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Clifford Fourier Transform on
Multivector Fields and
Uncertainty Principles for
Dimensions n = 2 (mod 4) and
n = 3 (mod 4)

Eckhard M. S. Hitzer, Bahri Mawardi

ABSTRACT First, the basic concepts of the multivector functions, vector dif-
ferential and vector derivative in geometric algebra are introduced. Second, we
define a generalized real Fourier transform on Clifford multivector-valued func-
tions ( f : Rn → Cln,0, n = 2, 3 (mod 4) ). Third, we show a set of important
properties of the Clifford Fourier transform on Cln,0, n = 2, 3 (mod 4) such as
differentiation properties, and the Plancherel theorem, independent of special
commutation properties. Fourth, we develop and utilize commutation properties
for giving explicit formulas for f xm, f ∇m and for the Clifford convolution. Fi-
nally, we apply Clifford Fourier transform properties for proving an uncertainty
principle for Cln,0, n = 2, 3 (mod 4) multivector functions.
Keywords: Vector derivative, multivector-valued function, Clifford (geometric)
algebra, Clifford Fourier transform, uncertainty principle.

1 Introduction

In applied mathematics the Fourier transform has developed into an impor-
tant tool. It is a powerful method for solving partial differential equations.
The Fourier transform provides also a technique for image processing and
signal analysis where the image or signal from the original domain is trans-
formed to the (spectral or) frequency domain. In the frequency domain
many characteristics of the signal are revealed. With these facts in mind,
we extend the Fourier transform in (real) geometric algebra.

Brackx et al. [1] extended the Fourier transform to multivector valued
function-distributions in Cl0,n with compact support. They also showed
some properties of this generalized Fourier transform. A related applied
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approach for hypercomplex Clifford Fourier Transformations in Cl0,n was
followed by Bülow et. al. [2]. In [3], Li et. al. extended the Fourier Transform
holomorphically to a function of m complex variables.

In this paper we adopt and expand1 to Gn, n = 2, 3 (mod 4) the gener-
alization of the Fourier transform in Clifford geometric algebra G3 recently
suggested by Ebling and Scheuermann [6], based on [11]. To avoid ambigu-
ities we recall that

n = 2 (mod 4) ⇔ n = 2 + 4k, k ∈ N,
n = 3 (mod 4) ⇔ n = 3 + 4l, l ∈ N. (1.1)

We explicitly show detailed properties of the real2 Clifford geometric alge-
bra Fourier transform (CFT). As an application we subsequently use some
of these properties to define and prove the uncertainty principle for Gn
multivector functions.

2 Clifford’s Geometric Algebra Gn of Rn

Let us consider now and in the following an orthonormal vector basis
{e 1, e 2, . . . , e n} of the real n -dimensional Euclidean vector space Rn
with n = 2, 3 (mod 4) . The geometric algebra over Rn denoted by Gn then
has the graded 2n -dimensional basis

{1, e 1, e 2, . . . , e n, e 12, e 31, e 23, . . . , in = e 1 e 2 . . . e n}. (2.1)

Remark 2.1. The fact that we begin by introducing orthonormal bases for
both the vector space Rn and for its associated geometric algebra Gn is
only because we assume readers to be familiar with these concepts. As
is well-known, the definitions of vector spaces and geometric algebras are
generically basis independent [7]. The definition of the vector derivative of
section 3 is basis independent, too. Only when we introduce the infinitesi-
mal scalar volume element for integration over Rn in section 4 and in the
proof of the last theorem 5.5 in [4] do we use a basis explicitly. In the latter
case it may well be possible to formulate a basis independent proof. All re-
sults derived in this paper are therefore manifestly invariant (independent
of the use of coordinate systems), apart from the proof of theorem 5.5.

1In the following we mean with n = 2, 3 (mod 4) that n = 2 (mod 4) or n =
3 (mod 4) , i.e. with (1.1) that n ∈ {2, 3, 6, 7, 10, 11, . . .}. For further details and proofs
in the case of n = 3 compare [4]. In the geometric algebra literature [7] instead of the

mathematical notation Clp,q the notation Gp,q is widely in use. It is convention to
abbreviate Gn,0 to Gn .

2The meaning of real in this context is, that we use the oriented n -dimensional unit

volume element in of the geometric algebra Gn over the field of the reals R to construct
the kernel of the Clifford Fourier transformation of definition 4.1. This in has a clear
geometric interpretation, e.g. as n -dimensional hypercube with side length one, and in

an orthonormal basis of Rn it can be factorized as in = e 1 e 2 . . . e n .
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The squares of vectors are positive definite scalars (Euclidean metric)
and so are all even powers of vectors

x 2 ≥ 0, xm ≥ 0 for m = 2m′,m′ ∈ N. (2.2)

Therefore given a multivector M ∈ Gn
xmM = M xm, m = 2m′,m′ ∈ N. (2.3)

Note that for n = 2, 3 (mod 4)

i2n = −1, i−1n = −in, imn = (−1)
m
2 for m = 2m′,m′ ∈ Z, (2.4)

similar to the complex imaginary unit.
The grade selector is defined as 〈M〉k for the k -vector part of M ,

especially 〈M〉 = 〈M〉0 . Then M can be expressed as the sum of all its
grade parts

M = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n. (2.5)

The reverse of M is defined by the anti-automorphism

M̃ =

k=n∑
k=0

(−1)k(k−1)/2〈M〉k. (2.6)

The square norm of M is defined by

‖M‖2 = 〈MM̃〉, (2.7)

where
〈MÑ〉 = M ∗ Ñ (2.8)

is a real valued (inner and) scalar product for any M,N in Gn . As a
consequence we obtain the multivector Cauchy-Schwarz inequality

|〈MÑ〉|2 ≤ ‖M‖2 ‖N‖2 ∀ M,N ∈ Gn. (2.9)

3 Multivector Functions, Vector Differential and
Vector Derivative

Let f = f(x ) be a multivector-valued function of a vector variable x in
Gn . For an arbitrary vector a ∈ Rn we define3 the vector differential in
the a direction as

a · ∇f(x ) = lim
ε→0

f(x + εa )− f(x )

ε
(3.1)

provided this limit exists and is well defined.

