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                       Abstract 

         Using the Jiang function we find the best theory of arbitrarily long arithmetic 

progressions of primes 
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Theorem. The fundamental theorem in arithmetic progression of primes. 

We define the arithmetic progression of primes [1-3]. 
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We have Jiang function [1-3] 
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)(PX  denotes the number of solutions for the following congruence 
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, there exist finite primes  such that 

 are primes. If  then 
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kP,,2 P 1 gPk 0) J , there exist infinitely many primes 

 such that  are primes. The primes contain only 1P kP,P ,2 1 gPk  long arithmetic 

progressions, but the primes have no  long arithmetio progressions. We have the 

best asymptotic formula [1-3] 

1 gPk

                NPkiiPN gk  11 ,10prime,)2,(   

                       )),1(1(
log)(

)( 1
2 o

N

NJ
kk

k







                  （5） 

where )1()(,
22




PP
PP

 ,   is called primorial, )(  Euler function. 

。 

Suppose 11  gPk . From (1) we have 
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From (4) we have [1-2] 
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We prove that there exist infinitely many primes  such that  are primes 

for all . 
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From (8) we are able to find the smallest solutions 1)2,(11


N
gP  for large . 1gP

Theorem is foundations for arithmetic progression of primes 。。 

Example 1. Suppose 3,2,2 211  PP  . From (6) we have the twin primes theorem 
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From (7) we have 
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We prove that there exist infinitely many primes  such that  are primes. From (8) 

we have the best asymptotic formula 
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Twin prime theorem is the first theorem in arithmetic progression of primes. Green and Tao 

do not prove the twin prime theorem. Therefore Green – Tao theorem is absolutely false 

[4-9]. The prime distribution is order rather than randomness. The arithmetic progreessions 

of primes are not directly related to ergodic theory, harmonic analysis, discrete geometry 

and additive combinatorics.Erdos-Turan conjecture and Szemeredi theorems are absolutely 

false [4-15], because they do not understand the arithmetic progressions of primes.  

Example 2. Suppose 5,6,3 322  PP  . From (6) we have  
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From (7) we have 
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e that there exist infinitely many primes  such that  and are 
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Example 3. Suppose 29,223092870,23 1099  PP  . From (6) we have  

          .27,,2,1,0,22309287011  iiPPi                 （15） 

From (7) we have 
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We prove that there exist infinitely many primes  such that  are primes. 
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From (8) we have the best asymptotic formula 
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From (17) we are able to find the smallest solutions 1)2,( 028 N . 

On May 17, 2008, Wroblewski and Raanan Chermoni found the first known case of 25 

primes: 

n 233663848326311054912 , for 0n617   to 24. 

Theorem can help in finding for 26, 27, 28, …, mes in arit etic progressions of 

Arithmetics progression with two prime variables 

pri hm

primes. 

Corollary 1. 

Suppose dg  . From (1) we have 
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From (18) we obtain the arithmetic progression with two prime variables:  and 
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We ha iang function [3] 
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From (24) we are able to find the smallest solution 1)3,( 01  Nk  for large 

Example 4. Suppose
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Corollary 2. Arithmetic progression with three prime variables  
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From (42) we are able to find the smallest solution 1)4,( 02  Nk  for large 
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Example 9. Suppose 6k  and . From (43) we have 61 gP
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