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The paper presents a natural definition of gravitational mass without invok-
ing new entities. The approach suggested expands the application field of the
law of gravitational interaction between material objects located in a gravi-
tating medium. The paper demonstrates the existence of a functional rela-
tionship between the inertial and gravitational masses, which has brought us
to a conclusion that the condition under which the inertial and gravitational
masses would be equal is rather speculative and not practically realizable.
We give here real examples of existence of the negative gravitational mass,
as well as natural cases of the gravitational repulsion. Some cases of gravi-
tational dipole as a physical object existing in our natural environment are
also presented.

1. Problem definition

Consider the problem of finding forces acting on a motionless material body G

of a fixed volume and constant density, which is placed in a certain homoge-
neous static medium F (with uniformly distributed density of matter). The
existence of density stipulates the existence of the gravity field generated
both by body G and medium F . Assume that material body G experiences
gravitational force only from medium F . In addition, assume for simplicity
that spatial domain F contains a certain gravitating medium1, e.g., zero-
viscosity incompressible liquid in the form of a finite-radius sphere. In the
scope of our problem definition, material body G plays the role of a foreign
inclusion in domain (F) under consideration; therefore, we will refer to it as
anomaly2. Let us choose as anomaly G a homogeneous rigid sphere located
at some fixed distance from the domain F center.

The conditions of the matter density constancy in domain F and of spher-
ical shape of domains G and F are not mandatory, but allow us to simplify
the problem and focus on its main aspect, namely, on deriving an expression
for the forces acting upon the anomaly in the gravitating medium.

1Hereinafter, term gravitating medium means that this is a medium with a preset
matter density distribution.

2In gravimetry, term "anomaly" is often used to define an inclusion (body) with the
density different from that of the surrounding medium [1, 2].
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Consider Cartesian coordinate system Oxyz (Fig. 1). Let the coordinate
system origin (point O) be the gravitational attraction center of spherical
domain F .
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Figure 1: Gravitating
medium F with spheri-
cal anomaly G.

Designate the force of gravitational in-
teraction between anomaly G and domain F

matter as F
´

. Due to the central symme-
try of the problem about the domain ge-
ometry and matter distribution, this force
is directed towards the medium’s center of
gravitational attraction (point O). Gravity
field of the domain F matter ensures the
centrosymmetrical pressure distribution in
the F medium. The presence of the pres-
sure gradient in the medium surrounding
anomaly G gives rise to the so-called buoy-
ant force F

`

.
Therefore, anomaly G experiences two

quasi-independent oppositely directed collinear
forces. Evidently, this straight line is tan-
gential to the gravity field line of domain F

at the application point of the forces defined above. The sum of these
forces is:

F “ F
`

` F
´

, (1)

where F
´

is the force of direct gravitational effect on anomaly G from the
domain F matter, which acts towards point O, and F

`

is the buoyant force
caused by the presence of the pressure gradient in medium F .

The case considered may be regarded as a liquid drop with a pellet inside
in weightlessness3. For more simplicity, neglect the external gravitational
effects. Under these conditions, the pellet can ”sink” towards the drop center
or ”emerge” to the surface depending on the ratio between its own density
and that of the liquid.

Regardless of the triviality of our problem defined as above, let us consider
each force component of equation (1).

3A spatial domain where gravitational forces are counterpoised by centrifugal or other
forces, and the system is equilibrium on the average.
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2. Direct action of the gravitating medium on

the anomaly

Let point O1 be the geometrical center of anomaly G under consideration.
Since the central symmetry makes all the radial directions of the matter
density distribution in sphere F equivalent, let us put point O1 on axis Oz

at distance δ from point O that is the domain F geometrical center (Fig. 2).
The auxiliary rectangular coordinate system O1x1y1z related to anomaly G

is oriented so that axis O1x1 is parallel to axis Ox, while axis O1y1 is parallel
to axis Oy.
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Figure 2:

The gravity field gradient gF exists at each point of spherical domain F

under consideration:

gF “ ´G
4

3
πρF r , (2)

where r is the radius-vector of an arbitrary point A of domain F ; G is the
gravitational constant. Detailed derivation of this formula is shown in, e.g.,
[1, 3]. As relation (2) shows, gravity field gradient gF at the point with
radius-vector r is always directed towards the domain F geometrical center;
in this case, this is point O.

