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This paper treats the fundamentals of the vector differential calculus part of universal 

geometric calculus. Geometric calculus simplifies and unifies the structure and notation of 

mathematics for all of science and engineering, and for technological applications. In order to 

make the treatment self-contained, I first compile all important geometric algebra relationships, 

which are necessary for vector differential calculus. Then differentiation by vectors is introduced 

and a host of major vector differential and vector derivative relationships is proven explicitly in a 

very elementary step by step approach. The paper is thus intended to serve as reference material, 

giving details, which are usually skipped in more advanced discussions of the subject matter. 
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1. Introduction 

 
“Now faith is being sure of what we hope for and certain of 

what we do not see. This is what the ancients were commended 
for. By faith we understand that the universe was formed at 
God’s command, so that what is seen was not made out of 
what was visible.” [7] 

  The German 19th century mathematician H. Grassmann had 

the clear vision, that his “extension theory (now developed to 

geometric calculus) … forms the keystone of the entire 

structure of mathematics.”[6] The algebraic “grammar” of this 

universal form of calculus is geometric algebra (or Clifford 

algebra). That geometric calculus is a truly unifying approach 

to all of calculus will be demonstrated here by developing the 

vector differential calculus part of geometric calculus.  

  The basic geometric algebra necessary for this is compiled in 

section 2. Then section 3 develops vector differential calculus 

with the help of few simple definitions. This approach is 

generically coordinate free, and fully shows both the concrete 

and abstract geometric and algebraic beauty of the “keystone” 

of mathematics. 

  The underlying strategy of this paper is to demonstrate the 

proofs for all common formulas of vector differential calculus  
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in an elementary step by step fashion. Thus enabling the 

interested reader to ultimately use this article as reference 

material, where other texts (e.g. [1],[2]) tend both to skip 

“elementary steps”, and to presume, that the reader would be 

smart enough to fill in the gaps himself. I put the emphasis 

therefore on thorough proofs and not on comments, 

interpretations or application. 

 
2. Basic Geometric Algebra 
 

This section is a basic summary of important relationships in 
geometric algebra. For brevity they are stated without proof. 
This summary mainly serves as a reference section for the 
vector differential calculus to be developed in the following 
section. Most of the relationships listed here are to be found in 
the synopsis of geometric algebra and in chapters 1 and 2 of [1], 
as well as in chapter 1 of [2], together with relevant proofs. 
Beyond that [1] and [2] follow a much more didactic approach 
for newcomers to geometric algebra. 

)(IG  is the full geometric algebra over all vectors in the 
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If A is homogeneous of grade k one often simply writes 
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By linearity the full geometric product of a vector and a 
multivector A is then 
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This extends to the distributive multiplication with arbitrary 
multivectors A, B 
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The inner and outer products of homogeneous multivectors 

rA  and sB  are defined ([2], p. 6, (1.21), (1.22)) as 
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[2] uses a dagger instead of the tilde.  
Special examples are 

 
~

, aa



~

, baabba


 )
~

( , …(28) 



 

The scalar magnitude A  of a multivector A  is 
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where the separate term 
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A  is in particular due to the 

definition of the inner product in [2], p. 6, (1.21). The 
magnitude allows to define the inverse for simple k-blade 
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 is the reciprocal frame defined by 
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A general convention is that inner products ba

  and 
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  have priority over geometric products 
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the exceptions for scalars 
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B  and pseudoscalars 

n
B being again due to the definition of the inner product in 

[2], p. 6, (1.21). A projection of one factor of an inner product 
has the effect 
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Reordering rules for products of homogeneous multivector 
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and the Jacobi identity 
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The commutator product of multivectors A,B is 
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One useful identity using it is 
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The commutator product is to be distinguished from the cross 
product, which is strictly limited to the three-dimensional 

Euclidean case with unit pseudoscalar 3I :      

.)()( 33 IbaIabba


     (47) 

For more on basic geometric algebra I refer to [1], [2] and to 
section 3 of [3].  
 

