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State Decoding in Multi-Stage Cryptography Protocols 

Sindhu Chitikela 

Abstract. This paper presents a practical method of quantum tomography for decoding the 

state of photons in a multistage cryptography protocol. This method works if the polarization 

angles are defined on a fixed plane, as is assumed in several quantum cryptography protocols. 

We show if there are 2
m
 polarization angles in a fixed plane, we need m number of filters and m

2
 

number of photons through each filter. 

1. Introduction 

Photons are information carriers in quantum cryptography. In BB84 protocol [1], single photons 

represent a qubit whereas in multistage protocols [2]-[5], more than one photon could represent a 

bit. In the multistage protocol, the photon polarization is randomly changed by both Alice and 

Bob as in Figure 1 at first and then reversed so that Bob eventually receives the information 

Alice wanted to send. Clearly this system can be broken only if Eve can know the polarization 

state on each of the three links. This side-steps the constraint of BB84 that each bit be associated 

with a single photon. In two-stage and single stage versions [4], the initial set up to exchange the 

key is done by the three-stage protocol and once the key is shared then a single stage link with 

continually changing polarization angles according to a code that is included in the block of data 

sent [4] suffices for subsequent secure communication. The multistage protocol can be visualized 

in several kinds of state aware versions [5]. 

The multistage protocol was recently implemented [6],[7]. References [8] and [9] address the 

question of single photon generation and [10]-[12] address the question of implementation of 

quantum gates. References [13]-[15] consider general issues with practical quantum 

cryptography. Here we consider the question of state decoding in state aware quantum 

cryptography using a practical method of tomography that can help detect as eavesdropper who 

injects randomly polarized photons to compensate for the one’s she has siphoned off for state 

detection.  
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2. Tomography in multi-stage protocols 

The state of the received photons is to be determined at the receiver. The equipment involved in 

the tomography process includes beamsplitters, half silvered mirrors and filters. The received 

stream of photons is sent through the beamsplitters or half silvered mirrors so that the stream is 

split to pass through different filters aligned at specific angles. Figure 2 is a schematic of the 

decoding process at the receiver.  Figure 3 is a schematic of the quantum tomography process. 

 

 

Figure 1 Implementation of the three-stage protocol 
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Figure 2 Information decoding process at receiver’s site 

 

Figure 3 Quantum tomography process 

We assume that Alice and Bob negotiate on a set of polarization angles that are used in the 

protocol. These set of polarization angles can be any of 4, 8, 16, 32, 64, 128, and so on, on the 

same plane. The possible polarization angles for each of these categories are shown in Table 1. 
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Table 1 Set of polarization angles used to represent bit 0 and 1 

Number of polarization angles Possible polarization angles 

4 {0
0
, 45

0
, 90

0
, 135

0
} 

8 {0
0
, 22.5

0
, 45

0
, 67.5

0
, 90

0
, 112.5

0
, 135

0
, 

157.5
0
} 

16 {0
0
, 11.25

0
, 22.5

0
, 33.75

0
, 45

0
, 56.25

0
, 67.5

0
, 

78.75
0
, 90

0
, 101.25

0
, 112.5

0
, 123.75

0
, 135

0
, 

146.25
0
, 157.5

0
, 168.75

0
}  

 

2.1 Filters, intensity vectors 

A set of filters oriented at different angles are placed immediately after the beamsplitters. The 

stream of photons passes through the beamsplitter and splits in such a way that they pass through 

these filters. A filter allows photons with matching polarization angle to pass through them. Thus 

the output of the filter gives the intensity of the photons passed through them. These intensity 

values are put together to form intensity vectors. The intensity vector gives the number of 

photons that passed through each filter. 

2.2 Stored vectors 

The intensity vectors are computed by sending photons with each of the polarization angles from 

a given set. For example, consider a protocol where Alice and Bob negotiated to use a set of 8 

polarization angles. In this case, a bunch of photons with polarization angle 0
0
 are sent through 

the filters and the resultant intensity vector is stored as V1.  

Similarly, a bunch of photons with polarization angle 22.5
0
 is sent through the filters and the 

intensity vector stored is V2. Then, photons with polarization angle 45
0
, 67.5

0
, 90

0
, 112.5

0
, 135

0
, 

157.5
0
 are sent through the filters resulting intensity vectors V3, V4, V5, V6, V7 and V8 

respectively. So, in a scenario of 8 and 16 polarization angles, the intensity vectors stored at the 

receiver’s site are shown in the Table 2 and Table 3 respectively. 
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2.3 Choice of filters 

One of the interesting questions is the number of filters and the angles of filters that are required 

for successful detection of a quantum state. According to theory, a set of 4 polarization angles 

need 2 filters to obtain unique stored vectors. A set of 8, 16, 32, 64, 128 polarization angles 

require 3, 4, 5, 6 and 7 filters respectively. Thus, if the number of polarization angles is 2
m
, we 

need m number of filters to obtain unique stored vectors. 

The angles at which these filters are oriented can be any of the angles from the set or they can 

deviate from them. But the optimal choice of filters for a set of 4 and 8 polarization angles is 

filters with angles which differ by 45
0
 and 30

0
 respectively. Similarly, the optimal choice for 

other sets can be found by our theoretical experiments.  

