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1 Introduction

The structure of crystal cells in two and three dimensions is fundamental for many material properties. Many
elements, including Aluminium, Copper and Iron have e.g. cubic unit cells. The nearest neighbors of diamond
structures form tetrahedrons. About 30 elements show hexagonal close-packed structure. Important organic
molecules like benzene have hexagonal symmetry. Today some 80% of crystal structure analysis is carried out
on crystallized biomolecules with huge investments from pharmaceutical companies.

In two dimensions atoms (or molecules) often group together in triangles, squares and hexagons (regular
polygons). Crystal cells in three dimensions have triclinic, monoclinic, orthorhombic, hexagonal, rhombohedral,
tetragonal and cubic shapes (see Fig. 3.1).

The geometric symmetry of a crystal manifests itself in its physical properties, reducing the number of inde-
pendent components of a physical property tensor, or forcing some components to zero values. There is therefore
an important need to efficiently analyze the crystal cell symmetries.

Mathematics based on geometry itself offers the best descriptions. Especially if elementary concepts like the
relative directions of vectors are fully encoded in the geometric multiplication of vectors.

2 Multiplying Vectors with Clifford’s Geometric Product

The geometric product [2, 3] of vectors a, b includes sine and cosine of the enclosed angle α:

ab = |a||b|(cosα+ i sinα), (1)

where i = e1e2 is the unit oriented area element of the plane of the vectors a, b. The geometric product has
symmetric (inner) and antisymmetric (outer) parts:

a · b = (ab+ ba)/2 = |a||b| cosα, a ∧ b = (ab− ba)/2 = |a||b|i sinα. (2)

These properties can already be used to implement reflections across a line (in 2D) or at a mirror plane (in 3D).
In both cases the mirror (line or plane) can be given by a normal vector c (with inverse c−1 = c/c2, c−1c = 1.)
A vector x is reflected by

x′ = −c−1x c. (3)
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To do a sequence of two reflections with normal vectors c, d simply results in

x′ = d−1c−1x cd = (cd)−1x cd, (4)

etc. Two reflections at planes with normal vectors c, d enclosing the angle θ/2 result in a rotation by angle θ. A
general rotation operator (rotor) is therefore the product of two vectors R = cd enclosing half the angle of the
final rotation. A sequence of three reflections at planes with normal vectors c, d, e gives a rotary-reflection:

x′ = −(cde)−1x cde, (5)

because the first two reflections result in a rotation followed by a final reflection. If the three vectors c, d, e happen
to be mutually orthogonal (cde = i = e1e2e3, i

2 = −1), then (5) describes an inversion:

x′ = −(−i)x i = −x. (6)

The general transformation law is

x′ = (−1)pS−1xS, (7)

with p =parity (even or odd) of the vector products in S. Because both S−1 and S are factors in (7), the sign of
S and (non-zero) scalar factors of S always cancel. We therefore equate operators S if they only differ by real
scalar factors (including positive and negative signs)!

3 Representation and Visualization of Point and Space Groups

3.1 2D Point Groups

Fundamental are the two-dimensional symmetries of regular polygons with n = 1, 2, 3, 4, 6 corners [4] of Figure
3.1. (With n = 5, no lattice can be built.) For an interactive online visualization see [5]. Tables 1 and 2 show

Fig. 1 Left: Regular polygons n = 1, 2, 3, 4, 6 with vector generators a, b. Right: a, b attached to polygon centers.

the two-dimensional point groups (n = 1, 2, 3, 4, 6). They list the symmetry elements represented by products
of the generating vectors a, b, an explicit representation in an orthonormal basis of the two-dimensional Clifford
geometric algebra

{1, e1, e2, e1e2}, (8)

and the conventional matrix representation. The most compact and intuitive representation is certainly by in-
variant geometric algebra vector products. The geometric algebra basis representation has the advantage that it
is immediately seen if a symmetry is a reflection (generator is a vector) or a rotation (generator is scalar plus
bivector). The bivector part of the latter immediately represents the rotation plane. The matrix representation
seems to be the least intuitive.

