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Abstract. The traditional presentation of special relativity is made from a rupture

with previous ideas, such as the notion of absolute motion, emphasizing the antagonism

of the Lorentz-Poincaré’s views and Einstein’s ideas. However, a weaker formulation

of the postulates allows to recover all the mathematical results from Einstein’s special

relativity and reveals that both viewpoints are merely different perspectives of one and

the same theory. The apparent contradiction simply stems from different procedures

for clock “synchronization,” associated with different choices of the coordinates used

to describe the physical world. Even very fundamental claims, such as the constancy

of the speed of light, relativity of simultaneity and relativity of time dilation, are seen

to be no more than a consequence of a misleading language adopted in the description

of the physical reality, which confuses clock rhythms with clock time readings. Indeed,

the latter depend on the “synchronization” adopted, whereas the former do not. As

such, these supposedly fundamental claims are not essential aspects of the theory,

as reality is not altered by a mere change of coordinates. The relation between the

rhythms of clocks in relative motion is derived with generality. This relation, which is

not the standard textbook expression, markedly exposes the indeterminacy of special

relativity, connected with the lack of knowledge of the value of the one-way speed of

light. Moreover, the theory does not collapse and remains valid if some day the one-

way speed of light is truly measured and the indeterminacy is removed. It is further

shown that the slow transport method of “synchronization” cannot be seen as distinct

from Einstein’s procedure.
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1. Introduction

In previous works we undertook a reflection on the foundations of special relativity [1–5].

An inspiring source in this journey was John Bell’s book “Speakable and unspeakable

in quantum mechanics” [6]. More precisely, the book includes a chapter entitled “How

to teach special relativity,” in which Bell recommends the use of a Lorentzian pedagogy,

i.e., that special relativity should be taught starting from the idea of a preferred frame:

“I have for long thought that if I had the opportunity to teach this subject,

I would emphasize the continuity with earlier ideas. Usually it is the

discontinuity which is stressed, the radical break with more primitive notions

of space and time. Often the result is to destroy completely the confidence of

the student in perfectly sound and useful concepts already acquired.”

John Bell’s idea goes much deeper than the questions of “continuity” and “confidence.”

Indeed, he continues by adding and stressing an ingredient of special relativity still

somewhat unnoticed, namely that all the results from special relativity can be derived

either by following the ideas of Lorentz and Poincaré of the existence of a “preferred

reference frame” or Einstein’s “equivalence of all inertial frames.” He acknowledges a

difference of philosophy – and a difference of style – on two approaches describing the

same physics:

The difference of philosophy is this. Since it is experimentally impossible to say

which uniformly moving system is really at rest, Einstein declares the notions

‘really resting’ and ‘really moving’ as meaningless. For him only the relative

motion of two or more uniformly moving objects is real. Lorentz, on the other

hand, preferred the view that there is indeed a state of real rest, defined by the

‘aether’, even though the laws of physics conspire to prevent us identifying it

experimentally. The facts of physics do not oblige us to accept one philosophy

than the other.

The last quoted assertion, although well-known by specialists, still startles most

physicists. Nevertheless, it is simply the quite obvious affirmation that the study of

relative motion can be made without any reference to absolute motion, but is not

incompatible with it. A fact well-known by Galileo, Newton, Lorentz and Poincaré

and deeply connected with the principle of relativity, as carefully debated in [4], that

most textbooks tend to forget.

In his outstanding 1905 relativity paper [7], Einstein considers the reference to

absolute motion as “superfluous.” Modern physics lead to a widespread acceptance of a

strict operational view of physics, making it easy to identify the word “superfluous” with

“meaningless.” This constitutes the essence of the “difference in phylosophy.” However,

the bases of Einstein’s special relativity are much less solid than it is generally accepted.

In short, both postulates from special relativity are too strong and can be formulated

in weaker forms [4], while keeping fully compatible with all available observations and

experimental results [1–5]. This more general formulation of special relativity, briefly
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reviewed in sections 2 and 4, strikingly evinces that there is an indeterminacy in the

theory [4], since there are quantities which eventually cannot be measured, such as the

one-way speed of light, as noted early by Reichenbach [8, 9] and discussed by many

authors [2, 10–19]. As a consequence, a deadlock arises in practical terms – although

not in fundamental ones – and some additional assumptions have to be required to cut

this Gordian knot. Einstein’s theory solves the problem in an extremely simple and

elegant way, with his methodology for “synchronization” of distant clocks, providing

a straightforward and effective operational procedure to study physics [4]. Still, other

approaches to the problem are possible, fully compatible with Einsteins relativity in

practice, but leading to very different assertions in fundamental and philosophical terms.

It seems reasonable to conceed that when additional restrictions are included on

top of those implied by the physical reality, then it is likely we are describing only

part of it. The difficulty in transposing this somewhat evident statement into the

context of Bell’s two philosophies lays in a misleading interpretation of the “symbols”

employed in the mathematical formalism, with t and v on the first line. In fact, a

negligent use of language, associated with the unclear separation of scientific results

and “philosophical” or “ideological” statements (defined here as statements that are

dependent on an arbitrary convention or on an interpretation relying on additional

assumptions not imposed by experiment), has led to a terminological confusion and

apparent contradictions.

The difficulty in accepting Bell’s point is more on the speech or discourse

surrounding special relativity, not so much on the calculations actually performed. As a

simple example, “relativity of simultaneity,” one of the trademarks of special relativity,

presented almost always in the very beginning of any text or media content about

relativity, is one debatable “philosophical” statement. As a matter of fact, it depends

on the choice of coordinates (cf. section 3) and, therefore, by no means is an intrinsic

feature of the theory [12]. The same is true regarding “relativity of time dilation” (cf.

section 5). Despite the correctness of the underlying calculations, these affirmations

are repeatedly given an abusive semantics they do not possess, as detailed in the body

of this paper, as they mix the notions of clock rhythms (or clock tick rates) and time

readings (or time coordinates) displayed by clocks. Indeed, the former are independent

of any “synchronization” procedure, whereas the latter are not.