3Bracket convention: A · BC = (A · B)C 6= A · (BC) and A ∧ BC = (A ∧ B)C 6=
A ∧ (BC) for multivectors A,B,C ∈ Gp,q . The vector variable index x of the vector
derivative is dropped: ∇x = ∇ and a · ∇x = a · ∇ , but not when differentiating

with respect to a different vector variable (compare e.g. proposition 3.6).
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Remark 3.1. a · ∇ is a scalar operator, therefore the left and right vector
differentials4 agree, i.e.

a · ∇̇ḟ(x ) = ḟ(x ) a · ∇̇. (3.2)

The basis independent vector derivative ∇ is defined in [7, 8] to have the
algebraic properties of a grade one vector in Rn and to obey equation (3.1)
for all vectors a ∈ Rn . This allows the following explicit representation.

Remark 3.2. The vector derivative ∇ can be expanded in a basis of Rn
as

∇ =

n∑
k=1

e k∂k with ∂k =
∂

∂xk
, 1 ≤ k ≤ n. (3.3)

Example 3.3. Here we give a set of multivector functions f : R6 → G6 , their
vector differentials and vector derivatives [8]. We assume that e 1256 =
e 1 e 2 e 5 e 6 , constant x 0 ∈ R6 , r = x − x 0 , r = ‖r ‖ , and r−1 =
r
‖r ‖2 .

f1 = x, a · ∇f1 = a, ∇f1 = 6, (3.4)

f2 = x2, a · ∇f2 = 2a · x, ∇f2 = 2x, (3.5)

f3 = ‖x‖, a · ∇f3 = a · x/‖x‖, ∇f3 = x/‖x‖, (3.6)

f4 = x · e1256, a · ∇f4 = a · e1256, ∇f4 = 4e1256, (3.7)

f5 = log r, a · ∇f5 = a · r−1, ∇f5 = r−1. (3.8)

Proposition 3.4 (Left and right linearity).

∇(f + g) = ∇f +∇g , (f + g)∇ = f∇+ g∇ . (3.9)

Proposition 3.5. For f(x ) = g(λ(x )), λ(x ) ∈ R ,

a · ∇f = f a · ∇ = {a · ∇λ(x )}∂g
∂λ

. (3.10)

Proposition 3.6 (Left and right derivative from differential).

∇f = ∇a (a · ∇f), f∇ = (a · ∇f)∇a . (3.11)

Proposition 3.7 (Left and right product rules).

∇(fg) = (∇̇ḟ)g + ∇̇fġ = (∇̇ḟ)g +∇a f(a · ∇g) . (3.12)

(fg)∇ = f(ġ∇̇) + ḟg∇̇ = f(ġ∇̇) + (a · ∇f) g∇a . (3.13)

Note that the multivector functions f and g in (3.12) and (3.13) do not
necessarily commute.

4The point symbols specify on which function the vector derivative is supposed to

act.
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Example 3.8. For two functions f, g : R2 → G2 , f = x , g = x · e 12 we
calculate [8]

(fg)∇ = f(ġ∇̇) + (a · ∇f) g∇a

= x[(x · e12)∇] + (a · ∇x)(x · e12)∇a = x(−2e12) + a(x · e12)∇a

= −2xe12 + e1(x · e12)e1 + e2(x · e12)e2 = −2xe12. (3.14)

Differentiating twice with the vector derivative, we get the differential
Laplacian operator ∇2 . We can write ∇2 = ∇ · ∇ + ∇ ∧ ∇ . But for
integrable functions ∇∧∇ = 0. In this case we have ∇2 = ∇·∇. Because
∇2 is a scalar operator, the left and right Laplace derivatives agree, i.e.
∇2f = f ∇2. More generally all even powers of the left and right vector
derivative agree

∇mf = f ∇m for m = 2m′,m′ ∈ N. (3.15)

Proposition 3.9 (Integration of parts).∫
Rn

f(x)[a · ∇g(x)] dnx =[∫
Rn−1

f(x)g(x) dn−1x

]a·x=∞
a·x=−∞

−
∫
Rn

[a · ∇f(x)]g(x) dnx. (3.16)

Remark 3.10. Proposition 3.9 reduces to the familiar coordinate form, if
we insert for a the grade 1 basis vectors e k, 1 ≤ k ≤ n of (2.1), because

e k · ∇ = ∂k and e k · x = xk. (3.17)

We also note that because of (2.3) even powers of vectors commute with
multivector valued functions f ∈ L2(Rn,Gn)

xmf = f xm for m = 2m′,m′ ∈ N. (3.18)

Theorem 3.11. For all geometric algebras Gn, n ∈ N we have for f :
Rn → Gn) , a , x , ω ∈ Rn , and λ = ±ω · x

a · ∇ω f(x )(± i−1n )e± in ω ·x = a · x f(x )e± in ω ·x . (3.19)

For f(x ) = 1 we get

a · ∇ω (± i−1n ) e± in ω ·x = a · x e± in ω ·x . (3.20)

Proof.

a · ∇ωf(x)(± i−1n )e± inω·x = f(x)(± i−1n ) a · ∇ωe
± inω·x

= f(x)(± i−1n ) a · ∇ω(±ω · x)
∂einλ

∂λ
= f(x) i−1n a · x in einλ

= a · xf(x) i−1n in e
inλ = a · xf(x) e± inω·x . (3.21)

For the second equality we used proposition 3.5, and for the third equality
proposition 21 of [8].
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Example 3.12. Functions f : R6 → G6 , like sin(x ) and ei6 ω ·x with
i6 = e 1 e 2 e 3 e 4 e 5 e 6 , i−16 = ĩ6 = −i6 can be defined by power series.
An example for (3.19) is therefore

a · ∇ω sin(x )(−i6)ei6 ω ·x = a · x sin(x )ei6 ω ·x . (3.22)

By exchanging the roles of x and ω in (3.20) we obtain

Corollary 3.13.

a · ∇(± i−1n ) e± in ω ·x = a · ω e± in ω ·x . (3.23)

Applying proposition 3.6 to corollary 3.13 and multiplying both sides
with ± in from the right we get

Corollary 3.14.