Now we know the gravity field gradient at each point of spatial domain F

and can estimate the gravitational force acting on anomaly G. Since the grav-
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itational interaction is additive, each elementary volume dV of the domain G

matter experiences non-zero gravitational effect from the domain F matter.
The resultant vector of gravitational action of medium F on anomaly G is
the following integral:

F
´

“

ż

VG

dF
´

, dF
´

“ ρGdV gF . (3)

Since our problem is symmetrical about axis Oz, it is evident that

F
´

x “ i ¨ F
´

“ 0, F
´

y “ j ¨ F
´

“ 0, F
´

z “ k ¨ F
´

“

ż

VG

k ¨ dF
´

.

Substitute (3) and (2):

F
´

z “

ż

VG

k ¨ dF
´

“ ρG

ż

VG

k ¨ gF dV “ ´
4

3
πGρGρF

ż

VG

r sinϕ
hkkikkj

k ¨ r dV . (4)

Let us express product r sinϕ and elementary volume dV created near
point A P G based on the Fig. 2 geometry. Point A position in coordinate
system O1x1y1z is specified by spherical coordinates pr1, ϕ1, λq. Hence, the
necessary relations take the following form:

dV “ r1dϕ1 ¨ r1
cosϕ1 dλ ¨ dr1 “ r12

cosϕ1 dr1 dϕ1 dλ . (5)

and
r sinϕ “ δ ` r1

sinϕ1 . (6)

Substituting 5 and (6) into (4), obtain:

F
´

z “ ´
4

3
πGρGρF

¨

˚

˚

˚

˝

δVG `

I
hkkkkkkikkkkkkj

ż

VG

r1
sinϕ1 dV

˛

‹

‹

‹

‚

, (7)

where integral I “ 0 because

I “

ż

VG

r1
sinϕ1

dV
hkkkkkkkkkkikkkkkkkkkkj

r1dϕ1r1
cosϕ1dλdr1 “

2π
ż

0

dλ

RG
ż

0

r13dr1

✟
✟
✟
✟
✟
✟
✟
✟
✟
✟✯
0

π{2
ż

´π{2

sinϕ1
cosϕ1dϕ1 “ 0.
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Grouping the factors in equation (7), obtain

F
´

z “

gF pδq
hkkkkkikkkkkj

´
4

3
πGρF δ ρGVG

or, in the vector form,
F

´

“ ρGVG gFpδq . (8)

Thus, gravitational force F
´

acting upon anomaly G is directed towards
the domain F center of gravitational attraction. Relation (8) is true also in
the case when the medium F gravitational attraction center is geometrically
within anomaly G, i.e., at δ ă RG .

3. Indirect action of the gravitating medium on

the anomaly

Spherical domain F with uniformly distributed density ρF induces a cen-
trosymmetrical gravity field with the gravitation attraction center at point O.
In its turn, this field generates in the medium under consideration a cen-
trosymmetrical pressure distribution with an appropriate radial gradient.
Here we ignore creation of pressure gradients by all the factors other than
gravitation. Hence, placing anomaly G into gravitating medium F , we face
the fact that the anomaly experiences a buoyant force. Since anomaly G

is an object with a non-zero volume, integration of the pressure effect over
its surface gives us a force tending to ”push” G out into the domain of the
medium F minimum pressure.

dr

r dj

r dcosj l

dVÎF

p1

g_

p2

A

Figure 3: Elemen-
tary volume dV in
domain F .

Let us see how the pressure is distributed
in domain F . For this purpose, select in it an
elementary volume dV in the vicinity of point A
with spherical coordinates r, ϕ and λ (Fig. 3).

dV “

dS
hkkkkkkkkikkkkkkkkj

rdϕ ¨ rdλ ¨ cosϕ ¨dr

The selected elementary volume of the domain
F medium is in equilibrium. The lower surface
(area dS) of elementary volume dV undergoes
pressure p2 while the upper one undergoes pres-
sure p1; in our case, p2 ą p1. In addition, the
elementary volume dV mass experiences gravi-
tational force directed towards the medium F
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gravitational attraction center. Here we consider a stationary case; hence,
the selected elementary volume dV P F is in equilibrium. Taking into ac-
count all these facts, let us construct an equilibrium equation for elementary
volume dV (Fig. 3):

p2dS ´ pp1dS ` ρFdV gFq “ 0 , where dV “ dSdr . (9)

Therefore, pressure increment dp can be written as follows:

dp “ p2 ´ p1 “ ρFdr gF .

Substitute in this relation expression (2) for the gravity field gradient gF and
integrate over r:

pprq “ ´
2

3
πGρ2Fr

2 ` const .