Following [12], we note that emphasis should be given to the properties that do not

depend on the choice of coordinates, or, equivalently, on the “synchronization” procedure

adopted. To avoid the problem of coordinate-dependent quantities, Oziewicz [20,21] and

Ivezic [22] have developed “coordinate-free” approaches to special relativity.

The existence of alternative formalisms and broader views of special relativity

following the general lines presented above is rather consensual. As illustrations, we can

name the works of Edwards [11], Mansouri and Sexl [10], Leubner et al [12] or Selleri

[15]. However, the speech surrounding special relativity has gained a strong ideological

charge, nearly dogmatic. Thus, if these unconventional theories and the corresponding

calculations are widely accepted, their implications remain “unspeakable.” As a
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consequence, the establishment of a broader and more general view of special relativity

was hindered up to now and a minimal interpretation prevails.

The aim of this work is to accentuate the need for a general formulation of special

relativity, by reconciling two apparently contradictory discourses. Hence, one should

not speak about two philosophies, as they are different aspects of one and the same

theory. In particular, one should not say that the results from special relativity can

be derived either by following the ideas of Lorentz and Poincaré of the existence of a

“preferred reference frame” or Einstein’s “equivalence of all inertial frames,” but rather

use the word both. For instance, Lorentz’s view is usually associated with the sentence

“the speed of light in vacuum is c only in one reference frame,” whereas Einstein’s

view with the seemingly contradictory sentence “the speed of light in vacuum is c in all

inertial frames.” These statements induce to think of a severe incongruity, that could

be depicted schematically as in figure 1a). The conflict can be easily elucidated with

the simultaneous use of different procedures for clock “synchronization,” to which are

associated different choices of the time coordinates used to describe physical events [2,4].

A key concept is the notion of “Einstein-speed” previously introduced in [2] and reviewed

in section 6. Within the proposed formulation of special relativity, the former sentences

have to be rephrased to “the one-way speed of light in vacuum is c in one reference

frame; the two-way speed of light in vacuum is c in all inertial frames” and “the one-way

Einstein-speed of light in vacuum is c in all inertial frames,” which could be represented

as in figure 1b). One explicit case to exemplify this assertion can be found in section

5 from [2]. It shows that special relativity was developed under the shadow of a false

dichotomy and that with a precise language all conflicts disappear at the onset.

The structure of this paper is the following. In the next section we present the

weak formulation of the postulates. Synchronization procedures and the definition of

simultaneity are discussed in section 3. The mathematical formalism is introduced in

section 4, with the presentation of the IST transformation and its relation with the

Lorentz transformation. Section 5 contains a debate on the difference between clock

rhythms and clock time readings, in a short and simple subsection, which nevertheless

is a cornerstone of this article. The concept of Einstein speed is reviewed in section 6,

where the full compatibility of Bell’s two philosophies and the picture of figure 1b) is

definitely established. The bridge between the two philosophies is completed in section

7, where the role of the Lorentz transformation is further discussed. In section 8 we

obtain the relation of rhythms between two clocks in relative motion and its correlation

with the usual time dilation expressions, in another central section of this work. The

slow transport method of “synchronization” is presented in section 9 and shown to be

equivalent to Einstein’s procedure. Finally, section 10 summarizes our main findings.

2. The weak statement of special relativity postulates

We stand for a “weak” form of the postulates, in which the number of assumptions is

kept to a minimum and no additional restrictions to those required by experiment are
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Figure 1. a) Usual view: Lorentz-Poincaré’s and Einstein’s philosophies seen as

irreconciliable; b) Current formulation: Lorentz-Poincaré’s and Einstein’s views focus

different aspects of the same theory.

imposed. In this view, we start, exactly as it has been done by Einstein in his 1905

paper [7], with the definition of the “rest system.” Einstein defined it as “a system of

co-ordinates in which the equations of Newtonian mechanics hold good (i.e. to first

approximation).” We define it as a system in which the one-way speed of light in empty

space is c in any direction, independently of the velocity of the source emitting the light.

As the name indicates, the one-way speed of light is the speed of light in a path in just

one direction.

One may argue that it may be impossible to know which is the rest system. The

answer to this remark is somewhat disconcerting, as the issue is of no relevance for the

point we are trying to make. If we accept that when a photon travels between two points

in space, it does so with a certain speed, regardless of our knowledge of its value, then

there is no conceptual difficulty at this stage, although there may exist a practical one.

How to deal with this impossibility has been already discussed [2,4] and the question is

readdressed in section 7.

The postulate of the constancy of the speed of light is then stated as follows [4]:

• the two-way speed of light in empty space is c in any inertial frame, independently

of the velocity of the source emitting the light.

Here, an inertial frame is any frame moving at constant velocity in relation to the rest

system, and the two-way speed of light is its average speed on a round-trip. It is worth to

emphasize that what one learns from the Michelson-Morley experiment is the constancy

of the two-way speed of light in vacuum and no information can be obtained regarding

its one-way value. The definition of the rest system is important to give a starting

reference point to the theory. In addition, it is interesting to note that the existence of

the rest system can be deduced from the constancy of the two-way speed of light and

the assumption of homogeneity of space [23].

No further assumptions in this postulate are required to develop special relativity,
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in particular no claims have to be made regarding the detectability and/or uniqueness

of the rest system nor to the value of the one-way speed of light in inertial frames.

However, although for operational reasons any inertial frame can be treated as if it

were the rest system, the rest system is indeed unique [2,4], as shown in section 4. How

this affirmation is compatible with Einstein’s view is clarified in section 6. In passing,

let us refer that the constancy of the two-way speed of light can also be derived from a

“conceptualization of time” grounded on very fundamental assumptions [1].

A general formulation of the principle of relativity is more subtle than it may look

at first sight. We have made a comprehensive analysis of the principle of relativity in [4],

where we defend its introduction on a late stage of the presentation of the theory and

suggest a formulation close to the one proposed in Feynman’s “Lectures on Physics” [24]:

• all the experiments performed in a closed cabin in any moving inertial frame will

appear the same as if performed in the rest system, provided, of course, that one

does not look outside.