3.2 3D Point Groups

All known three-dimensional crystal lattices can be characterized by their crystal cells shown in Fig. 2 . The
symmetry transformations of these cells, which leave the center points O invariant, form groups of symmetry
operations, called point groups. Altogether there are 32 point groups associated with seven crystal classes. [1, 4]
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Table 1 2D point group (n = 1, 2, 3) representations: invar. products of crystal vectors, in basis (8), matrices.

invariant orthon. basis matrix invariant orthon. basis matrix

n=1

±1 ±1

 1 0

0 1


n=2

a e1

 -1 0

0 1

 −1 −1

 1 0

0 1


n=3

reflections rotations

a e1

 −1 0

0 1

 ab 1 +
√
3e1e2

 − 1
2 −

√
3
2

+
√
3
2 − 1

2


b e1 +

√
3e2

 1
2 −

√
3
2

−
√
3
2 − 1

2

 (ab)2 −1 +
√
3e1e2

 − 1
2

√
3
2

−
√
3
2 − 1

2


bab −e1 +

√
3e2

 1
2

√
3
2

√
3
2 − 1

2

 −1 −1

 1 0

0 1



Fig. 2 7 crystal cells with vector generators a, b, c: triclinic, monoclinic, orthorhombic, tetragonal, trigonal (side & top),
hexagonal, cubic.

For the visualization of the 3D point groups we used the open source software CLUCalc [6], which supports
geometric algebra. Start up opens three windows for script, text output and OpenGL visualization. The latter has
three areas: interactive text, bottom control elements, initial and transformed crystal cells. Clicking the blue text
links selects a crystal cell type. Next a blue group identifier is chosen. Clicking on highlighted group generators
applies the corresponding transformation. Dragging the mouse pointer in the visualization area freely rotates the
view.

3.3 2D Space Groups

The two-dimensional space groups (wallpaper groups) can also be elegantly described in Clifford geometric
algebra. Using the conformal model of the Euclidean plane in Cl3,1 translations can be treated like rotations as
multiplicative geometric algebra multivector operators [4].

We also develop free interactive visualization software for the wallpaper groups based on CLUCalc [6]. Our
socalled Wallpaper Group Explorer allows the users to freely select a basic cell pattern, decide on reflection and
translation generators and combine them to see which wallpaper is generated and what are the conditions for
generating a true 2D space group.
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Table 2 2D point group (n = 4, 6) representations: invariant products of crystal vectors, in basis (8), matrices.

invariant orthon. basis matrix invariant orthon. basis matrix

n=4

reflections rotations

a e1

 −1 0

0 1

 ab 1 + e1e2

 0 −1

1 0


b e1 + e2

 0 −1

−1 0

 (ab)2 e1e2

 −1 0

0 −1


bab e2

 1 0

0 −1

 (ab)3 −1 + e1e2

 0 1

−1 0


b(ab)2 e1 − e2

 0 1

1 0

 −1 −1

 1 0

0 1


n=6

reflections rotations

a e1

 −1 0

0 1

 R = ab
√
3 + e1e2

 1
2 −

√
3
2

√
3
2

1
2


b

√
3e1 + e2

 − 1
2 −

√
3
2

−
√
3
2

1
2

 R2 1 +
√
3e1e2

 − 1
2 −

√
3
2

√
3
2 − 1

2


aR2 e1 +

√
3e2

 1
2 −

√
3
2

−
√
3
2 − 1

2

 R3 e1e2

 −1 0

0 −1


bR2 e2

 1 0

0 −1

 R4 −1 +
√
3e1e2

 − 1
2

√
3
2

−
√
3
2 − 1

2


aR4 −e1 +

√
3e2

 1
2

√
3
2

√
3
2 − 1

2

 R5 −
√
3 + e1e2

 1
2

√
3
2

−
√
3
2

1
2


bR4 −

√
3e1 + e2

 − 1
2

√
3
2

√
3
2

1
2

 R6 = −1 −1

 1 0

0 1


Work is under way on full 3D space group representation in geometric algebra. New ways to describe and

analyse crystal symmetries, which are derived straightforward from the physical crystal itself are expected.
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