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Abstract

We review the quaternionic Fourier transform (QFT). Using the properties of the QFT
we establish an uncertainty principle for the right-sided QFT. This uncertainty principle
prescribes a lower bound on the product of the effective widths of quaternion-valued signals
in the spatial and frequency domains. It is shown that only a Gaussian quaternion signal
minimizes the uncertainty.
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1 Introduction

Recently it has become popular to generalize the Fourier transform (FT) from real
and complex numbers [1] to quaternion algebra. In these constructions many FT
properties still hold, others are modified.

The quaternionic Fourier transform (QFT) plays a vital role in the representation
of signals. It transforms a real (or quaternionic) two-dimensional signal into a
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quaternion-valued frequency domain signal. The four QFT components separate
four cases of symmetry in real signals instead of only two in the complex FT [2,3].

The QFT was first proposed by Ell [4]. He proposed a two-sided QFT and demon-
strated some important properties of this type of QFT. He also introduced the use
of the QFT in the analysis of two dimensional linear time invariant dynamic sys-
tems. Later, Bülow [2] made a more extended investigation of important properties
of the two-sided QFT mainly for real signals and applied it to signal and image
processing. He obtained a local 2D quaternionic phase.

Pei et al. [5] discussed and optimized the implementation of different types of the
QFT with applications to linear quaternion filters. Hitzer [6] described in detail
properties of different types of QFT applied to fully quaternionic signals and then
generalized the QFT to a volume time, as well as to a space time algebra Fourier
transform. Sangwine and Ell [7] proposed the QFT application to color image anal-
ysis. Bas, Le Bihan and Chassery [8] used the QFT to design a digital color image
watermarking scheme. Bayro et al. [9] applied the QFT in image pre-processing
and neural computing techniques for speech recognition.

It is well known that the uncertainty principle for the FT relates the variances of a
function and its Fourier transform which cannot both be simultaneously sharply lo-
calized [10,11]. In signal processing an uncertainty principle states that the product
of the variances of the signal in the time and frequency domains has a lower bound.
Yet Felsberg [3] notes for two dimensions: In 2D however, the uncertainty relation
is still an open problem. In [12] it is stated that there is no straightforward formu-
lation for the 2D uncertainty relation. A first straightforward directional 2D uncer-
tainty principle was formulated by Hitzer and Mawardi [13], in Clifford algebras
Cln,0 with n = 2 (mod 4) . Now we attempt another formulation for quaternions
H ∼= Cl0,2 using the right-sided QFT.

This paper briefly reviews the QFT and provides alternative proofs for some of its
properties. The QFT considered in this paper enables us to extend the Heisenberg
type uncertainty principle from the complex FT to the QFT.

The organization of the present paper is as follows. In section 2, we briefly establish
our notation for quaternion algebra and its relationship with the Clifford geometric
algebra Cl3,0. In section 3, we demonstrate some important properties of the QFT,
which are necessary to prove the uncertainty principle for the QFT. In section 4, the
classical Heisenberg uncertainty principle is generalized for the QFT.
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2 Quaternion Algebra

2.1 The Quaternion Algebra H

The quaternion algebra [14] was first invented by Sir W. R. Hamilton in 1843 and
is denoted by H in his honor. It is an extension of complex numbers to a four-
dimensional algebra. Every element of H is a linear combination of a real scalar
and three orthogonal imaginary units (denoted i, j, and k) with real coefficients

H = {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R}, (2.1)

where the elements i, j, and k obey Hamilton’s multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
(2.2)

Because H is according to (2.2) non-commutative, one cannot directly extend vari-
ous results on complex numbers to quaternions. For simplicity, we express a quater-
nion q as sum of a scalar q0 , and a pure 3D quaternion q

q = q0 + q = q0 + iq1 + jq2 + kq3, (2.3)

where the scalar part is also denoted Sc(q) = q0. The conjugate of a quaternion q is
obtained by changing the sign of the pure part, i. e.

q̄ = q0 − q = q0 − q1i− q2j − q3k. (2.4)

The quaternion conjugation (2.4) is a linear anti-involution

p = p, p+ q = p+ q, pq = q p, ∀p, q ∈ H. (2.5)

Given a quaternion q and its conjugate, we can easily check that the following
properties are correct

q0 =
1

2
(q + q), q =

1

2
(q − q̄), q = −q̄ ⇔ q = q. (2.6)

Using (2.2) the multiplication of the two quaternions q = q0 + q and p = p0 + p
can be expressed as

qp = q0p0 + q · p+ q0p+ p0q + q × p, (2.7)

where we recognize the scalar product q · p = −(q1p1 + q2p2 + q3p3) and the
antisymmetric cross type product q×p = i(q2p3−q3p2) + j(q3p1−q1p3) + k(q1p2−
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q2p1). The scalar part of the product is

Sc(qp) = q0p0 + q · p, (2.8)

and the pure part is
q0p+ p0q + q × p. (2.9)

