical meaning?  First, the ratio: 

 

( )
( )

( )1.58
4

4
2

4 4 2 32 /
1.9960521 22

2 2
5

2

2
P N u d u d

P N u d

B Be E E m m m m

E E m mB He

π⋅ ∆ + ⋅ ∆ − −
= =

⋅ ∆ + ⋅ ∆ −
, (3.4) 

 
compare (3.1), is less than 2 by 0.4%, versus the empirical 0.32% noted earlier, and so will also 
cause the reaction 8 4

4 22Be He→ ⋅  to be energetically favored rather than 4 8
2 42 He Be⋅ → .  This a 

very important prerequisite for (3.3) to be a valid candidate for the 8Be binding energy. 
 
 Secondly, noting that 4He contains 6 up and 6 down quarks and is fully symmetric under 
u d↔  quark interchange, we observe that 8Be contains 12 up and 12 down quarks and that (3.3) 
is also fully symmetric under u d↔  quark interchange.  Apparently, u d↔  invariance is a 
desirable binding energy symmetry at least for the full-shell nuclides 4He and 8Be with equal 
numbers of protons and neutron and hence of up and down quarks. 
 Third, the number 32=8x4 has a very natural meaning in terms of the energy dosage 

considerations uncovered in section 2.  Referring to (1.6) and (1.7), we see that ( )1.5
4 / 2u dm m π  
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is an important “energy dose” arising from the Koide matrices applied to protons and neutrons.  
Given that 8Be contains 8 nucleons, one can interpret the (3.3) as saying that each of the 8 

nucleons in 8Be “contributes” a ( )1.5
4 / 2u dm m π−  dose of energy to binding energy (3.4), to 

produce the term ( )1.5
32 / 2u dm m π− .  And, because this contribution yields the ratio (3.4), our 

gedanken to fuse 4 8
2 42 He Be⋅ →  will last all of 6.7(17)×10−17 s, after which we will witness the 

physically-preferred decay 8 4
4 22Be He→ ⋅ .  So (3.3) appears to touch all the bases required to be 

a credible relationship for 8Be binding energy and we shall henceforth employ it as such. 
 

With the foregoing, we now have an expression for 8Be binding that is accurate to about 
2 parts per 100,000, and we have expressions with similar accuracy for fusion / beta decay 
energies related to 6Li (2.3), 7Be (2.6) and 7Li (2.9).  These fusion / decay energies (2.3), (2.6) 
and (2.9) may be deductively be converted over into binding energies, as shown next.  

 
4.  Binding Energies for the 6Li, 7Be and 7Li Nuclides 
 
 In general, for a nuclide with Z protons and N neutrons hence A=Z+N nucleons, the 
binding energy AZ B  is related to its atomic weight A

Z M  according to: 

 
A A
Z P N ZB Z M N M M= ⋅ + ⋅ − . (4.1) 

 
So for the 63Li  , 7

4 Be and 73Li  binding energies respectively, we need to find: 

 
6 6
3 3

7 7
4 4

7 7
3 3

3 3

4 3

3 4

P N

P N

P N

B M M M

B M M M

B M M M

= ⋅ + ⋅ −

= ⋅ + ⋅ −

= ⋅ + ⋅ −

. (4.2) 

 
 We first use the results in (2.3), (2.6) and (2.9) for 6

3M , 7
4M  and 7

3M  to rewrite the 

above equation set as: 
 

( )
( )

( )

1.56 4
3 2

1.57 6
4 3

1.57 7
3 4

3 9 / 2

3 3 18 / 2

3 4 6 / 2

P N u d e

P N d

P N u e

B M M m m M m

B M M m M

B M M m M m

π

π

π

= + ⋅ + − +

= ⋅ + ⋅ + −

= ⋅ + ⋅ + − −

. (4.3) 

 
We then use (2.3) and (2.6) again in the latter two expressions to obtain: 
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( )
( ) ( )

( ) ( )

1.56 4
3 2

1.5 1.57 4
4 2

1.5 1.57 6
3 3

3 9 / 2

3 18 / 2 9 / 2

2 4 6 / 2 18 / 2

P N u d e

P N d u d e

P N u d e

B M M m m M m

B M M m m m M m

B M M m m M m

π

π π

π π

= + ⋅ + − +

= + ⋅ + + − +

= ⋅ + ⋅ + + − −

. (4.4) 

 
And we then use (2.3) yet again in the final expression to obtain: 
 

( )
( ) ( )

( ) ( ) ( )

1.56 4
3 2

1.5 1.57 4
4 2

1.5 1.5 1.57 4
3 2

3 9 / 2

3 18 / 2 9 / 2

4 6 / 2 18 / 2 9 / 2

P N u d e

P N d u d e

N u d u d

B M M m m M m

B M M m m m M m

B M m m m m M

π

π π

π π π

= + ⋅ + − +

= + ⋅ + + − +

= ⋅ + + + −

. (4.5) 

 
These expressions are now all reduced to contain the alpha nuclear weight 4

2M .  For this we 

rewrite (4.1) for Z=2 and N=2 as: 
 