The importance of not “looking outside” is stressed by Feynman and was carefully

discussed before [4]. One critical implication of not looking outside is the need to

perform an internal synchronization of clocks (see section 3), such as the one proposed

by Einstein [7]. With Einstein’s “synchronization” procedure the space-time coordinates

of events in different frames become related by the Lorentz transformation, so that an

alternative way to express the principle of relativity is “all laws of physics, when written

with Lorentzian coordinates, keep the same form in all inertial frames, the same as

in the rest system” [4]. The privileged role of the Lorentz transformation in special

relativity was examined in our former publications [2, 4] and further appreciation is

made in section 7.

3. Synchronization and simultaneity

Synchronization of distant clocks is a key issue in special relativity, debated since the

very beginning of the theory and continuing nowadays [2,7–19,25]. One important trend

in the discussion of this topic is the so-called “conventionality of simultaneity thesis.”

A good overview of this thesis was presented by Marco Mamone Capria [16] and was

quickly reviewed in [4].

In this work we follow our former analysis [2], based to a big extent on the work of

Mansouri and Sexl [10]. We start with the synchronization of clocks in the rest system.

In this system there is no need for any “stipulation” nor any element of convention.

Since the value of the one-way speed of light is known in this frame and it is the same

in the to-and-fro paths, we can use Einstein’s procedure: a photon is emitted from a

point A at time t0A measured by a punctual clock in point A, it is reflected at a point

B at a time tB to be defined, and arrives back at point A at time t1A; the time tB of a

punctual clock in point B is set as tB = (t0A + t1A)/2. All clocks in the rest system can

be synchronized in this way. Alternatively, if the distance between points A and B is

L, tB = t0A + L/c.
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We can now try to synchronize clocks in any inertial frame. The simplest method

is to perform an “external synchronization” [2,4,10], in which we “look outside” and the

synchronized clocks from the rest system are used as a reference. For instance, observers

in the moving frame set their clocks to 0 when they fly past by a clock in the rest system

marking 0 as well. We denote clocks synchronized in this way by synchronized clocks

and their time readings by synchronized times or simply “times.” An alternative way

is to perform an “internal synchronization” [2, 4, 10], where the moving observers do

not look outside and use the same procedure employed in the rest system. This is of

course Einstein’s synchronization. We call clocks “synchronized” with this scheme by

Lorentzian clocks, as their time readings, that we name Lorentzian times, are related

by the Lorentz transformation. In this case the moving observers have proceeded as

if they were in the rest system: despite not knowing the value of the one-way speed

of light in their frame, they proceed as if it were c. A Lorentzian clock has a constant

offset of −vx′/c2 in relation to a co-punctual synchronized clock [2, 4].

One very intuitive idea to set the initial adjustment of distant clocks is the slow

transport method of clock “synchronization.” It consists of setting all the clocks at the

same location and then to move them slowly until they reach their final positions. Hence,

the slow transport procedure does not involve “looking outside.” As anticipated in [4],

this method is equivalent to the “internal synchronization” scheme [10, 26–30], where

we proceed as if the value of the one-way speed of light were c, in accordance with the

current formulation of the principle of relativity. Hence, slow transport can be used to

synchronize clocks in the rest system, but we must be fully aware it leads to Lorentzian

clocks if used in a moving inertial frame. The equivalence between slow transport and

internal synchronization is deduced from the present formulation of special relativity in

section 9.

A first step towards the clarification on how to reconcile Bell’s two philosophies can

already be made. It consists in having both synchronized and Lorentzian clocks in one

inertial frame. An example of this configuration is shown in figure 2. In this figure S

and S ′ denote the rest system and the inertial frame, respectively, t is the time in S, t′

and t′L are the time readings of synchronized and Lorentzian clocks in S ′, respectively,

the speed of S ′ is v = 0.6c, and the distances AB and BC are the same and equal to

1800 km (in S). Clocks D and E are co-punctual with clocks B and A, respectively, at

t = 0. We will consider similar setups repeatedly.

Figure 2 acutely exposes the difficulties with the concept of simultaneity. Are two

events, both occurring at t = 0, one at point A and the other at point B, simultaneous

in the moving frame as well? The difficulty is that while the synchronized clocks display

the same time readings for the two events, the Lorentzian clocks display different ones,

so that the comparison of clock time readings by itself does not provide an answer.

However, on the one hand, the Lorentzian clocks have been adjusted with one additional

assumption, namely, a stipulated value for the one-way speed of light in the moving frame

used for operational purposes. On the other hand, a photon emitted from an observer

in the inertial frame S ′ propagates in the rest system with a one-way speed of light c,
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A B C

t=0t=0 t=0

t’=0t’=0

DE

S

S’
v

tL’=-4.5tL’=0

Figure 2. Lorentzian (t′L) and synchronized (t′) clocks in an inertial frame S′, obtained

from internal and external “synchronization” procedures, respectively. AB = BC =

1800 km; v = 0.6c.

exactly the same of a photon emitted by an observer in S, so that the synchronization

of clocks in S is reliable, even if it is made from the observers in S ′. Thus, within the

weak formulation of the postulate of the constancy of the two-way speed of light, we

define simultaneity from the comparison of the time readings of synchronized clocks.

According to this definition, the answer is “yes.”

In any case, whatever definition of “simultaneity” is adopted, physical reality is not

changed. What is modified is merely the way to describe it. In fact, the observers in S ′

can describe any physical phenomenon using their synchronized and/or their Lorentzian

clocks. Physical phenomena are independent on the way one chooses to set his own clocks

and are precisely the same regardless of the description adopted. The picture 1a) of a

conflict of philosophies corresponds to a big extent to implicitly consider that physical

reality is indeed modified when we have just changed its description (cf. as well section

5). The picture 1b) of a full compatibility corresponds to noting that we can even adopt

two definitions of “simultaneity,” as long as we distinguish between simultaneity (or

synchronized simultaneity), from Einstein simultaneity, as given, respectively, by the

comparison of the time readings of synchronized and Lorentzian clocks.