∇e± in ω ·x = ω (±in) e± in ω ·x , (3.24)

and its reverse

Corollary 3.15.

e± in ω ·x ∇ = e± in ω ·x (±in) ω . (3.25)

Theorem 3.16. For all geometric algebras Gn, n ∈ N we have for f :
Rn → Gn) , a , x , ω ∈ Rn , and λ = ±ω · x

∇ω f(x )(± i−1n )e± in ω ·x = x f(x )e± in ω ·x . (3.26)

For f(x ) = 1 we get

∇ω (± i−1n )e± in ω ·x = x e± in ω ·x . (3.27)

Proof. We first proof (3.26).

∇ωf(x)(± i−1n )e± inω·x = ∇a[a · ∇ωf(x)(± i−1n )e± inω·x]

= ∇a(a · x)f(x) e± inω·x = xf(x) e± inω·x. (3.28)

For the first equality we used proposition 3.6, for the second equality the-
orem 3.11, and for the third equality proposition 72 of [8].

Example 3.17. Similar to example 3.12 functions f : R7 → G7 , like cos(x )
and ei7 ω ·x with i7 = e 1 e 2 e 3 e 4 e 5 e 6 e 7 , i−17 = ĩ7 = −i7 can be
defined by power series. An example for (3.26) is therefore

∇ω cos(x ) i7 e
−i7 ω ·x = x cos(x )ei7 ω ·x . (3.29)

The reverse of (3.27) gives
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Corollary 3.18.

e± in ω ·x (± i−1n )∇ω = e± in ω ·x x . (3.30)

Convolution is an important operation for smoothing images and for
edge detection in image processing. The Clifford Convolution of multivector
valued functions is defined for arbitrary n .

Definition 3.19 (Clifford Convolution). The Clifford Convolution of f, g ∈
L2(Rn,Gn) is defined as

(f ? g)(x ) =

∫
Rn

f(y )g(x − y )dn y . (3.31)

Example 3.20. As an example let us compute the convolution of two ex-
ponential functions f, g : R2 → G2 , f(x ) = e 2 exp(−i2ω · x ) , g(x ) =
3e 1 exp(i2ω

′ · x ) with ω , ω ′ ∈ R2 , i2 = e 1 e 2 , i2 e 1,2 = −e 1,2i2 ,

(f ? g)(x) =

∫
R2

e2e
−i2ω·y3e1e

i2ω′·(x−y)d2y

= 3e2e1e
i2ω′·x

∫
R2

ei2(ω−ω
′)·yd2y

= −3(2π)2i2e
i2ω′·xδ(ω − ω′). (3.32)

Exchanging the order of the functions we get

(g ? f)(x) = 3(2π)2i2e
−i2ω′·xδ(ω − ω′), (3.33)

illustrating the general non-commutativity (f ? g) 6= (g ? f) due to the
geometric product.

Note that the following identity, which follows from the substitution of
variables ( z = x− y ), is valid for all dimensions n . Let f, g ∈ L2(Rn,Gn)
then ∫

Rn

f(x − y )g(y )dn y =

∫
Rn

f(z )g(x − z )dn z . (3.34)

Ebling and Scheuermann [6] distinguish between right and left convolu-
tion. They are right that products of multivector valued functions do not
commute (compare example 3.20), so after e.g. a linear and shift-invariant
(LSI) multivector filter is chosen it matters if a multivector image function
is multiplied with the filter from the right or from the left. But because
of (3.34) we only define one kind of convolution and leave it up to partic-
ular applications which factor is taken as multivector filter and which for
the multivector image function, etc. The CFT formulas of the convolution
which we derive for n = 2, 3 (mod 4) are valid for whatever choice is made
in applications.
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4 Clifford Fourier Transform (CFT)

Definition 4.1. The Clifford Fourier transform5 of f(x ) is the function
F{f} : Rn → Gn, n = 2, 3 (mod 4) given by

F{f}(ω ) =

∫
Rn

f(x ) e−in ω ·x dn x , (4.1)

with x , ω ∈ Rn .

Note that
dn x = dx1 ∧ dx2 ∧ . . . ∧ dxn i−1n (4.2)

is scalar valued (dxk = dxk ek ∈ Rn, k = 1, 2, . . . , n , no summation).
Because for n = 3 (mod 4) in commutes with every element of Gn , the
Clifford Fourier kernel e−in ω ·x will also commute with every element of
Gn . This is not the case for n = 2 (mod 4) .

Example 4.2. We give an example for an integrable function f : Rn → Gn ,
the n -dimensional rect(x ) function, which can be given in terms of the
real scalar rect(x) function with x ∈ R as

rect(x ) =

n∏
k=1

rect(xk)e k = in

n∏
k=1

rect(xk). (4.3)

The CFT of rect(x ) gives

F{rect}(ω) =

∫
Rn

rect(x)e−inω·x dnx

= in

∫
Rn

n∏
k=1

rect(xk)e−inω·x dnx = in

n∏
k=1

sinc(
ωk
2π

). (4.4)

Theorem 4.3. The Clifford Fourier transform F{f} of f ∈ L2(Rn,Gn) ,
n = 2, 3 (mod 4) ,

∫
Rn ‖f‖2dn x <∞ is invertible and its inverse is calcu-

lated by

F−1[F{f}](x ) = f(x ) =
1

(2π)n

∫
Rn

F{f}(ω ) ein ω ·x dnω . (4.5)

For a full proof of theorem 4.3 in dimension n = 3 that can be generalised
straight forwardly to dimensions n = 2, 3 (mod 4) see e.g. [4]. Though def-
inition 4.1 and theorem 4.3 are the same for the dimensions n = 2 (mod 4)
and n = 3 (mod 4) , care has to be taken of the general non-commutativity
of in for n = 2 (mod 4) . However it turns out, that many properties of the

5Compare e.g. [14], article 160 for the precise conditions on the existence of Fourier

integrals.
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CFT for n = 2, 3 (mod 4) can be expressed independent of the commuta-
tion properties of in , if sufficient care is taken to avoid commuting in with
other multivectors (except scalars and powers of in itself). Exceptions are
the CFT of the Clifford convolution, f xm and f ∇m, which need to be
studied dimension dependent.