The constant may be determined from the condition at the domain F bound-
ary:

p
ˇ

ˇ

ˇ

r“RF

“ pF ,

where pF is the external pressure at the domain F boundary. Let pF “ 0;
then the pressure at an arbitrary point of domain F may be expressed as

pprq “ ´
2

3
πGρ2F

`

r2 ´ R2

F

˘

. (10)

Now let us determine buoyant force F
`

acting upon anomaly G, which is
caused by the presence of pressure gradient in medium F :

F
`

“

ż

SG

pprqdS, where dS “ n dS , (11)

pprq is the medium F pressure on elementary area dS of the anomaly G

surface, n is the normal to elementary area dS of the anomaly surface at
point Aprq. Fig. 3 shows that

dS “ RG cosϕ
1dλ rdϕ1 .

In calculating integral (15), we should take into account that, in the
scope of our definition, the problem possesses geometrical and force symmetry
about axis Oz; hence,

F
`

x “ i ¨ F
`

“ 0 , F
`

y “ j ¨ F
`

“ 0 , F
`

z “ k ¨ F
`

“

ż

SG

pprq

sinϕ1

hkkikkj

k ¨ n dS .
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Therefrom, taking into account the dS expression, obtain

F
`

z “

ż

SG

pprq sinϕ1dS “

π{2
ż

´π{2

pprq sinϕ1

dS
hkkkkkkkkkikkkkkkkkkj

RG cosϕ
1dλ rdϕ1 “

“ RG

2π
ż

0

dλ

π{2
ż

´π{2

pprqr sinϕ1
cosϕ1dϕ1 .

Integrating this over λ and substituting relation (10) for pprq, obtain

F
`

z “
4

3
πR2

G πGρ2F

π{2
ż

´π{2

`

r2 ´ R2

F

˘

sinϕ1
cosϕ1dϕ1 . (12)

Derive r2 from the problem geometry (Fig. 2):

r2 “ δ2 ` R2

G ` 2δRG sinϕ
1 , (13)

where δ is the shift of the anomaly G center; r is the distance between the
domain F gravity attraction center and a point on the anomaly G surface.
Substituting (13) into (12), obtain:

F
`

z “
4

3
πR2

G πGρ2F

π{2
ż

´π{2

¨

˚

˝

r2
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

δ2 ` R2

G ` 2δRG sinϕ
1 ´R2

F

˛

‹

‚
sinϕ1

cosϕ1dϕ1 . (14)

Let us calculate the auxiliary integrals:

I1 “

π{2
ż

´π{2

sinϕ1
cosϕ1 dϕ1 “

1

2

π{2
ż

´π{2

d sin2ϕ1 “ 0 ,

I2 “

π{2
ż

´π{2

sin
2ϕ1

cosϕ1 dϕ1 “
1

3

π{2
ż

´π{2

d sin3ϕ1 “
2

3
.

Then, rewrite relation (14) taking into account I1 and I2:

F
`

“
4

3
πR2

G πGρ2F2δRG ¨ I2 “

VG
hkkikkj

4

3
πR3

G ρF

´gFpδq
hkkkkikkkkj

4

3
πGρFδ
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Hence, anomaly G placed into domain F with a pressure gradient undergoes
buoyant force F

`

:
F

`

“ ´ρFVG ¨ gFpδq . (15)

Buoyant force F
`

is always directed opposite to the gravity field gradi-
ent g that has generated the pressure gradient in medium F .

4. Sum of forces acting on the anomaly

Two forces are now defined: attraction force F
´

and buoyant force F
`

; these
forces act on anomaly G in gravitating medium F at distance δ from point O.
These two forces always lie on the same straight line tangential to the gravity
field line at the preset point of domain F . They are directed oppositely to
each other and are of the same (gravitational) nature. All the above allows us
to state that anomaly G placed into static gravitating medium F undergoes
not two forces (F

`

and F
´

) but only one, namely, their sum:

F “ F
`

` F
´

“ ´ρFVG gF ` ρGVG gF “

mG
hkkkkkkkkkikkkkkkkkkj

ρGVG
loomoon

MG

ˆ

1 ´
ρF

ρG

˙

gF .

Here MG designates the anomaly G mass in its classical meaning, namely,
as a product of the anomaly matter density ρG by its volume VG, while mG

designates the anomaly G mass that is involved in gravitational interaction
with gravitating medium F .