Finally, it is consensual that a hypothetical signal with infinite speed would solve

the problem of assigning physical meaning to any synchronization scheme once for all,

as no element of convention would ever be needed in this case, in any frame. It is

interesting to note that if such signal would be emitted from clock A at t = 0, then

it would set all other clocks in figure 2 (B, C, D and E) exactly in the same way as
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the synchronized clocks. This is not a definitive argument, as infinite speed signals

may be non-existing in nature. Nevertheless, the basic notion of synchronization is not

affected by this observation and it does not prevent the use of infinite speed signals in

a Gedankenexperiment like this one.

4. The IST transformation

The IST transformation (Inertial [15, 31, 32]–Synchronized [2, 4, 23, 29, 33]–Tangherlini

[34]) has been first proposed by Tangherlini [34] and used by various other authors

[10,35,36]. It emerges naturally when the external synchronization procedure delineated

in the previous section is used. Its derivation is quite straightforward and has been

outlined in [2]. In the usual configuration where the axis of the rest frame S and a

moving frame S ′are aligned, the origin of S ′ moves along the x-axis of S with speed v in

the positive direction, and the reference event is the overlapping of the origins of both

frames at time zero, the IST transformation is given by [2]

x′ = γ(x− vt)

t′ =
t

γ
, (1)

with

γ =
1√

1− v2

c2

. (2)

The IST transformation is not symmetrical, as the inverse transformation,

expressing x′ and t′ as functions of x and t, is given by,

x =
1

γ
(x′ + γ2vt′)

t = γt′ . (3)

Notice that the position of the origin of S, x = 0, is given in S ′ by x′ = −γ2vt′. This

means that S ′ sees S passing with speed v′ = −γ2v, and not just −v as one could think

at first sight. One factor γ accounts for the fact that rulers are shorter in S ′, while the

second γ factor comes from the fact that clocks run slower there [5]. Note as well that

we can have |v′| > c, which may look surprising. However, c is a limit speed in the rest

system [1], i.e., no object can travel at a higher speed in S. The corresponding limit

speeds in S ′ are obtained in section 6 [cf. equations (11) and (12)]. They are different

for objects moving in the positive and negative x-directions, and one of them is larger

than c. Besides, the notion of “Einstein speed” is introduced in the same section, where

it is further shown that its value in S ′ is limited to c, in accordance with the standard

formulation of special relativity.

When the speeds involved are low, γ is very close to one. In this case, the

transformation of coordinates between the rest and the moving frame reduce to

x′ ' x− vt
t′ ' t (4)
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Galileo’s transformation, as it should be.

If a second reference frame, S ′′, is moving with speed w in the rest system, then it

is not difficult to show that the quantities in S ′ and S ′′ relate through

x′ =
γv
γw

[
x′′ − γ 2

w (v − w)t′′
]

t′ =
γw
γv
t′′ , (5)

where γv and γw are the γ factors associated with speeds v and w, respectively. Of course

that the inverse relations are simply obtained by interchanging the roles of w and v and

the ′ quantities with ′′ ones. Moreover, when w = v the identity transformation is

obtained.

Finally, the Lorentz transformation is readily obtained from the IST transformation

(1) by introducing the offset factor mentioned in section 3,

t′L = t′ − v

c2
x′ (6)

and substituting t′ in (1) [2, 4]. Additional remarks about the Lorentz transformation

are made in section 7.

5. Clock rhythms and time readings

One simple – and yet critical – issue that has to be clarified before engaging any

discussion on the interpretation of special relativity or of special relativity results is

to state the difference between clock rhythms (or tick rates) and clock time readings

(or time coordinates). Contrary to time readings, clock rhythms do not depend

on any particular form of “synchronization.” Surprisingly, the failure to make this

basic distinction is at the origin of several misunderstandings surrounding the theory,

including, e.g., the discussion of the twin paradox, to be adressed in a subsequent

publication.

Let us consider the time-evolution of the situation depicted in figure 2 and check

how does it look like at t = 10 ms. The result is shown in figure 3. As it can be verified,

all moving clocks D and E, both synchronized and Lorentzian, tick at the same rate:

for each of them 8 milliseconds have passed from figure 2 to figure 3 (for instance, for

the Lorentzian clock D 3.5-(-4.5)=8 ms have passed, the same as for the synchronized

clock D). Thus, the clock rhythms are independent of the adopted “synchronization.”

In turn, 10 ms have passed for each of the clocks at rest A, B and C. All moving clocks,

both synchronized and Lorentzian, tick slower, in this case by a factor of 10/8 = 1.25,

than the clocks at rest. Reversely, all clocks at rest tick faster than the moving clocks.

Time dilation is related to the clock rhythms and, as expected, does not depend on the

initial adjustment or “synchronization” that is made to the moving clocks.

The principle of relativity and, in particular, “relativity of time dilation,” can also

be addressed with the help of figures 2 and 3. If the observers in S ′ decide not to

look outside and to use only their Lorentzian clocks, then, according to the principle

of relativity, their description of the phenomenon has to be the same as if they were
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A B C

t=10

t’=8t’=8

DE

S

S’
v

tL’=3.5tL’=8

t=10 t=10

Figure 3. Evolution of the situation represented in figure 2, with Lorentzian (t′L) and

synchronized (t′) clocks in an inertial frame S′. AB = BC = 1800 km; v = 0.6c.

at rest. This is just standard special relativity, but still let us verify explicitly how it

works in this example. An observer with the Lorentzian clock D says he has seen a

clock B from S just in front of him when this clock B was reading t = 0 while his clock

D was marking t ′L = −4.5 ms (figure 2). Later on, an observer co-punctual with clock

E sees the same clock B showing t = 10 ms, while his own clock E exhibits t ′L = 8

ms (figure 3). The observers from S ′ could then (erroneously) conclude that while for

them, 8 − (−4.5) = 12.5 ms have passed, in the “moving” frame S only 10 − 0 = 10

ms have passed. Therefore, they could consider themselves “at rest” and the “moving”

clocks from S would appear to run slower. In this case, by the same factor as before,

12.5/10 = 1.25, as it had to be. As long as one does not look outside, there is a symmetry

in the description of physical phenomena. However, this “relative time dilation” has

nothing to do with the clocks rhythms and it is merely a result of comparing time

coordinates using Lorentzian clocks. In fact, if the observers in S ′ perform the same

comparison of time readings using their synchronized clocks instead of the Lorentzian

ones, they arrive at the opposite (and correct) conclusion, namely, that their clocks are

running slower.