We therefore continue with a general section on investigating properties
of the CFT for n = 2 (mod 4) and n = 3 (mod 4) aiming at expressions that
do not depend on the commutation properties of in . This will be followed
by a section on the properties of the CFT of the Clifford convolution,
f xm and f ∇m . This second section will also include one table each for
n = 2 (mod 4) and n = 3 (mod 4) that summarize all the properties of the
CFT studied in this paper and fully utilize the commutation properties of
in .

4.1 Properties of the CFT for n = 2, 3 (mod 4) expressed inde-
pendent of in commutations

The properties of the CFT we will treat now are linearity, scaling, delay,
shift, transformations of powers of the vector differential, of left and right
powers of the vector derivative, of the vector variable x ∈ Rn , and finally
the Plancherel and Parseval theorems. The unique feature of our study is
the independence of theorem formulations and proofs on the commutation
properties of the pseudoscalars in in dimensions n = 2, 3 (mod 4) . If not
otherwise stated, n is assumed to be n = 2, 3 (mod 4) in the remainder of
this section.

Theorem 4.4 (Left linearity). For f(x ) = αf1(x ) + βf2(x ) with con-
stants α, β ∈ Gn , and functions f1(x ) , f2(x ) ∈ Gn we have

F{f}(ω ) = αF{f1}(ω ) + βF{f2}(ω ). (4.6)

Proof. Follows from the linearity of the geometric product and the integra-
tion involved in the definition 4.1 of the CFT.

Remark 4.5. Restricting the constants in theorem 4.4 to α, β ∈ R we get
both left and right linearity of the CFT.

Theorem 4.6 (Scaling). Let a ∈ R, a 6= 0 be a scalar constant, then the
Clifford Fourier transform of the function fa(x ) = f(ax ) becomes

F{fa}(ω ) =
1

|a|n
F{f}( ω

a
). (4.7)

Proof. Follows from variable substitution u = ax .

Theorem 4.7 (Shift in space domain, delay). If the argument of f(x ) ∈
Gn is offset by a constant vector a ∈ Rn , i.e. fd(x ) = f(x − a ) , then

F{fd}(ω ) = F{f}(ω )e−in ω ·a . (4.8)
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Proof. Definition 4.1 gives

F{fd}(ω ) =

∫
Rn

f(x − a )e−in ω ·x dn x .

We substitute t for x − a in the above expression, and get with dn x
= dn t

F{fd}(ω) =

∫
Rn

f(t) e−inω·te−inω·a dnt

= F{f}(ω)e−inω·a. (4.9)

This proves (4.8).

Example 4.8. Using example 4.2 we can calculate the CFT of a shifted
n -dimensional rect(x ) function with center at a = 3e 2 , ω2 = ω · e 2

as

F{rectd}(ω) =

∫
Rn

rect(x− 3e2)e−inω·x dnx

= in e
−3inω2

n∏
k=1

sinc(
ωk
2π

). (4.10)

Theorem 4.9 (Shift in frequency domain). If ω 0 ∈ Rn and f0(x ) =
f(x ) ein ω 0·x , then

F{f0}(ω ) = F{f}(ω − ω 0) (4.11)

Proof. Using definition 4.1 and simplifying it we obtain

F{f0}(ω) =

∫
Rn

f(x)e−in(ω−ω0)·x dnx = F{f}(ω − ω0). (4.12)

The CFT F{f}(ω − ω 0) is centered on the point ω = ω 0 in the
frequency domain.

Theorem 4.10 (Powers of x ∈ Rn from left).

F{xmf(x )}(ω ) = ∇mω F{f}(ω ) imn , m ∈ N. (4.13)

Proof. We first proof theorem 4.10 for m = 1 . Direct calculation leads to

F{xf(x)}(ω) =

∫
Rn

xf(x) e−inω·x dnx

=

∫
Rn

∇ωf(x) in e
−inω·x dnx = ∇ω

∫
Rn

f(x) e−inω·x dnx in

= ∇ω F{f}(ω) in , (4.14)
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where we have used definition 4.1 and (3.26) of theorem 3.16. We therefore
have

F{x f(x )}(ω ) = ∇ω F{f}(ω ) in . (4.15)

Repeating this process m− 1 times we get

F{xmf(x )}(ω ) = ∇mω F{f}(ω ) imn , m ∈ N. (4.16)

Example 4.11. The CFT of a Gaussian function f(x ) = exp(−x 2), x ∈
Rn is again a Gaussian function

F{f}(ω ) =

∫
Rn

e−x
2

e−in ω ·x dn x = π
n
2 e−

ω 2

4 (4.17)

The CFT of its first moment is therefore according to theorem 4.10 and
propositions 3.5 and 3.6

F{xf}(ω) =

∫
Rn

xe−x
2

e−inω·xdnx

= π
n
2∇ωe

−ω2

4 in = −π
n
2

2
ω in e

−ω2

4 . (4.18)

Theorem 4.12 ( xm from right).

F{f(x ) xm}(ω ) =

∫
Rn

f(x )∇mω e−in ω ·x dn x imn , m ∈ N. (4.19)

Proof. Direct calculation leads to

F{f(x)x}(ω) =

∫
Rn

f(x)x e−inω·x dnx

=

∫
Rn

f(x)∇ωin e
−inω·x dnx =

∫
Rn

f(x)∇ω e
−inω·x dnx in (4.20)

where we have used definition 4.1 and (3.27) of theorem 3.16. Replacing f
m−1 times by f x and converting the additional right factor x each time
into a derivative of e−in ω ·x leads to the full proof of the theorem.

Remark 4.13. In the next section we will use theorem 4.12 and the dimen-
sion dependent commutation properties of in to derive final formulas for
the CFTs of f(x ) xm , m ∈ N .

Theorem 4.14.

F{(a · x)mf(x)}(ω) = (a · ∇ω)m F{f}(ω) imn , m ∈ N. (4.21)
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Proof. We first proof theorem 4.14 for m = 1 .

F{a · x f(x)}(ω) =

∫
Rn

a · x f(x) e−inω·x dnx

=

∫
Rn

f(x) a · x e−inω·x dnx

Theor. 3.11
=

∫
Rn

f(x) a · ∇ω in e
−inω·x dnx

= a · ∇ω

∫
Rn

f(x) e−inω·x dnx in

= a · ∇ω F{f}(ω) in. (4.22)

Repeatedly inserting a · x f for f in (4.22) we obtain theorem 4.14 for
every m ∈ N .