4 4
2 22 2P NM M M B= ⋅ + ⋅ − . (4.6) 

 
Substituting (4.6) into all of (4.5), we next obtain: 
 

( )
( ) ( )

( ) ( ) ( ) ( )

1.56 4
3 2

1.5 1.57 4
4 2

1.5 1.5 1.57 4
3 2

9 / 2

18 / 2 9 / 2

2 6 / 2 18 / 2 9 / 2

N P u d e

N P d u d e

N P u d u d

B M M m m B m

B M M m m m B m

B M M m m m m B

π

π π

π π π

= − + + +

= − + + + +

= ⋅ − + + + +

. (4.7) 

 
Finally, we use the neutron minus proton mass difference (1.10), the up, down and electron 
relationship (1.11), and the 4He binding energy (1.2) with (1.6) and (1.7), and reduce.  We then 
use the quark masses (1.12), (1.13), directly, to obtain: 
 

( )

( )

( )

3
2

3
2

3
2

6
3

7
4

7
3

10 10 9
7 6 2

2

10 8

0.0343364272 u

0.0403563620 u

0.04

9
7 6 2

2

2 2 11
8 6 2

2
2105716 u

u d u d
u d u d

u d u d
u d u d

u d u d
u d u d

m m m m
B m m m m

π

m m m m
B m m m m

π

m m m m
B m m m m

π

− − −
= + − + =

− + −
= + − + =

+ −
= + − + =

. (4.8) 

 
The respective empirical values are 63 0.0343470932 uB =  (difference of 51.06660 10  u−− × ), 
7
4 0.0403651049 uB = (difference of 68.7429 10  u−− × ), and 73 0.0421302542 uB =  (difference of 

52.45378 10  u−− × ).  So together with 8Be from (3.3), we have now developed expressions for all 
of the 2s nuclide binding energies to small parts per 105 or (for 7Be) parts per million. 
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5.  Conclusion 
 
 Figure 1 below summarizes the retrodicted expressions and calculated values for both the 
1s and 2s nuclides in the form of the customary chart of binding energy per nucleon, converted 
from AMU into MeV via 931.494061 u V1  Me= , as such: 

               
Figure 1: Retrodicted Binding Energies (B) per Nucleon (A=Z+N) for 1s and 2s Shells 
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This familiar curve shows eight of the very lightest elements in the well-known form of a 

per-nucleon binding energy graph.  All of these energies, however, are no longer just empirical, 
but rather may be calculated strictly from the masses (1.12), (1.13) of the up and down quarks 
which, when the indicated calculations are performed, will enable a fit to the empirical data to 
parts per million or low parts per 100,000 in all cases.  This provides strong validation that the 
foregoing approach taken together with what was separately reported in [1] enables nuclear 
binding energies to be fitted very precisely at a granular level, based solely as a function of the 
up and down quark masses.  This fit in turn validates the values of masses (1.12), (1.13) via the 
observed nuclear binding energies which are known much more precisely than any quark mass 
values derived from deep inelastic scattering.  

 
Also of interest is that the retrodicted binding energy per nucleon of 3H exceeds that of its 

isobar 3He by 0.24164918 MeV, while the retrodicted binding energy per nucleon of 7Li 
exceeds that of its isobar 7Be by the relatively similar 0.23278761 MeV.  It is often assumed that 
separate consideration needs to be given to the electrostatic repulsion of an extra proton which 
lowers the binding energy of a proton-rich nuclide, e.g. 3He and 7Be.  What the foregoing shows 
is that the binding energy difference owing to this electrostatic repulsion is already inherently 
and integrally built into both the quark masses, and the relationships in Figure 1 which combine 
these quark masses to arrive at nuclear binding energies. 

 
Insofar as what we might learn from these results to progress in a granular way to even 

heavier nuclides, we see that we have essentially “woven” our way through the progression 4He 
� 6Li � 7Be � 7Li in (2.3), (2.6) and (2.9), which weaving was then deductively reflected in 
the binding energy calculations of section 4.  Part of how we obtain confidence that our results 
are meaningful not randomly-coincidental, is that we progress carefully in this manner from one 
nuclide to the next along known fusion or decay routes, and make certain that the coefficients we 

use at each step to combine the um ,  dm , u dm m  and ( )1.5
2π  ingredients make sense in relation 

to the nuclides in question.  This way, as we build up heavier shells and nuclides, we know they 
are being constructed on a carefully-laid foundation. 

 
Finally, the forgoing results do seem to validate that the European Muon Scattering 

Collaboration is indeed nothing less than a “paradigm shift” which must be recognized as such, 
sooner rather than later [9].  Certainly, one needs no more than the long-recognized evidence of 
nuclear mass defects to conclude that a free proton or neutron is different from a proton or 
neutron bound inside a nucleus.  Here, we see in very clear fashion how quarks themselves 
reflect these mass defects by undergoing their own energetic changes as their nucleons are bound 
together to form composite nuclei.  In fact, all of these results really just boil down to tracing 
mass defects in specific nuclides, down to the energy changes in the quark structure of individual 
protons and neutrons as those nucleons bind into composite nuclei. 
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