The example above illustrates quite clearly the apparent “conflict of philosophies”

and the claim that there is only one theory. Similarly to the discussion of simultaneity

in section 3, when we set apart the symbols t′ and t′L, related by (6), and denote them

by different words, distinguishing “time” (or “synchronized time”) from “Lorentzian

time,” it becomes evident there is no formal incompatibility between the assertions of

both “philosophies” and that the main problem lays on the language (in this case the



Synchronization and clock rhythms 12

use of the word “time” to denote two different concepts, in section 3 the use of the word

“simultaneity” to denote two different concepts).

One important remark is the following. When observers in two inertial frames cross,

if it is not possible to look outside and to perform some kind of external synchronization

or, equivalently, to measure the one-way speed of light, then we do not know in which

frame the clocks are actually running slower [cf. as well equation (26) in section 8]. This

is an alternative way of pointing out the indeterminacy of special relativity thoroughly

debated in [4]. We do know, however, that the description made with the Lorentzian

clocks between one particular inertial frame and any other is the same as between the

rest system and any inertial frame. This is the dangerous beauty of the study of relative

motion.

6. Velocity addition and Einstein speed

The velocity addition formula can be obtained from the IST transformation without

difficulty. As before, let S denote the rest system and S ′ an inertial frame moving with

speed v. If an object is moving at speed w in S, then its speed in the inertial frame,

w′v, is simply

x′ = w′vt
′ . (7)

Using the synchronized transformation (1) to substitute x′ and t′,

γv(x− vt) = w′v
t

γv
, (8)

where γv is the γ factor associated with speed v, given by (2). Rearranging the different

terms, x =
(
v + w′

v

γ 2
v

)
t, and since, by definition, x = wt, one gets w = v + w′

v

γ 2
v

, which

can be written in the form

w′v = γ 2
v (w − v) =

w − v
1− v2

c2

. (9)

This is the final form of the velocity addition expression. Keep in mind that the speed

v′′w of an object moving with speed v, in a frame S ′′ moving with speed w, is different

from w′v (where v and w are the speeds in S). In fact,

v′′w = γ 2
w (v − w) =

v − w
1− w2

c2

= −
(
γw
γv

)2

w′v . (10)

It may look surprising at first sight, but it has been seen already that the rest system

is seen from the moving frame S ′ passing with speed −γ2v and not merely −v.

It is now possible to calculate the one-way speed of light in any inertial frame. If

a photon is emitted in the positive direction of the x-axis, the one-way speed of this

photon in S ′ is given by (9) with w = c,

c +
v = γ 2

v (c− v) . (11)
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If the photon is emitted in the negative direction of the x-axis, w = −c its speed in S ′

is given by

c −v = γ 2
v (c+ v) . (12)

Thus, in the moving frame the one-way speed of light is not the same in different

directions, although the two-way speed of light remains equal to c. Moreover, it is clear

that the one-way speed of light is isotropic only in the frame corresponding to v = 0.

In addition, when the speeds involved are low, γv ' 1 and, as expected

c +
v ' c− v
c −v ' c+ v . (13)

As it is well known, this classical limit is not obtained from the velocity addition formula

associated with the Lorentz transformation [cf. equation (17)].

In the same way as it is vital to distinguish clock rhythms from clock time readings,

it is essential to distinguish speed (or “synchronized speed”) from Einstein speed [2,4,5].

Speed is defined as in the previous equations and can be calculated from w′v = ∆x′/∆t′.

In turn, the Einstein speed is defined from

w′E =
∆x′

∆t′L
, (14)

i.e., its value is calculated with the difference of the time readings of Lorentizan clocks.

Substituting relation (6) into (7), one obtains, x′ = w′vt
′ = w′v

(
t ′L + v

c2
x′
)
, from where,

x′
(
1− vw′

v

c2

)
= w′vt

′
L and x′ = w′

v

1− vw′
v

c2

t ′L. In this way, the Einstein velocity w′E, measured

in a frame moving with speed v (in S) of an object which has speed w, is

w′E =
w′v

1− vw′
v

c2

. (15)

This last expression can be rewritten replacing w′v using (9),

w′E =
w − v
1− vw

c2

. (16)

The Einstein speed of light, c′E, exhibits a very interesting property. As a matter

of fact, since the speed of light in the rest system is always c, c′E is obtained directly

from (16) with w = c:

c′E =
c− v
1− v

c

= c . (17)

Therefore, the one-way Einstein speed of light is always c in any moving inertial frame,

independently of the speed of the moving frame. The cycle is thus closed and, reversely,

we can confirm that if we “synchronize” moving clocks with a value c for the one-way

“speed” of light, then we are using “Einstein speeds” and will get “Lorentzian clocks.”

An illustration with the explicit calculation of both the (synchronized) speed of light

and the Einstein speed of light in precisely the same conditions was given in [2].

The procedure of “synchronization” using the average two-way value of the speed

of light as its one-way speed is similar to the “formula 1 car synchronization of clocks”
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described in [4], where the average speed of a F1 car along a racing track is used to

“synchronize” clocks along the track. It is odd that although this procedure is easily

recognized to be false in the case of the F1 car, assuming that we are interested in a

true synchronization and not simply in one synchronization procedure to be used for

operational purposes, somehow it is accepted with very little criticism in the case of the

speed of light.