Inserting b · x f with b ∈ Rn for f in (4.22) we obtain the following
corollary.

Corollary 4.15.

F{a · x b · x f(x )}(ω ) = − a · ∇ω b · ∇ω F{f}(ω ). (4.23)

Theorem 4.16 (Vector differential). The Clifford Fourier transform of the
mth power vector differential of f(x ) is

F{(a · ∇)mf}(ω ) = (a · ω )m F{f}(ω ) imn , m ∈ N. (4.24)

Proof. We first proof theorem 4.16 for m = 1 .

a · ∇f(x) = a · ∇ 1

(2π)n

∫
Rn

F{f}(ω) einω·x dnω

=
1

(2π)n

∫
Rn

F{f}(ω)a · ∇ einω·x dnω

Cor. 3.13
=

1

(2π)n

∫
Rn

F{f}(ω)a · ωin einω·x dnω

= F−1[a · ωF{f} in](x). (4.25)

Application of the inverse CFT theorem 4.3 proves theorem 4.16 for m = 1

F{a · ∇f(x )} = a · ω F{f} in. (4.26)

By repeatedly replacing f with a · ∇f in (4.26) we obtain theorem 4.16
for all m ∈ N .

Theorem 4.17 (Left vector derivative). The Clifford Fourier transform
of the mth power vector derivative of f(x ) is

F{∇mf}(ω ) = ωm F{f}(ω ) imn , m ∈ N. (4.27)
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Proof. We first proof theorem 4.17 for m = 1 . According to proposition
3.6 we can calculate the derivative from the differential of theorem 4.16

F{∇f(x)} = F{∇a[a · ∇f(x)]} = ∇aF{a · ∇f(x)}
= ∇a(a · ω)F{f} in = ωF{f} in (4.28)

By repeatedly replacing f with ∇f in (4.28) we obtain theorem 4.17 for
all m ∈ N .

Example 4.18. Using the CFT of a Gaussian function f(x ) = exp(−x 2)
of (4.17) we can calculate the CFT of its third vector derivative with (4.27)
as

F{∇3f}(ω ) =

∫
Rn

∇3e−x
2

e−in ω ·x dn x = −π n
2 ω 3 in e

− ω 2

4 . (4.29)

We now prove a theorem, which we will use in the next section together
with the dimension dependent commutation properties of in to derive final
formulas for the CFT of powers of the right vector derivative f(x )∇m ,
m ∈ N .

Theorem 4.19 (∇m from right).

f(x )∇m =
1

(2π)n

∫
Rn

F{f}(ω ) imn e
in ω ·x ωm dnω . (4.30)

Proof. We first proof theorem 4.19 for m = 1 .

f(x)∇ =
1

(2π)3

∫
Rn

F{f}(ω) einω·xdnω∇

=
1

(2π)3

∫
Rn

F{f}(ω) einω·x∇ dnω

=
1

(2π)3

∫
Rn

F{f}(ω) einω·x in ω d
nω

=
1

(2π)3

∫
Rn

F{f}(ω) in e
inω·x ω dnω, (4.31)

where we used corollary 3.15 for the third equality. Repeating the applica-
tion of the vector derivative ∇ from the right m − 1 times to both sides
of (4.31) completes the proof.

Next we will prove a Plancherel theorem and deduce a scalar Parseval
theorem, which we need in the last section on the uncertainty principles.

Theorem 4.20 (Plancherel). Assume that f1(x ), f2(x ) ∈ Gn with Clif-
ford Fourier transform F{f1}(ω ) and F{f2}(ω ) respectively, then∫

Rn

f1(x ) f̃2(x ) dn x =
1

(2π)n

∫
Rn

F{f1}(ω ) ˜F{f2}(ω ) dn x . (4.32)
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Proof. Direct calculation yields∫
Rn

f1(x) f̃2(x) dnx

=
1

(2π)n

∫
Rn

[

∫
Rn

F{f1}(ω) einω·xdnω] f̃2(x)dnx

=
1

(2π)n

∫
Rn

F{f1}(ω)

[∫
Rn

f2(x) e−inω·x dnx

]∼
dnω

=
1

(2π)n

∫
Rn

F{f1}(ω) ˜F{f2}(ω)dnω. (4.33)

Note that theorem 4.20 is multivector valued. It holds for each grade
k, 0 ≤ k ≤ n of the multivectors on both sides of equation (4.32). We
therefore have

Corollary 4.21.

〈
∫
Rn

f1(x ) f̃2(x ) dn x 〉k =
1

(2π)n
〈
∫
Rn

F{f1}(ω ) ˜F{f2}(ω ) dn x 〉k.

(4.34)

Note further, that with f1(x ) = f2(x ) = f(x ), we get the following
multivector version of the Parseval theorem, i.e.

Theorem 4.22 (Multivector Parseval).∫
Rn

f(x ) ˜f(x ) dn x =
1

(2π)n

∫
Rn

F{f}(ω ) ˜F{f}(ω ) dn x . (4.35)

Example 4.23. According to (4.17) and left linearity of theorem 4.4 the
CFT of the function f(x ) = (1 + e 1) exp(−x 2), x ∈ R2 is

F{f}(ω ) =

∫
R2

(1 + e 1)e−x
2

e−i2 ω ·x d2 x = (1 + e 1)πe−
ω 2

4 (4.36)

Inserting this f into (4.35) gives on the left side∫
R2

f(x) f̃(x) d2x = (1 + e1)2
∫
R2

e−2x2

d2x = (1 + e1)π. (4.37)

We can check (4.35) by inserting (4.36) on the right side. The scalar part
of the result is π , the vector part is π e 1 .

The scalar part of theorem 4.22 together with (2.7), gives us the scalar
Parseval theorem

Theorem 4.24 (Scalar Parseval).∫
Rn

‖f(x )‖2 dn x =
1

(2π)n

∫
Rn

‖F{f}(ω )‖2 dnω . (4.38)
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4.2 Properties of the CFT for n = 2, 3 (mod 4) dependent on in
commutations

Now we concentrate on properties of the CFT, which need to make use of
the commutation properties of the unit oriented pseudoscalar in ∈ Gn in
order to be fully developed. In this category we have for m ∈ N the CFTs
of f xm , f∇m , and the CFT of the Clifford convolution with distinct
expressions for the dimensions of n = 2 (mod 4) and n = 3 (mod 4) . Before
we proceed, we note that for n = 3 (mod 4) the pseudoscalar in commutes
with all elements of the algebra. For the case of n = 2 (mod 4) we first
establish a theorem and two corollaries.