Historically, it happened so that those forces were discovered in different
historical epochs and were always regarded as different force factors acting
on the studied object of a certain mass. Thus, it has been found out that the
only force acting upon anomaly G in gravitating medium F in the absence
of other external impacts is

F “ mGgF , where mG “ MG

ˆ

1 ´
ρF

ρG

˙

, (16)

and gF is the medium F gravity field gradient in the vicinity of anomaly G.
This force sign (direction) depends only on the ratio between densities of the
anomaly and medium surrounding it. Relation (16) shows that gravitational
interaction within the gravitating medium is determined by not the total
anomaly mass but only by its portion; therefore, we introduce a concept of
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the gravitational mass4 and designate it as mG . As for the total mass of
anomaly G designated above as MG , we call it inertial mass and define as
the product of the anomaly volume VG by the anomaly density ρG .

Therefore, we may assert that we have established a functional relation-
ship between the gravitational (m) and inertial (M) masses of an anomaly
in a gravitating medium:

m “ M

ˆ

1 ´
ρ0

ρ

˙

. (17)

The anomaly gravitational mass is fully determined by the ratio between
the densities of medium (ρ0) and anomaly (ρ). Fig. 4 clearly shows that
the inertial mass may be equal to the gravitational mass under only one
condition: when the surrounding medium density is zero, which is purely
speculative and exceptional case. In all other cases, gravitational mass m is
strictly unequal to inertial mass M .

0 1 2 3

medium density, 0
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m = M ( 1 - 0
  

/  )

m/M

M = const,  = const

Figure 4: The ratio between the inertial (M) and gravitational (m) masses
as a linear function of the gravitating medium density ρ0.

We have introduced the expression for the gravitational mass (anomaly)
in the paper devoted to studying the nature of the Earth’s gravity center
motion under the action of external gravitational forces [5]; later formula (17)
was used in the paper on the Earth’s core motion under the influence of the
Moon’s perigee mass [6] (rev.1).

4Literature, e.g., [4], presents many different definitions for the gravitational mass.
The above-considered versions of gravitational interaction of material bodies enabled us
to define the gravitational mass so as to fit best the experimental results and natural
phenomena and embrace the known cause-and-effect relations: gravitational mass is an

anomaly of density in the surrounding medium. The more pragmatic definition of
the gravitational mass may look as follows: the body gravitational mass is that determines
gravitational interaction with other bodies and is measurable by instruments.
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Case 1. Body weight on the Earth’s surface. The body weight F

on the Earth’s surface is the force of interaction between two gravitational
masses: the Earth and an object resting on its surface, whose inertial mass
is M and density is ρ

F “ mg , where m “ M

ˆ

1 ´
ρ0

ρ

˙

, g “ G
MC

R2

C

ˆ

1 ´
ρ0

ρC

˙

, (18)

Here ρC is the Earth’s density; RC is the Earth’s radius; MC is the Earth’s
inertial mass; ρ0 is the density of the atmosphere layer closest to the Earth’s
surface; G is the gravitational constant.

j

L

g_

O

F = m g

M

Figure 5:

Case 2. Pendulum oscillation equation. Let the pen-
dulum inertial mass M be connected to hinge O with a
weightless and rigid rod L in length (Fig. 5). Now let us
write the equation for mathematical pendulum plane oscilla-
tions in the Earth’s gravity field taking into account that the
gravitational and inertial masses are different, i.e., there is
some surrounding medium with density ρ0 ‰ 0 where the os-
cillations take place. Dissipation effects in the medium under
consideration are neglected.

J :ϕ “ ´F sinϕ L ,

where J “ ML2 is the mass M momentum of inertia with respect to the sus-
pension point O; F “ mg is the force of gravitational interaction between the
Earth and pendulum gravitational masses; m is the pendulum gravitational
mass. Hence, taking into account (17), the pendulum oscillation equation
takes the following form:

:ϕ `

ˆ

1 ´
ρ0

ρ

˙

g

L
sinϕ “ 0 , (19)

where ρ is the pendulum material density.

5. Gravitational interaction of a pair of bodies

in the gravitating medium

As shown earlier (17), the gravitational and inertial masses are connected by
the following relation:

m “ M

ˆ

1 ´
ρ0

ρ

˙

,
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where M is the inertial mass; ρ0 is the density of surrounding gravitating
medium F ; ρ “ M{V is the density of an inertial mass occupying volume V

(the number of matter units per unit volume). Special emphasis should be
made on that inertial mass M of the material body under consideration may
be identical to its gravitational mass m only when the surrounding medium
density is zero. The ρ0 “ 0 condition is absolutely speculative and not
realizable physically. Based on the results obtained, let us reformulate the
customary law of universal gravitation especially for the case of gravitational
interaction between two anomalies G1 and G2 located at distance r from each
other (Fig. 6) in homogeneous gravitating medium F with density ρ0:

F “ G
m1m2

r2
, where m1 “ M1

ˆ

1 ´
ρ0

ρ1

˙

, m2 “ M2

ˆ

1 ´
ρ0

ρ2

˙

. (20)

Here m1 and m2 are gravitational masses of the anomalies; (M1, ρ1) and
(M2, ρ2) are the inertial masses and densities of bodies G1 and G2, respec-
tively.