7. A word on the Lorentz transformation

As the Lorentz transformation can be deduced from the IST transformation just with

the change of coordinates (6) [2], by the very construction of the theory we can ensure

that all the results described by the Lorentz transformation, for instance the muon

decay, can also be described by the IST transformation. From the mathematical point

of view, this statement corresponds to saying that physical laws cannot depend on the

system of coordinates chosen. In even simpler terms, it is once more the observation

that physical laws do not depend on the way the observers set their clocks.

The Lorentz transformation is symmetrical and lacks any explicit reference to the

“external” rest system. In particular, the transformation of Lorentzian coordinates

between two inertial frames, S ′ and S ′′, when written with Einstein speeds, takes the

same form as between the rest system and a moving inertial frame,

x′ = γE(x′′ + vEt
′′
L)

t ′L = γE

(
t ′′L +

vE
c2
x′′
)
, (18)

with γE given by γE = 1/

√
1− v 2

E

c2
and vE is the relative Einstein speed between both

moving frames given by equation (16). The velocity addition expression (16) remains

valid when w and v are themselves Einstein speeds in relation to any other inertial frame,

playing in practice the role of the rest system. The explicit deduction of expressions

(18) from the offset factors (6) is rather easy [23], albeit long and uninteresting.

These remarks show that for operational purposes all moving inertial frames are

somewhat “equivalent” to the rest system. Physics can then be described only according

to the perception of relative motion, without any reference to absolute motion. In this

sense, the rest system is superfluous, as it is the knowledge of the value of the one-way

speed of light [4]. But the group property of the Lorentz transformation masks the

underlying assumptions and the very starting points. It evades the indeterminacy of

special relativity, but does not solve it [4]. It is worth noting that a similar conclusion

has been drawn by Zbigniew Oziewicz, who demonstrated, with a completely different

approach, that the Lorentz transformation has implicit a reference to an “external”

preferred reference system [37].

If the rest system is experimentally inaccessible, then we cannot remove the

indeterminacy in the theory and may have no other option than to proceed through

internal schemes and based only on the perception of relative motion. But the wider
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perspective gained from the weak formulation of both postulates proposed here reveals

that the “equivalence” among inertial frames associated with the Lorentz transformation

is purely formal. It emerges as a consequence of using Lorentzian clocks and Einstein

speeds. What is more, it does not change the meaning of the symbols in the equations

nor of the quantities defined.

8. General expression for the rhythms of two clocks in relative motion

Developing the ideas and definitions presented in the previous section, we can now derive

the relation between the rhythms of clocks in relative motion. As a corollary, we will

obtain in a more formal way one of the main results already discussed, namely, that the

indeterminacy of special relativity [4] implies that just with Lorentzian clocks it is not

possible to know in which of two inertial frames clocks are actually running slower (see

figure 3 and respective discussion).

Consider two inertial frames, S ′ and S ′′, moving in the x direction respectively with

speeds v and w in the rest system, S. Clock 1 is at the origin of S ′ and clock 2 is at

the origin of S ′′. The speed of clock 2 in S ′ is given by (9), the Einstein speed of clock

2 in S ′ is given by (16). Let us further define the proper time, τ , in the usual way, as

the time elapsed for one particular observer. Since the proper time is measured by a

single clock, it is indeed associated with the clock rhythm and does not depend on the

initial adjustment of distant clocks. The proper time of a clock in S ′′ relates to the time

elapsed in the rest system S by the time equation in (1), which can be written in the

form

dτ ′′ =
dt

γw
, (19)

where dt are the differential times marked by the different clocks in the rest system S

that are co-punctual with clock 2 at each instant. The relation of the rhythm of a clock

1 in S ′ with the rhythms of clocks in S is given by a similar expression, namely

dτ ′ =
dt

γv
. (20)

Note that as the one-way speed of light in S is known, clocks in S are synchronized

without ambiguity, without any element of convention. Therefore, dt can be eliminated

and the relation of the proper times of clocks in S ′′ and in S ′ is

dτ ′′ = dτ ′
γv
γw

. (21)

Equation (21) establishes the relation of clock rhythms in two inertial frames.

However, one final step is still missing. From (20) and (1) it directly follows

dτ ′ = dt′. (22)

Here, the equality is completely general and is valid whether or not dx′ = 0, as x′ does

not appear in the second equation (1). In turn, as a consequence of (6), in general

dτ ′ = dt′ 6= dt′L , (23)
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although, if dx′ = 0, then dτ ′ = dt′ = dt′L. Similarly, we can write dτ ′′ = dt′′ 6= dt′′L,

except when dx′′ = 0. Substituting (22) in (21), we get

dτ ′′ = dt′
γv
γw

. (24)

The inverse relation is simply dτ ′ = dt′′(γw/γv). Take note that expression (24) can be

deduced immediately from the second equation (5). In fact, the identification dτ ′′ = dt′′

issues straightaway from (5), as the proper time τ ′′ can be calculated imposing the

condition ∆x′′ = 0 in the coordinate transformation and, contrary to the second equation

(18), x′′ does not appear in the second equation (5).

The findings expressed by (23) can yet be obtained, may be more intuitively, from

inspection of the configurations depicted in figures 2 and 3. Suppose an observer at the

origin of S ′′, moving with speed w > v, is co-punctual with clocks A and E at t = 0

(figure 2). In the situation depicted in figure 3 he is then located somewhere between

clocks E and D. In order to compare with the proper time in S ′′, the differential time

intervals dt′ and dt′L in S ′ in equation (23) refer to the time readings of clocks in S ′ co-

punctual with clock 2 from S ′′ in successive instants, whereas dτ ′ is the differential proper

time of any observer in S ′ (e.g., clock 1 at E). Thus, dt′ is the differential (synchronized)

time in S ′, and dt′L is the differential Lorentzian time in S ′. The conclusion (23) is then

a direct outcome of the very construction of the theory, all the remarks in section 5 on

the independence of clock rhythms from “synchronization,” and the direct analysis of

the figures in the situation described.