Theorem 4.25. Any odd grade multivector Ar ∈ Gn, r = 2s+1, s ∈ N, s <
n
2 anti-commutes with in for n = 2 (mod 4)

Arin = −inAr. (4.39)

Any even grade multivector Ar ∈ Gn, r = 2s, s ∈ N, s ≤ n/2 commutes
with in for n = 2 (mod 4)

Arin = +inAr. (4.40)

Proof. For the case of n = 2 we have [2] for a vector a ∈ R2

i2 a = −a i2. (4.41)

For the general case of n = 2 (mod 4) we can factorize in for any vector
a ∈ Rn such that

in = in−2 b̂ â , b̂ ∗ â = b̂ in−2 = â in−2 = 0, â =
a

a
, b̂

2
= 1.

(4.42)
in−2 will therefore be of grade 0 (mod 4) , represent a subspace6 of Rn
perpendicular to a and therefore commute with a . According to (4.41)
and (4.42) the two-blade b̂ â anti commutes with a and hence

in a = in−2 b̂ â a = −in−2 a b̂ â = −a in−2 b̂ â = −a in. (4.43)

Any odd grade multivector Aodd can be written as a sum over homoge-
neous odd grade parts. These parts can in turn be decomposed into sums of
odd grade blades, which can be factorized into products of an odd number
of vectors [13, 2]. Since a single vector anti commutes with in , a geomet-
ric product of an odd number of vectors will also animate with in and
hence by linearity any odd grade multivector will animate with in . This
proves (4.39). Similarly any even grade multivector Aeven can be written
as a sum over homogeneous even grade parts. These parts can in turn be

6A subspace in the sense of outer product null space.
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decomposed into sums of even grade blades, which can be factorized into
geometric products of an even number of vectors [13, 2]. The even number
of commutations with an even number of vector factors leads via linearity
to the total commutation relationship (4.40).

Based on theorem 4.25 we derive two useful corollaries.

Corollary 4.26. For n = 2 (mod 4) and a ∈ R we have for even m ∈ N

(a in)m = am (4.44)

and for odd m ∈ N
(a in)m = am in (4.45)

Proof. We have

(a in)2 = a in a in = a a (−inin) = a 2, (4.46)

where we used (4.39) for the second equality. Using (4.46) m/2 times
[ (m− 1)/2 times] we arrive at equations (4.44) [and (4.45)].

Corollary 4.27. Let the odd grade part of a general multivector A ∈ Gn
be Aodd = 〈A〉odd and the even grade part be Aeven = 〈A〉even . Then for
n = 2 (mod 4) we have

A in = Aodd in +Aeven in = −inAodd + inAeven, (4.47)

and for λ ∈ R
Aeinλ = e−inλAodd + e+inλAeven, (4.48)

and

einλA = Aodd e
−inλ +Aeven e

+inλ. (4.49)

Proof. Corollary 4.27 follows from theorem 4.25 and the fact that einλ is
a power series of in .

Theorem 4.28 (Powers of x ∈ Rn from right). For n = 2 (mod 4) we
have

F{f(x ) xm}(ω ) = F{f}((−1)mω )∇mω imn , m ∈ N. (4.50)

For n = 3 (mod 4) we have

F{f(x ) xm}(ω ) = imn F{f}(ω )∇mω , m ∈ N. (4.51)
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Proof. We first proof theorem 4.28 for n = 2 (mod 4) . We start with the-
orem 4.12 and apply corollary 4.27 to commute the vector derivative ∇ω

to the right of the integral

F{f(x)xm}(ω) =

∫
Rn

f(x)∇mω e−inω·x dnx imn

=

∫
Rn

f(x)e−in(−1)
mω·x dnx∇mω imn = F{f}((−1)mω)∇mω imn . (4.52)

The proof of (4.51) with n = 3 (mod 4) is the same, except that the sign
of ω in the exponent does not change and that we can freely commute in
to the left.

Theorem 4.29 (Right vector derivative). The Clifford Fourier transform
of the mth power vector derivative (applied from the right) of f(x ) is for
n = 2 (mod 4)

F{f ∇m}(ω ) = F{f}((−1)mω ) ωm imn , m ∈ N, (4.53)

and for n = 3 (mod 4)

F{f ∇m}(ω ) = imn F{f}(ω ) ωm, m ∈ N. (4.54)

Proof. We first proof theorem 4.29 for n = 2 (mod 4) . We start with
theorem 4.19 and apply corollary 4.27 to commute the vector ωm with
ein ω ·x

f(x)∇m =
1

(2π)n

∫
Rn

F{f}(ω) imn e
inω·x ωm dnω

=
1

(2π)n

∫
Rn

F{f}(ω) imn ωmein(−1)
mω·x dnω

=
1

(2π)n

∫
Rn

F{f}((−1)mω) imn (−ω)meinω·x dnω

= F−1[F{f}((−1)mω)ωm imn ](x), (4.55)

where for odd m we substituted −ω → ω for the third equality. For the
fourth equality we applied apply corollary 4.27 once more to commute ωm

and imn . Equation (4.53) is obtained by applying the inverse CFT theorem
4.3 to both sides of (4.55).

Once again the proof of (4.54) with n = 3 (mod 4) is the same, except
that the sign of ω in the exponent does not change and that we can freely
commute in to the left.

Remark 4.30. Theorem 4.17 and (4.53) show that all signs of the right
hand sides of all five lines in the derivative theorem 5.7 in [6] are wrong.
Line three there contains further errors.
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For even m we get from theorems 4.10 and 4.28, and from (2.4)

Corollary 4.31.

F{xmf(x )}(ω ) = F{f(x ) xm}(ω ) = (−1)
m
2 ∇mω F{f}(ω ). (4.56)

We further get for even m from theorems 4.17 and 4.29, and from (2.4)

Corollary 4.32.