F

G
2

G
1

Figure 6: Gravi-
tating medium F

and two anomalies
G1 and G2.

Hence, the mere existence of the object grav-
itational mass is inescapably associated with the
surrounding medium density; due to this, it is pos-
sible to find the conditions under which the grav-
itational mass may be either positive or negative.
In a certain medium this factor clearly manifests
itself as repulsion or attraction of the bodies.

For instance, the submarine submerging or
emerging process is nothing but controlling the
gravitational mass value and sign by regulating
the ballast; at the zero running speed, this makes
the submarine moving along the Earth’s gravity
field line. The submarine suspension at a preset
depth means that its gravitational mass is zero.
The same principle is valid also for aircrafts. A
dirigible or air balloon rises not because of the
difference in gas densities inside and outside the
balloon shell but because of the pressure gradient
in the Earth’s atmosphere induced by the Earth’s gravity field. While the di-
rigible is rising, it is repulsed from the Earth due to its negative gravitational
mass (the dirigible mean density is lower than the medium density) and, vice
versa, its gravitational mass becomes positive while it moves down (the di-
rigible mean density is higher than that of the surrounding atmosphere).
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The Earth’s fauna also exhibits many examples of controlling the gravita-
tional mass. Those examples demonstrate the object’s ability to change its
gravitational mass value and sign at a constant density of the surrounding
medium.

Consider a model problem in the 3D space. Let gravitating medium F (ρ0
in density) accommodate two bodies G1 and G2 with fixed densities ρ1 and ρ2,
respectively. Assume that ρ1 ą ρ2. The variable is the medium density ρ0.
For each of three domains F , G1, G2 we can write a set of Poisson’s equations
for the potential:

$

&

%

∆UF “ ´4πGρ0 ,

∆UG1
“ ´4πGρ1 ,

∆UG2
“ ´4πGρ2 .

(21)

Fig. 7 presents the solution of equation set (21) as the U gradient lines.
Two versions of the density ratio are considered. Fig. 7(a) demonstrates the
field line distribution for the case when the medium density ρ0 exceeds the
densities of inclusions G1 and G2. The other version (Fig. 7(b)) is that the
medium density is between the densities of bodies G1 and G2.

+ +

(a) ρ0 ą ρ1 ą ρ2

+-

(b) ρ1 ą ρ0 ą ρ2

Figure 7: Distribution of gradient UF over domain F when the two grav-
itational masses are of the same sign (a) and of different signs (b).

The numerical experiment (Fig. 7(b)) showed that the gravitational dipole
is a physically real object.

Definition 1. The gravitational dipole is formed by two con-
nected bodies of an arbitrary volume and shape and of different
densities, which are located in a medium with a non-zero density,
provided the medium density is lower than that of one body and
higher than that of the other one.
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A body in equilibrium at the interface of two media

Consider a static problem: equilibrium of a wooden cube floating in water
(Fig. 8). Let us estimate the depth it is submerged to. It is known that
the air density (the medium above the water surface) is ρair “ 1.29 rkg{m3s,
water density is ρwater “ 1000 rkg{m3s, and the wooden (oak) cube density
is ρcube “ 800 rkg{m3s. The cube face length is a “ 1 rms. The gravity field
gradient g is perpendicular to the water surface.

h1

h2

a

Water

Air

F1

O1

O2

F2

g

V1

V2

P1

P2

Figure 8: Equilibrium of a body at the interface of two media.

The problem shall be solved in the following way: consider the cube as an
object consisting of two parts. One of those parts is an anomaly in air, the
other is an anomaly in water. Each anomaly is exposed to the Earth’s gravity
field. Since the cube is in equilibrium, the sum of gravity forces acting on its
parts is zero; taking into account that the Earth’s gravity field gradient g is
directed to the same side both in air and water, obtain

F1 ` F2 “ 0 , or pm1`m2qg “ 0 .