As it is well-known from standard special relativity – and it is extremely easy to

deduce from the Lorentz transformation (18) imposing dx′′ = 0 – the proper time of

clock 2 relates with the differential Lorentzian times through the Einstein speed,

dτ ′′ =
dt′L
γE

. (25)

Contrary to (21), this expression corresponds to comparisons of time readings of

Lorentzian clocks in S ′ and does not correspond to a relation with the clock rhythms

in S ′. Furthermore, the reverse equation gives account of the symmetric description of

time dilation when Lorentzian clocks are used (cf. section 5), dτ ′ = dt′′L/γE.

By noting that dx′ = w′Edt
′
L and dx′ = w′vdt

′, and using (22), equation (25) can

finally be rewritten as

dτ ′′ = dτ ′
w′v
w′E

1

γE
. (26)

This is the result we were searching for, confirming that Lorentzian clocks and Einstein

speeds are not enough to determine in which frame clocks are running faster, since the

relation between rhythms additionally involves the speed w′v.

The indeterminacy of special relativity [4] has thus been expressed in an alternative

way. If the rest system is inaccessible, then we do not know the value of the one-way

speed of light in one inertial frame, nor can we know the value of w′v in (26). As an

outcome, we cannot know in which of two intertial frames clocks are ticking slower.
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This is the answer to “The Question” raised by Dingle [38], presented and discussed

in [39,40].

9. Slow transport “synchronization”

Let us finish this paper with the analysis of the “slow transport” method of clock

“synchronization.” As already pointed out in section 3, this scheme gives the same

outcome as Einstein’s procedure, in accordance with our weak formulation of the

principle of relativity [4]. Indeed, as slow transport is an “internal” procedure, it

must be equivalent to any methodology were we operationally proceed in an inertial

frame as if the one-way speed of light were c. The result was demonstrated by several

authors [10, 26–30], although not all of them have seen its real implication and its

connexion with the principle of relativity. It can be obtained in a straightforward way

from the present formalism.

We present here the derivation made by Gustavo Homem [29]. As in previous

examples, consider two inertial frames, S ′ and S ′′, moving with speeds v and w (in

S), respectively. We will try to “synchronize” two distant clocks in S ′, separated by a

distance ∆x′, with the help of the moving clock at the origin of S ′′. The duration of the

trip in S ′ is simply ∆t′ = ∆x′/w′v. Therefore, using (24) and (9), we have,

∆t′ −∆τ ′′ = ∆t′
(

1− γv
γw

)

=
∆x′

w′v

(
1− γv

γw

)

= ∆x′
1

γ2v(w − v)

(
1− γv

γw

)

= ∆x′
(1− v2/c2)−

√
1− v2/c2

√
1− w2/c2

w − v
. (27)

We are interested in the slow transport limit, i.e., w → v, which can be easily calculated

from l’Hôpital’s rule,

lim
w→v

(∆t′ −∆τ ′′) = lim
w→v

∆x′
(1− v2/c2)−

√
1− v2/c2

√
1− w2/c2

w − v

= lim
w→v

∆x′

√
1− v2/c2√
1− w2/c2

w

c2

=
v

c2
∆x′ . (28)

Hence, the proper time of the slowly travelling clock at the origin of S ′′, after covering

the distance ∆x′ (in S ′), has advanced by

∆τ ′′ = ∆t′ − v

c2
∆x′ . (29)

This is precisely the offset factor (6), which proofs that if distant clocks in S ′ are set with

the slow transport method, then they mark Lorentzian times. In other words, a clock
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that moves very slowly along an inertial frame gets delayed and loses the synchronization

from that frame.

The current demonstration demystifies the role of slow transport as a possible

alternative and supposedly independent synchronization scheme. Specifically, any

experiment designed to measure the one-way speed of light based or involving slow-

transport, such as the one proposed in [41], will be measuring the one-way Einstein

speed of light (17), which is c.

10. Conclusions

In this article a general formulation of special relativity is proposed, where the postulates

are formulated in a weaker form than in the traditional presentation, while keeping fully

compatible with all experimental evidence. The starting point is the assumption that

there exists a reference frame where the one-way speed of light in vacuum is isotropic

and equal to c, denoted by “rest system.” No claims are required regarding the possible

uniqueness and/or experimental detectability of this frame. The theory is subsequently

built from the postulates of the constancy of the two-way speed of light in inertial frames

and the principle of relativity.

Synchronization of distant clocks is a central issue in special relativity. Despite

its importance, we note that physics does not depend on the way one decides to set

his own clocks. Therefore, one observer must be able to use, at the same time, clocks

adjusted in different ways, and study physics, in a consistent way, with all of them.

This is easily done, as long as he knows how to relate the time readings of clocks

adjusted in one particular way with the time readings of clocks adjusted in another way.

From the mathematical point of view, each particular initial adjustment of the clocks,

often and somewhat misleadingly designated as “synchronization,” is associated with

one particular choice of system of space-time coordinates to describe physical reality.

Consequently, the space-time coordinates associated different clock settings are trivially

related by a transformation of coordinates.

Several examples are analyzed following the idea of using simultaneously multiple

clock settings, in particular by using “synchronized clocks” and “Lorentzian clocks.”

Synchronized clocks are set with an “external” reference to the rest system. They are

associated with the IST transformation. Lorentzian clocks are set “internally,” without

any reference to an external system, by proceeding in the inertial frames as if the one-way

speed of light were c. They are associated with the Lorentz transformation.

Our approach, based on the IST transformation, reveals that the traditional

development of special relativity, grounded on the Lorentz transformation, corresponds

to a minimal view of the theory, to an operational procedure to study relative

motion without any reference to the rest system. In fact, the IST and the Lorentz

transformations only differ from a coordinate transformation and the latter is easily

deduced from the former. Therefore, by the very construction of the formalism, the

present view immediately encompasses all the results obtained within the standard
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view, with a clear and direct interpretation.