3. Vector Differential Calculus 
   
  This section shows how to differentiate functions on linear 

subspaces of the universal geometric algebra G  by vectors. It 

has wide applications particularly to mechanics and physics in 
general [1]. Separate concepts of gradient, divergence and curl 
merge into a single concept of vector derivative, united by the 
geometric product. 
  The relationship of differential and derivative is clarified. 
The Taylor expansion (P. 12) is applied to important examples, 



 

yielding e.g. the Legendre polynomials (P. 36). The adjoint 
(Def. 57) and the integrability (P. 42, etc.) of multivector 
functions are defined and discussed. Throughout this section a 
number of basic differentials and derivations are performed 
explicitly illustrating ease and power of the calculus. 
  Since my emphasis here is on explicit step by step proofs, I 
refer the reader, who is interested in the philosophy, comments 
and interpretation to the literature ([1]-[5]). 
  As for the notation: P. 7 refers to proposition 7 of this section. 
Def. 13 refers to definition 13 of this section. (6) refers to 
equation number (6) in the previous section on basic geometric 
algebra. 

Standard definitions of continuity and scalar differentiability 
apply to multivector-valued functions, because the scalar 

product determines a unique “distance” BA   between 

two elements )(, IBA G . 

Definition 1 (directional derivative) 
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Nomenclature: derivative of F in the direction a
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-derivative of F. ([1] uses 
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Proposition 2 (distributivity w.r.t. vector argument) 
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For scalar   
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Proposition 4 (distributivity w.r.t. multivector-valued 
function) 
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  multivector-valued functions of a 

vector variable x


. In the notation of Def. 13: 
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Proposition 5 (product rule) 
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In the notation of Def. 13: 
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Proposition 6 (grade invariance) 
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a  is therefore said to be a scalar differential operator. 
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  Proposition 7 (scalar chain rule) 
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Using the Taylor expansions: 
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  Proposition 8 (identity) 
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  Proposition 9 (constant function) 
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  Proposition 10 (vector length) 
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  Proposition 11 (direction function) 
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  Proposition 12 (Taylor expansion) 
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  Proof 12 
This proof is done without referring to P7 to P11!  

)()(  axFG


  

Fa
d

axdF

d

dG def








 1

0

)()0(





 

 
).()(

)(
)(

)()0(

2

1

0

1

0
2

2

xFa

xFaa
d

axdF
a

d

axdF

d

d

d

Gd

def

def




































 

General: )()(
)0(

xFa
d

Gd k
k

k 



. 

The Taylor series for G is: 

k

k

k d

Gd

k

d

Gd

d

dG
GGG




)0(

!

1

...
)0(

2

1)0(
)0()10()1(

0

2

2









 

 )()1( axFG


)()exp()()(
!

1

0

xFaxFa
k

k

k








. 

  Definition 13 (continuously differentiable, differential) 

F is continuously differentiable at x


 if for each fixed a
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  exists and is a continuous function of y
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If F is defined and continuously differentiable at x
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  Proposition 15 (linear approximation) 
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  Proposition 16 (chain rule) 
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Proof 16  
Using the Taylor expansion 
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  Definition 17 (vector derivative) 

Differentiation of F by its argument x
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  Definition 19 (gradient) 

The vector field 


 )()( xxff x  for a scalar 

function )(x


  is called the gradient of .  

  Propostion 20 (3-dimensional cross product) 

For b


 independent of )( 3
1

3 Ix GA 


 : 

babxa


 )( . 

Only here   means the 3-dimensional cross product (47), not 
the commutator product in P. 81. 

  Proof 20 

 
 
   

3
2

3
2

5

3
2

6

3
2

)8(

3

9
33

5

3

)47(

)()(

)(

)()(

)()(
3

IbaxIbxaIbxa

IbxaIbxa

IabxIbxa

Ibxabxa

P

P

constI

P

P


















 

= 

.)(
)47(

3

)8(

3
2

9,8

baIbaIba
P 

  

  Proposition 21 

 
rr

AaAxa 


, 

A independent of x


. 