Hence, we have obtained the condition for the body equilibrium: the sum of
gravitational masses of the cube above-water and sub-water parts is zero:

m1`m2 “ 0 , (22)

where

m1 “

M1
hkkkikkkj

ρcubeV1

ˆ

1 ´
ρair

ρcube

˙

, m2 “

M2
hkkkikkkj

ρcubeV2

ˆ

1 ´
ρwater

ρcube

˙

.

Substituting m1 and m2 into (22) and taking into account that V1 “ a2h1

and V2 “ a2h2, obtain the set of equations:

h1pρcube ´ ρairq ` h2pρcube ´ ρwaterq “ 0 , h1 ` h2 “ a
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and, hence,

h2 “ a
ρcube ´ ρair

ρwater ´ ρair

.

Thus, the cube submersion depth in water is h2 « 0.8 rms, while its above-
water part height is h1 «0.2 rms. The body is in equilibrium.

In this case we can, taking into account definition 1, formulate the fol-
lowing axiom:

Axioma 1. Each material body that is in equilibrium at the in-
terface of two media is a gravitational dipole.

6. Gravitational pole as a function of medium

density

Consider again problem (21) about the interaction of two homogeneous spheres
G1 and G2 in stationary gravitating medium F . Let us supplement the prob-
lem by searching for equilibrium points and consider it in a 3D space large
enough to exclude the edge effects. The bodies are motionless. To solve the
problem, we shall use the finite-element method.

Analysis of the two-body gravity field character showed that the field
(gradient) lines converge at or originate from peculiar points not coinciding
with the body gravity centers. These are equilibrium points where the sum
of all the forces is zero.

Designate the distance between gravity centers of homogeneous spheres
G1 and G2 as L; let L “ 0.030 rms. Other bodies’ characteristics are listed in
Table 1.

Table 1: Parameters of the gravitational pair presented in Fig. 9

density radius

G1 ρ1 “ 7200 rkg{m3s R1 “ 0.007 rms

G2 ρ2 “ 6700 rkg{m3s R2 “ 0.005 rms

The solution in the form of scalar field gradient U was plotted for two
cases: when medium F density is ρ0 “ 0 and ρ0 “ 7000 rkg{m3s. These
two solutions are presented in Fig. 9 and Tab. 2. Lp represents the distance
between the gravitational equilibrium points (or gravitational poles). As
Fig. 9 shows, the peculiar feature of those points is that the gradient lines
either end on the poles in the case of the gravitational dipole (when gravi-
tational masses are of different signs) or play the role of a ”sink” when the
gravitational masses are of the same sign.
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Figure 9: Displacement of gravitational poles δ1 and δ2 versus density ρ0 of
medium F . Fig. 9(a) presents the solution for the gravitational masses of
the same sign. The points are located between the gravity centers of bodies
G1 and G2. Fig. 9(b) illustrates the existence of opposite-sign gravitational
masses. Actually, in this case a gravitational dipole is observed.

Table 2: Displacement of gravitational poles with respect to the gravity
center positions for the similar-sign and opposite-sign gravitational masses
G1 and G1 placed in different media at the distance L “ 0.03 rms from each
other.

ρ0, rkg{m3s δ1, rmms δ2, rmms

0 0.126 0.493
7000 -0.198 -0.250

Positions of the gravitational poles in each body of the pair under consid-
eration depend on their geometric and physical (density) parameters and also
on the inter-body distance (e.g., the distance between their gravity centers).

7. Conclusions

A. We have proposed a version for generalization of the universal gravita-
tion law; this allowed us to spread the law to interaction of bodies in a
gravitating medium, i.e., to expand its field of application. The gener-
alization obtained involves the classical universal gravitation law and
the Archimedes’ principle that is as ancient as the universe. Actually,
Archimedes was the first who formulated the law of gravitational inter-
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action in gravitating media by defining the buoyant force (see (15)).

B. The paper testifies that the inertial mass may seem to be equal to
the gravitational mass only when they are compared in the absence
of the surrounding gravitating medium, i.e., if the medium density
is strictly zero. Evidently, the case of the gravitational and inertial
masses identity is purely speculative.

C. We have shown that in our natural environment there are such objects
as gravitational dipoles (bodies with negative and positive gravitational
masses).

D. Comparison of the character of force interaction of electrostatically
charged bodies with that of gravitational bodies have shown the ex-
istence of such a fundamental difference in these characters that they
cannot be combined in one and the same theory: bodies with similar-
sign electrical charge repulse each other, while bodies with similar-sign
gravitational masses attract each other.
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