2.4 Number of photons 

Another interesting question is to find the number of photons needed to obtain unique integer 

stored intensity vectors. We did our experiments starting with a case where we sent one photon 

through each filter and then increasing the number until we get integer components for intensity 

vectors. 

For illustration, consider a set of 4 polarization angles. We need 2 filters in this case and we 

begin our experiment by sending a total of 2 photons that is one photon through each filter. The 

resulting intensity vectors are unique but they are not integer values. Therefore in the next step 

we increase the number of photons sent through each filter by 1 until we get integer values of 

intensities at the filters. We obtain integer component vectors when 4 photons are sent through 

each filter that is a total of 8 photons which is 2
3
. Thus, we can say that we need m

2
 photons at 

each filter and a total of m
3
 photons for the tomography process. We find that in Tables 2 and 3, 

each of the intensity vectors is unique. This makes it easy to identify the polarization angle one 

the outputs of all the filters have been measured. 

The results of the experiments are shown in Table 4 and we are lead to the following result: 

If there are n number of polarization angles equal to 2
m
 in a fixed plane, we need m 

number of filters and m
2
 number of photons through each filter. Calculations starting 

with the base case are provided in the following paragraphs. 
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Table 2 Stored intensity vectors at receiver’s site for a set of 8 polarization angles 

Polarization 

of the 

photons sent 

by Alice 

Intensity at 

filter 0
0
 

Intensity at 

filter 22.5
0
 

Intensity at 

filter 45
0
 

Intensity vectors 

(Stored vectors) 

0
0 
 3 3 2 (3, 3, 2) 

22.5
0
 3 3 3 (3, 3, 3) 

45
0
 1 3 3 (1, 3, 3) 

67.5
0
 0 2 3 (0, 2, 3) 

90
0
 0 0 1 (0, 0, 1) 

112.5
0
 0 0 0 (0, 0, 0) 

135
0
 2 0 0 (2, 0, 0) 

157.5
0
 3 2 0 (3, 2, 0) 

 

2.5 Nearest neighbor search algorithm 

The nearest neighbor search algorithm helps to find the proximity between 2 given vectors. The 

Euclidean distance between two vectors, ),,( 111 cba and ),,( 222 cba  is calculated as

2

21

2

21

2

21 )()()( ccbbaa  where ),,( 111 cba is the stored vector and ),,( 222 cba is the 

vector that is obtained when the photons sent by Alice are passed through filters.  

2.6 Process of state detection 

Consider an example where the vectors for each possible value of   for a protocol which uses 8 

polarization angles are stored at the Bob’s site in the form of Table 2. When Alice sends a set of 

photons with polarization  = {0
0
, 22.5

0
, 45

0
, 67.5

0
, 90

0
, 112.5

0
, 135

0
, 157.5

0
}, at Bob’s site, they 

are sent through the three filters to get the intensity vector, V. This V is compared with the 

existing vectors {(3 3 2), (3 3 3), (1 3 3), (0 2 3), (0 0 1), (0 0 0), (2 0 0), (3 2 0)}. When a match 

is found, the polarization is determined which gives the state of the photons. Even if there is 

slight deviation in the vector obtained, then the nearest neighbor search algorithm is applied to 

find the closest vector that matches. Once the matching vector is found, the corresponding angle 

determines the unknown state of the photons sent by Alice. 
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Table 3 Stored intensity vectors at receiver’s site for a set of 16 polarization angles 

Polarization of 

the photons 

sent by Alice 

Intensity at 

filter 22.5
0 

Intensity at 

filter 45
0
 

Intensity at 

filter 67.5
0
 

Intensity at 

filter 90
0
 

Intensity 

vectors 

(stored 

vectors) 

0
0
 3 2 1 0 (3,2,1,0) 

11.25
0
 4 3 1 0 (4,3,1,0) 

22.5
0
 4 3 2 1 (4,3,2,1) 

33.75
0
 4 4 3 1 (4,4,3,1) 

45
0
 3 4 3 2 (3,4,3,2) 

56.25
0
 3 4 4 3 (3,4,4,3) 

67.5
0
 2 3 4 3 (2,3,4,3) 

78.75
0
 1 3 4 4 (1,3,4,4) 

90
0
 1 2 3 4 (1,2,3,4) 

101.25
0
 0 1 3 4 (0,1,3,4) 

112.5
0
 0 1 2 3 (0,1,2,3) 

123.75
0
 0 0 1 3 (0,0,1,3) 

135
0
 1 0 1 2 (1,0,1,2) 

146.25
0
 1 0 0 1 (1,0,0,1) 

157.5
0
 2 1 0 1 (2,1,0,1) 

168.75
0
 3 1 0 0 (3,1,0,0) 

 

Table 4 Number of photons and filters required in the tomography process 

Number of polarization 

angles 
Number of filters 

Total number of 

photons 

4 2 8 

8 3 27 

16 4 64 

32 5 125 

64 6 216 

128 7 343 

 

3. Conclusion 

We considered the problem of practical quantum tomography using beamsplitters and filters and 

found that the number of photons required for easy implementation using nearest neighbor rule  
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is m
3
 if the number of polarization angles 2

m
. Clearly, such an implementation provides 

considerable protection in the use of multistage quantum cryptography protocols. 
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