  Proof 21 

 
   

.
)16(

1

9,8

1

5

1

6

1

)16(

rrr

P

rrr

P

rr

P

rrr

AaAa

AaxAxaAxa

AxaAxa



















  Proposition 22 

)()()]([ baxbxabxxa


  

  Proof 22 

   
   

).()(

)(

)(

)41(10Pr

8,21,9

22

5,4
2

)41(

baxbxa

abxbaxxbabxa

xabxxbxabaxbxa

xbxbxabxxa

oof

P

P

















 

  Proposition 23 

For x


independent of x


 and xxrr 


: 

ra
r

r
ara ˆ





, 

where 
r

r
r


ˆ . 

  Proof 23 

Compare [1], p. 681. ),)((2 xxxxr 


then 

   
,2)()(

)()()()(
9,4

5
2

raaxxxxa

xxaxxxxxxa

ra

P

P













.ˆ

)(22)(2
)11(

5
2

ra
r

r
ara

rarrararra
P











 

  Proposition 24 



 

.
ˆˆ

ˆ
r

arr
ra

 
  

Proof 24 
Compare [1], p. 681. 

.
ˆˆ)ˆ(ˆˆˆ

ˆ
ˆ11

)(
1

11
ˆ

)8(

823,8

2

75

r

arr

r

arrarr

ra
r

r
a

r
ra

r
rxxa

r

r
arra

rr

r
ara

PP

PP



















 

 Proposition 25 

.
ˆ

)ˆ(
2

r

ar
ara


 

  

  Proof 25 

.
ˆ)ˆ()ˆ(

)ˆ(ˆ)ˆ(1

ˆ)(
1

1
)()(

1

)ˆ(

2
)43(

)43(222)11(2

21

2

23,7

5

r

ar

r

raar

r

arar

r

ar
aa

r

ra
r

ar
axaxa

r

r
aarara

r

r

ar
aara

P

P

P









































 


 

  Proposition 26 

.
ˆˆ

)ˆ(
r

raar
ara







 

  Proof 26 

 

.
ˆˆˆˆ

)ˆ(ˆˆ)ˆ)(ˆ(ˆˆ

)ˆ)(ˆ(ˆˆ

ˆ
ˆ)ˆ(

)ˆ()ˆ(

)ˆˆ()ˆ(

)7(

)3(

)39(

)40(

24,9

)43(

2

25,5

4)8(

r

raar

r

arra
r

ararra

r

arraarra
r

arra
a

r

arr
r

ar
aarara

araara

araraara

P

P

P











































 

  Proposition 27 

.
ˆˆ

ˆ
r

arar
ara


 

  

  Proof 27 

araarara
P 

 ˆˆ2ˆ
52

, 

 

 

r

ar
ar

araaraaarara

raaraara

P

P

2
25,9

2
5

222

)43()43(
2

ˆ
)ˆ(2

)ˆ()ˆ(2)ˆ(ˆ

)ˆ()ˆ(ˆ















.
ˆ)ˆ(

ˆ

ˆ)ˆ(
2ˆˆ2

2

r

arar
ara

r

arar
araar













 

  Proposition 28 

.
111

r
a

rr
a 





  

  Proof 28 

.
11

11111111
2

11

ˆ2
121

111

)7(

)11(),12(

32

23

32

7

22

5

2

)12(

r
a

r

a
rrr

a
r

a
rrr

a
r

a
rr

ra
r

r
a

r
ra

r
ra

r

r
arra

rr

r
a

r
a

P

PP














































 

  Proposition 29 

.
ˆ

2
1

32 r

ra

r
a





 

  Proof 29 

.ˆ
221

3

23

3

7

2
ra

r
ra

rr
a

PP




 

  Proposition 30 

.
ˆ)ˆ(31

)(
2

1
4

22

2
2

r

arra

r
a

 
  

  Proof 30 

.
ˆ)ˆ(3ˆ1

ˆ
ˆ3

)ˆ(
1

ˆ
1

ˆ
2

2

11
)(

2

1

4

222

34

25,23,7

33

5

3

29

2
2

r

arra

r

ar

r
ra

r

ra

raa
r

ra
r

a

r

ra
a

r
a

P

PP
























 







 


 



 

  Proposition 31 
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  Definition 37 (redefinition of differential, over-dots) 






  FaFaFaaF 



2

1
)(

)7(

, 

where the over-dots indicate, that only F is to be differentiated 

and not a


. 