F{∇mf(x )} = F{f(x )∇m} = (−1)
m
2 ωm F{f}(ω ). (4.57)

Theorem 4.33 (CFT of Clifford Convolution). For n = 2 (mod 4) , f, g ∈
L2(Rn,Gn) , and godd ( geven ) the odd (even) grade part of g we have

F{f ? g}(ω ) = F{f}(−ω )F{godd}(ω ) + F{f}(ω )F{geven}(ω ).
(4.58)

For n = 3 (mod 4) we have

F{f ? g}(ω ) = F{f}(ω )F{g}(ω ). (4.59)

Proof. For n = 2 (mod 4) we have

F{f?g}(ω) =

∫
Rn

[

∫
Rn

f(y)g(x− y)dny]e−inω·xdnx

=

∫
Rn

f(y)[

∫
Rn

g(x− y)e−inω·xdnx]dny

=

∫
Rn

f(y)[

∫
Rn

g(z)e−inω·(y+z)dnz]dny

=

∫
Rn

f(y)

∫
Rn

[e+inω·ygodd(z) + e−inω·ygeven(z)]e−inω·zdnzdny

=

∫
Rn

f(y)e−in(−ω)·ydnyF{godd}(ω) +

∫
Rn

f(y)e−inω·ydnyF{geven}(ω)

= F{f}(−ω)F{godd}(ω) + F{f}(ω)F{geven}(ω).

For the third equality we used the variable substitution z = x − y and
for the fourth equality we used corollary 4.27.

The corresponding proof in [4] for n = 3 , can be generalized straight
forwardly to n = 3 (mod 4) . This part of the proof is also strictly invariant.

Remark 4.34. The above proof of theorem 4.33 for n = 2 (mod 4) depends
on the in commutation relationships. But on the other hand, it has the
advantage of being manifestly invariant, since no coordinate system needed
to be introduced.
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TABLE 1.1. Properties of the Clifford Fourier transform (CFT) with
n = 3 (mod 4) . Multivector functions (Multiv. Funct.) f, g, f1, f2 ∈ L2(Rn,Gn) ,
the constants are α, β ∈ Gn , 0 6= a ∈ R , a , ω 0 ∈ Rn and m ∈ N .

Property Multiv. Funct. CFT

Left lin. αf(x)+β g(x) αF{f}(ω)+ βF{g}(ω)
x-Shift f(x− a) e−inω·aF{f}(ω)
ω-Shift einω0·xf(x) F{f}(ω − ω0)
Scaling f(ax) 1

|a|nF{f}(
ω
a )

Convolution (f?g)(x) F{f}(ω)F{g}(ω)
Vec. diff. (a · ∇)mf(x) imn (a · ω)mF{f}(ω)

(a · x)m f(x) imn (a · ∇ω)m F{f}(ω)
Powers of x xmf(x) imn ∇mω F{f}(ω)

f(x)xm imn F{f}(ω)∇mω
Vec. deriv. ∇mf(x) imn ωmF{f}(ω)

f(x)∇m imn F{f}(ω)ωm

Plancherel
∫
Rn f1(x)f̃2(x) dnx 1

(2π)n

∫
Rn F{f1}(ω) ˜F{f2}(ω) dnω

sc. Parseval
∫
Rn ‖f(x)‖2 dnx 1

(2π)n

∫
Rn ‖F{f}(ω)‖2 dnω

Theorem 4.33 correctly generalizes the results for n = 2 in [6] to n =
2 (mod 4) . Comparing theorem 4.33 with the convolution theorem 5.6 of [6]
in two dimensions, we see that the fourth line of convolution theorem 5.6
in [6] must be wrong. On the right hand side of this formula the dot over
the vector filter function h under the CFT indicating ḣ(x ) = h(−x ) is
incorrect. Because of (3.34) h should also have no dot, in agreement with
the correct dot-free vector filter function f on the right hand side of line
two of theorem 5.6 in [6].

In order to give an overview of the properties of the CFT we list its
properties for n = 3 (mod 4) in table 1.1 and for n = 2 (mod 4) in table
1.2. Comparing the tables, the differences caused by the different commu-
tation rules for the pseudoscalars in in n = 3 (mod 4) and n = 2 (mod 4)
dimensions are obvious. In table 1.1 the positions of in and of exponen-
tials einλ, λ ∈ R are arbitrary. In table 1.2 the pseudoscalar in and its
exponentials einλ, λ ∈ R cannot be freely commuted.

5 Uncertainty Principle

The uncertainty principle plays an important role in the development and
understanding of quantum physics. It is also central for information pro-
cessing [9]. In quantum physics it states e.g. that conjugate properties like
particle momentum and position cannot be be simultaneously measured
accurately. In Fourier analysis such conjugate entities correspond to a func-
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TABLE 1.2. Properties of the Clifford Fourier transform (CFT) with
n = 2 (mod 4) . Multivector functions (Multiv. Funct.) f, g, f1, f2 ∈ L2(Rn,Gn) ,
the constants are α, β ∈ Gn , 0 6= a ∈ R , a , ω 0 ∈ Rn and m ∈ N .

Property Multiv. Funct. CFT

Left lin. αf(x)+β g(x) αF{f}(ω)+ βF{g}(ω)
x-Shift f(x− a) F{f}(ω) e−inω·a

ω-Shift f(x) einω0·x F{f}(ω − ω0)
Scaling f(ax) 1

|a|nF{f}(
ω
a )

Convolution (f?g)(x) F{f}(−ω)F{godd}(ω)
+F{f}(ω)F{geven}(ω)

Vec. diff. (a · ∇)mf(x) (a · ω)mF{f}(ω) imn
(a · x)m f(x) (a · ∇ω)m F{f}(ω) imn

Powers of x xmf(x) ∇mω F{f}(ω) imn
f(x)xm F{f}((−1)mω) ∇mω imn

Vec. deriv. ∇mf(x) ωm F{f}(ω) imn
f(x)∇m F{f}((−1)mω) ωm imn

Plancherel
∫
Rn f1(x)f̃2(x) dnx 1

(2π)n

∫
Rn F{f1}(ω) ˜F{f2}(ω) dnω

sc. Parseval
∫
Rn ‖f(x)‖2 dnx 1

(2π)n

∫
Rn ‖F{f}(ω)‖2 dnω

tion and its Fourier transform which cannot both be simultaneously sharply
localized. Furthermore much work (e.g. [9, 10]) has been devoted to extend-
ing the uncertainty principle to a function and its Fourier transform. Yet
Felsberg [11] notes even for two dimensions: In 2D however, the uncer-
tainty relation is still an open problem. In [12] it is stated that there is no
straightforward formulation for the 2D uncertainty relation.