A critical issue in special relativity is the confusion between clock time readings and

clock rhythms. Clock rhythms do not depend on the initial adjustment of distant clocks,

while clock time readings do. Thus, synchronized and Lorentzian clocks display different

time readings, but have the same rhythm. Indeed, the time readings of synchronized and

Lorentzian clocks in the same position of one inertial frame just differ from a constant

offset factor, proportional to the distance to the origin of the frame. Similarly, the

phenomenon of time dilation is related with clock rhythms and, as such, is independent

of the way the clocks are set. However, the description of time dilation does depend

on the time readings of the various clocks involved and, hence, of the “synchronization”

adopted. It is shown that the description of time dilation made with Lorentzian clocks

is symmetrical among two inertial observers in relative motion, as it is well-known from

the standard interpretation of special relativity. Nevertheless, this reciprocal relation

does not relate the clock rhythms. It is further shown that when observers in two inertial

frames cross, just with Lorentzian clocks it is impossible to know in each of the inertial

frames the clocks are running slower.

The indeterminacy of special relativity [4] may forbid the identification of the rest

system and prevent the practical utilization of synchronized clocks. However, such

indeterminacy should be taken with humbleness and with the recognition that we simply

do not know the value of the one-way speed of light in an inertial frame. This is not a

big problem. For operational reasons we can use Einstein speeds and Lorentzian times

and do Physics.

The lack of knowledge of the value of the one-way speed of light does not change

the physical meaning of the different quantities, nor “promotes” any of them to another

status. In particular, one should neither confuse synchronized time with Lorentzian

time, nor speed with Einstein speed, where the latter is the speed calculated from the

comparison of the time readings of Lorentzian clocks. That being so, from the physical

point of view one cannot accept an arbitrary stipulation for the value of the one-way

speed of light in an inertial frame, but instead acknowledge the tautological assertion

“the one-way Einstein speed of light in vacuum is c in any inertial frame,” which is

an immediate consequence from its very definition. Moreover, nothing is changed and

the theory does not collapse whether or not it is eventually possible to identify the

rest system, for instance, with a measurement of the one-way speed of light. Recent

suggestions to achieve this measurement have been put forward by Consoli and co-

workers [42–44].

The slow transport method of clock “synchronization” was analyzed and discussed.

This is an “internal” method, in which observers from one inertial frame do not make use

of any external reference. According to the weak formulation of the principle o relativity,

this procedure must then give the same result as Einstein’s “synchronization” and the

time readings of clocks adjusted in this way must be Lorentzian times. It is proved this

is indeed the case, using the present formalism. As an outcome, no experiment making

use of slow transport can ever be used to measure the one-way speed of light, as it is
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certain it will determine the Einstein one-way speed of light which, by virtue of its own

definition, it is known to be c.

The present formulation shows that old conflicts, such as the ones opposing the

Lorentz-Poincaré and Einstein’s ideas, reside more on the language adopted than on the

calculated quantities. The broader view of special relativity herein developed reveals

that these seemingly irreconcilable ideas refer to different aspects of one and the same

general theory. Despite raising hot debates, the apparent conflicts are clearly solved by

making the distinction between clock rhythms and clock time readings and by accepting

there are quantities we may be unable to know. The implications of the current approach

in the interpretation of the twin paradox will be discussed in an ensuing paper.
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[30] L. Szabó, “Does special relativity theory tell us anything new about space and time?.”

http://arxiv.org/abs/physics/0308035, 2003.

[31] F. Selleri, “Sagnac effect: end of the mystery,” in Fundamental Theories of Physics (A. V. der

Merwe, ed.), Kluwer Academic Publ., 2003.

[32] F. Selleri, “The inertial transformations and the relativity principle,” Foundations of Physics

Letters, vol. 18, pp. 325–339, 2005.

[33] R. de Abreu, “The physical meaning of synchronization and simultaneity in special relativity.”

physics/0212020, 2002.

[34] F. R. Tangherlini, “On energy-momentum tensor of gravitational field,” Nuovo Cimento Suppl.,

vol. 20, p. 351, 1961.

[35] G. Spinelli, “Absolute synchronization: Faster-than-light particles and causality violation,” Il

Nuovo Cimento, vol. 75, pp. 11–18, 1983.

[36] C. Iyer and G. M. Prabhu, “A constructive formulation of the one-way speed of light,” Am. J.

Phys., vol. 78, p. 195, 2010.

[37] Z. Oziewicz, “Ternary relative velocity,” in Physical Interpretations of Relativity Theory (M. C.

Duffy, V. O. Gladyshev, A. N. Morozov, and P. Rowlands, eds.), pp. 292–303, Bauman Moscow

State Technical University, 2007 (http://arxiv.org/pdf/1104.0682v1.pdf).

[38] H. Dingle, Science at the Crossroads. London: Martin Brian & O’Keeffe, 1972.

[39] P. Hayes, “Popper’s response to Dingle on special relativity and the problem of the observer,”

Studies in History and Philosophy of Modern Physics, vol. 41, pp. 354–361, 2010.

[40] A. C. Dotson, “Popper and Dingle on special relativity and the issue of symmetry,” Studies in

History and Philosophy of Modern Physics, vol. 43, pp. 64–68, 2012.

[41] J. X. Dong and B-Dong, “A theory on measuring the one-way speed of light and a method of

verifying the invariance of light speed,” Phys. Es., vol. 24, pp. 294–300, 2011.

[42] M. Consoli and E. Costanzo, “From classical to modern ether-drift experiments: the narrow

window for a preferred frame,” Phys. Lett. A, vol. 333, pp. 355–363, 2004.

[43] M. Consoli and E. Costanzo, “Is the physical vacuum a preferred frame?,” Eur. Phys. J. C, vol. 54,

pp. 285–290, 2008.

[44] M. Consoli, C. Matheson, and A. Pulchino, “The classical ether-drift experiments: a modern



Synchronization and clock rhythms 22

re-interpretation.” http://arxiv.org/abs/1302.3508, 2013.