  Proposition 38 

For a


)(1 In GA  , IPP   : 

xxx aPPaa 


 )()( , naP A)(


. 

  Proof 38 

.)()()(

)()(

1

18

1

1818

x

n

k

P

xk
k

n

k
xk

k
P

x

P

x

aPaaaP

aaaPaa




















 

  Proposition 39 

FaPaPFaF 


)())(()( . 

0)( aF


, if 0)( aP


. 

  Proof 39 

FaPaPFaF
defPdef




)())(()(
1338,13

, 

0)(  aF


, if 0)( aP


.   

  Proposition 40 (differential of composite functions) 

For ))(()( xfGxF


  and  

)()()(: 11 IxfIxf nn  GAGA 
 

GafFa 


)(  

))(()( afGaF


  (Def. 13) 

The differential of composite functions is the composite of 
differentials. 

)),(),((),( axfxfGaxF


  (explicit) 

  Proof 40 
Taylor expansion (P12): 

...)()()()( 22 )(
2

1
  xfxfaxfaxf a

 

)12(

13
0

1

))(())((
PTaylor

def

def

axfG
d

d
xfGa 







 



 

)(

1

0

)()())()((
xfxx

def

xGafafxfG
d

d













Gaf 


)(  (evaluation at corresponding points.) 

  Definition 41 (second differential) 

)()( xFabxF
ba




  . 

Suppressing x


: FabF
ba




  . 

  Proposition 42 (integrability condition) 

abba
FF   . 

The second differential is a symmetric bilinear function of its 

differential arguments ., ba


 

  Proof 42 




















)()()()(

limlim
)(

)(
)()(

00

0
0

2

0

1

xFaxFbxFbaxF

dd

baxFd

d

axFd
bxFabxF

def

ba





























 which is symmetric under ),(),(  ba


 . Hence 

).()()()( xFxFbaxFabxF
abba





   

The bilinearity follows from the linearity in each argument (P2, 
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  Proposition 44 (operator identity) 

.)( xaxIx aP 


  

  Proof 44 

Propositions 18 and 43. 

  Proposition 45 (derivative from differential) 

).,()()( axFxFaxF axax


   

  Proof 45 
Proposition 44 and definition 13. 

  Definition 46 

FaxFxFF a

P

x 


 ),()(
45

, 

where 


 is the derivative with respect to the differential 

argument a


 of ),( axF


. 

  Proposition 47 

FFF 


. 

  Proof 47 

Vector property (P. 18) of x



 and (18). 

  Proposition 48 (gradient) 

For scalar )(xF


 : 

0


,  


 

  Proof 48 
(21), P. 47 and (23). 

  Remark 49 
In proposition 48 the special definition of Hestenes and 
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  Definition 56 (sides of differentiation) 
Only right side differentiation: 
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Left and right side differentiation (another form of the product 
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  Proposition 64 (second differential) 
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Last step: Multiplication with A from the left. Distributivity 
(19), (25) gives the same result even for non-simple A. 
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Last step: Multiplication with A from the left. The distributive 
rule for the inner product gives the same result even for 
non-simple A. 
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with the commutator product BA  of multivectors A,B 
(45). 
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4. Conclusion 
   
  This article first summarized important geometric algebra 
relationships, which are necessary for the thorough and explicit 
development of the vector differential calculus part of universal 
geometric calculus.  
  It then showed how to differentiate multivector functions by 
a vector, including the results of standard vector analysis. The 
vector differential relationships are proven in a very explicit 
step by step way, enabling the reader, who is unfamiliar with 
the algebraic techniques to get complete comprehension. It 
may thus serve as important reference material for studying 
and applying vector differential calculus.  
  Future work in a similar manner should be done to elucidate 
the calculus with multivector derivatives. 
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