From the view point of geometric algebra an uncertainty principle gives
us information about how the variations of a multivector valued function
and its Clifford Fourier transform are related.

The theorems and the corollary below have all been proved with great
detail for the case of n = 3 in [4]. The key steps of the proofs there involve
the CFT of the vector differential of theorem 4.16 and the (scalar) Parseval
theorem 4.24, the Cauchy Schwarz inequality (2.9) for multivectors, and
finally the coordinate free integration of parts formula of proposition 3.9.
Otherwise the proofs are very analogous, and do not involve dimension
dependent in commutations. Therefore we don’t repeat them here, we
only list the resulting formulas.

Theorem 5.1 (Directional uncertainty principle). Let f be a multivector
valued function in Gn, n = 2, 3 (mod 4) , which has the Clifford Fourier
transform F{f}(ω ) . Assume

∫
Rn ‖f(x )‖2 dn x = F < ∞ , then the fol-
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lowing inequality holds for arbitrary constant vectors a , b :∫
Rn

(a · x )2‖f(x )‖2 dn x 1

(2π)n

∫
Rn

(b · ω )2 ‖F{f}(ω )‖2dnω ≥ (a ·b )2
1

4
F 2.

(5.1)

Proof. Applying the results stated so far we have7∫
Rn

(a · x)2 ‖f(x)‖2 dnx 1

(2π)n

∫
Rn

(b · ω)2 ‖F{f}(ω)‖2dnω

tab. 1.1,1.2, line 6
=

∫
Rn

(a · x)2 ‖f(x)‖2 dnx 1

(2π)n

∫
Rn

‖F{b · ∇f}(ω)‖2 dnω

sc. Parseval
=

∫
Rn

(a · x)2 ‖f(x)‖2 dnx
∫
Rn

‖b · ∇f(x)‖2 dnx

footnote 7
≥

(∫
Rn

a · x ‖f(x)‖ ‖b · ∇f(x)‖ dnx
)2

(2.9)

≥
(∫

Rn

a · x|〈f̃(x) b · ∇f(x)〉| dnx
)2

≥
(∫

Rn

a · x〈f̃(x) b · ∇f(x)〉 dnx
)2

.

Because of (2.7) and (2.8)

(b · ∇)‖f‖2 = 2〈f̃ (b · ∇)f〉, (5.2)

we furthermore obtain∫
Rn

(a · x)2 ‖f(x)‖2 dnx 1

(2π)n

∫
Rn

(b · ω)2 ‖F{f}(ω)‖2dnω

≥
(∫

Rn

a · x 1

2
(b · ∇‖f‖2) dnx

)2

Prop. 3.9
=

1

4

([∫
Rn−1

a · x‖f(x)‖2dn−1x
]b·x=∞
b·x=−∞

−
∫
Rn

[(b · ∇)(a · x)] ‖f(x)‖2 dnx
)2

=
1

4

(
0− a · b

∫
Rn

‖f(x)‖2 dnx)

)2

= (a · b)2
1

4
F 2.

7 φ, ψ : Rn → C,
∫
Rn |φ(x)|2dnx

∫
Rn |ψ(x)|2dnx ≥ (

∫
Rn φ(x)ψ(x) dnx)2
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Choosing b = ±a , i.e. b ‖ a , with a 2 = 1 we get from theorem 5.1
the following

Corollary 5.2 (Uncertainty principle).∫
Rn

(a · x )2‖f(x )‖2 dn x 1

(2π)n

∫
Rn

(a · ω )2 ‖F{f}(ω )‖2dnω ≥ 1

4
F 2.

(5.3)

Remark 5.3. In (5.3) equality holds for Gaussian multivector valued func-
tions

f(x ) = C0 e
−k x 2

, (5.4)

where C0 ∈ Gn is an arbitrary but constant multivector, 0 < k ∈ R. This
follows from the observation that we have for the f of (5.4)

−2k a · x f = a · ∇f. (5.5)

Theorem 5.4. For a · b = 0 , i.e. b ⊥ a , we get∫
Rn

(a · x )2‖f(x )‖2 dn x 1

(2π)n

∫
Rn

(b · ω )2 ‖F{f}(ω )‖2dnω ≥ 0.

(5.6)

Theorem 5.5. Under the same assumptions as in theorem 5.1, we obtain∫
Rn

x2 ‖f(x )‖2 dn x 1

(2π)n

∫
Rn

ω2 ‖F{f}(ω )‖2dnω ≥ n
1

4
F 2. (5.7)

Remark 5.6. To proof theorem 5.5 we first insert x 2 =
∑n
k=1(e k · x )2 ,

ω 2 =
∑n
l=1(e l · ω )2. After that we apply (5.3) and (5.6) depending on

the relative directions of the vectors e k and e l .

6 Conclusions

The (real) Clifford Fourier transform extends the traditional Fourier trans-
form on scalar functions to Gn multivector functions with n = 2, 3 (mod 4)
over the vector space domain Rn . Basic properties and rules for differenti-
ation, convolution, the Plancherel and Parseval theorems are demonstrated
in a manifestly invariant fashion. We then presented an uncertainty princi-
ple in the geometric algebra Gn, which describes how a multivector-valued
function and its Clifford Fourier transform relate.

In many fields the Fourier transform is successfully applied to solving
physical equations such as heat and wave equations, in optics, in signal
and image processing, etc. Therefore in the future, we can apply geometric
algebra and the Clifford Fourier transform to solve such problems involving
the whole range of k -vector fields (k = 0, 1, 2, . . . , n) in geometric alge-
bras Gn with n = 2, 3 (mod 4) . The calculations will be real, have clear
geometric interpretations and manifestly invariant. The use of coordinate
bases is optional.
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