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Abstract: We begin with introducing the generalization of real, complex, and quaternion numbers to hypercomplex 
numbers, also known as Clifford numbers, or multivectors of geometric algebra. Multivectors encode everything from 
vectors, rotations, scaling transformations, improper transformations (reflections, inversions), geometric objects (like 
lines and spheres), spinors, and tensors, and the like. Multivector calculus allows to define functions mapping 
multivectors to multivectors, differentiation, integration, function norms, multivector Fourier transformations and 
wavelet transformations, filtering, windowing, etc. We give a basic introduction into this general mathematical 
language, which has fascinating applications in physics, engineering, and computer science.  
 

 

1. Introduction 
“Now faith is being sure of what we hope for and certain of 

what we do not see. This is what the ancients were 

commended for. By faith we understand that the universe was 

formed at God’s command, so that what is seen was not made 

out of what was visible.” [7] 

  The German 19th century mathematician H. Grassmann had 

the clear vision, that his “extension theory (now developed to 

geometric calculus) … forms the keystone of the entire 

structure of mathematics.”[6] The algebraic “grammar” of this 

universal form of calculus is geometric algebra (or Clifford 

algebra). That geometric calculus is a truly unifying approach 

to all of calculus will be demonstrated here by developing 

some basics of the vector differential calculus part of 

geometric calculus.  

  The basic geometric algebra[1,2] necessary for this is 

compiled in section 2. Then section 3 develops vector 

differential calculus with the help of few simple definitions. 

This approach is generically coordinate free, and fully shows 

both the concrete and abstract geometric and algebraic beauty 

of the “keystone” of mathematics. The full generalization to 

multivector calculus is shown in [2,10], applications in [11]. 

 

2. Basic Geometric Algebra 

This section is a basic summary of important relationships in 

geometric algebra. This summary mainly serves as a reference 

section for the vector differential calculus to be developed in 

the following section. Most of the relationships listed here are 

to be found in the synopsis of geometric algebra and in 

chapters 1 and 2 of [1], as well as in chapter 1 of [2], together 

with relevant proofs. Beyond that [1] and [2] follow a much 

more didactic approach for newcomers to geometric algebra. 
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The inner and the outer product are both linear and distributive 
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A multivector A can be uniquely decomposed into its 
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If A is homogeneous of grade k one often simply writes 
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Grade selection is invariant under scalar multiplication 
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By linearity the full geometric product of a vector and a 

multivector A is then 
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This extends to the distributive multiplication with arbitrary 

multivectors A, B 
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The inner and outer products of homogeneous multivectors 

rA  and sB  are defined ([2], p. 6, (1.21), (1.22)) as 
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The inner (and outer) product is again linear and distributive 
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[2] uses a dagger instead of the tilde.  
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The scalar magnitude A  of a multivector A  is 
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where the separate term 
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A  is in particular due to the 

definition of the inner product in [2], p. 6, (1.21). The 

magnitude allows to define the inverse for simple k-blade 
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 is the reciprocal frame defined by 
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the exceptions for scalars 
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B  and pseudoscalars 

n
B being again due to the definition of the inner product in 

[2], p. 6, (1.21). A projection of one factor of an inner product 

has the effect 
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and the Jacobi identity 
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The commutator product of multivectors A,B is 
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One useful identity using it is 
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 The 

commutator product is to be distinguished from the cross 

product, which is strictly limited to the three-dimensional 

Euclidean case with unit pseudoscalar 3I : 
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         (47) 

For more on basic geometric algebra I refer to [1,2,9] and to 

section 3 of [3].  

 

3. Vector Differential Calculus 

This section shows how to differentiate functions on linear 

subspaces of the universal geometric algebra G  by vectors. 

It has wide applications particularly to mechanics and physics 

in general [1]. Separate concepts of gradient, divergence and 

curl merge into a single concept of vector derivative, united by 

the geometric product. 

  The relationship of differential and derivative is clarified. 

The Taylor expansion (P. 12) is applied to important examples, 

yielding e.g. the Legendre polynomials (P. 36). The 

integrability (P. 42, etc.) of multivector functions are defined 

and discussed. Throughout this section a number of basic 

differentials and derivations are performed explicitly 

illustrating ease and power of the calculus. ([1]-[5]). 

  As for the notation: P. 7 refers to proposition 7 of this 

section. Def. 13 refers to definition 13 of this section. (6) 

refers to equation number (6) in the previous section on basic 

geometric algebra. 

Standard definitions of continuity and scalar 



differentiability apply to multivector-valued functions, 

because the scalar product determines a unique “distance” 

BA   between two elements )(, IBA G . 

Definition 1 (directional derivative) 

)(xFF


  multivector-valued function of a vector variable 

x


 defined on an n-dimensional vector space )(1 In GA  , I 

unit pseudoscalar. na A


. 









)()(
lim

)(
0

xdFaxdF

d

axdF
Fa

 






 

Nomenclature: derivative of F in the direction a
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-derivative of F. ([1] uses 
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Proposition 2 (distributivity w.r.t. vector argument) 
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Proposition 5 (product rule) 
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 Proposition 6 (grade invariance) 
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a  is therefore said to be a scalar differential operator. 

Proposition 7 (scalar chain rule) 
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Proposition 12 (Taylor expansion) 
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Definition 13 (continuously differentiable, differential) 

F is continuously differentiable at x


 if for each fixed a
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  exists and is a continuous function of y


 for 
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 in a neighborhood of x
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Definition 17 (vector derivative) 

Differentiation of F by its argument x
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with the differential operator x
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(i) have the algebraic properties of a vector in )(1 In GA  , I 
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express the algebraic vector properties and the 
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  the scalar differential properties. 

Definition 19 (gradient) 

The vector field 


 )()( xxff x  for a scalar 

function )(x


  is called the gradient of .  
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Proposition 36 (Legendre Polynomials) 

The Legendre Polynomials Pn are defined by: 
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The explicit first four polynomials are: 
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Definition 37 (redefinition of differential, over-dots) 
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Proposition 40 (differential of composite functions) 
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  (Def. 13) 

The differential of composite functions is the composite of 

differentials. 
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Definition 41 (second differential) 
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Proposition 42 (integrability condition)    
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The second differential is a symmetric bilinear function of its 

differential arguments ., ba


 

Remark: Please see [2,9,10] for more results and proofs. 
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