Especially, if both q and p are pure quaternions (2.7) reduces to

qp = q · p+ q × p. (2.10)

According to (2.7) the multiplication of a quaternion q and its conjugate can be
expressed as

qq̄= q0q0 − q · q + q0(−q) + q0q + q × (−q)

= q2o + q21 + q22 + q23. (2.11)

Equation (2.11) leads to the modulus |q| of a quaternion q defined as

|q| =
√
qq̄ =

√
q2o + q21 + q22 + q23. (2.12)

It is straightforward to see that with (2.5) and (2.12) the following modulus prop-
erties hold

|pq| = |p||q|, |p| = |p|, p, q ∈ H. (2.13)

Using the conjugate (2.4) and the modulus of a quaternion q, we can define the
inverse of q ∈ H \ {0} as

q−1 =
q̄

|q|2
(2.14)

which shows that H is a normed division algebra. For unit quaternions with |q| = 1
equation (2.14) simplifies to

q−1 = q̄, (2.15)

and for pure unit quaternions equation (2.14) becomes

q−1 = −q. (2.16)

It is important to note that with (2.6), we have for two quaternion-valued functions
f, g (independent of their domain space)

1

2
(gf + fg) = g0f0 − g · f = Sc(gf). (2.17)
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2.2 Quaternion Module

According to (2.1) a quaternion-valued function f : R2 −→ H can be expressed as

f(x) = f0 + if1(x) + jf2(x) + kf3(x), f0, f1, f2, f3 ∈ R. (2.18)

We introduce an inner product of functions f, g defined on R2 with values in H as
follows

〈f, g〉 =
∫
R2
f(x)g(x) d2x, (2.19)

and its associated scalar norm ‖f‖ by defining

‖f‖2 = 〈f, f〉 =
∫
R2
|f(x)|2 d2x. (2.20)

The quaternion module L2(R2;H) is then defined as

L2(R2;H) = {f |f : R2 −→ H, ‖f‖ <∞}. (2.21)

2.3 Connection Between H and Clifford Algebras Cl3,0 and Cl0,2

Quaternions are isomorphic to the even subalgebra Cl+3,0 of scalars and bivectors
(see [15,16]) of the real associative 8-dimensional Clifford geometric algebra Cl3,0.
The latter has the basis of

1 scalar,
e1, e2, e3 vectors,

e1e2, e3e1, e2e3 bivectors,
i3 = e1e2e3 pseudoscalar.

(2.22)

In equation (2.22) the set {e1, e2, e3} is an orthonormal vector basis of the real 3D
Euclidean vector space R3. The isomorphism means that any quaternion q can be
expanded in the form

q ∈ Cl+3,0 = Cl03,0 + Cl23,0, i.e. q = α + i3b, (2.23)

where α ∈ R and vector b ∈ R3. Equation (2.23) tells us that the elements of Cl+3,0
form a four-dimensional linear space with one scalar and three bivector dimensions.

Quaternions are also isomorphic to Cl0,2. For this we identify i, j with vectors
e1, e2 with square−1, respectively, and k as their product e1e2. This fact is helpful
for defining quaternionic Fourier and wavelet transforms and to compare them with
other Clifford Fourier and wavelet transformations [16,17].
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3 Quaternionic Fourier Transform (QFT)

It is natural to extend the Fourier transform to quaternion algebra. These exten-
sions are broadly called the quaternionic Fourier transform (QFT). Due to the non-
commutative properties of quaternions, there are three different types of QFT: a
left-sided QFT, a right-sided QFT and a two-sided QFT [5]. By reasons explained
in more detail below we choose to apply the right-sided QFT of a 2D quaternion-
valued signal. This version of the QFT defined here is also known as the 2D Clifford
FT of Delanghe, Sommen and Brackx [15].

3.1 Definition of QFT

Definition 3.1. The QFT of f ∈ L1(R2;H) is the function Fq{f}: R2 → H given
by

Fq{f}(ω) =
∫
R2
f(x)e−iω1x1e−jω2x2 d2x, (3.1)

where x = x1e1 +x2e2, ω = ω1e1 +ω2e2, and the quaternion exponential product
e−iω1x1e−jω2x2 is the quaternion Fourier kernel.

Remark 3.2. Apart from the convention used in Definition 3.1 with 1
(2π)2

in the in-
verse QFT (3.5), there are two other common conventions: One is obtained by sub-
stituting (3.1) ω → 2πω. The other is obtained by evenly distributing the 2π fac-
tors between the transformation and the inverse transformation Fq = 1

2π

∫
. . . d2x,

F−1q = 1
2π

∫
. . . d2ω. All calculations in this paper can easily be converted to these

other conventions.

Using the Euler formula for the quaternion Fourier kernel we can rewrite (3.1) in
the following form

Fq{f}(ω) =
∫
R2
f(x) cos(ω1x1) cos(ω2x2) d

2x

−
∫
R2
f(x) i sin(ω1x1) cos(ω2x2) d

2x

−
∫
R2
f(x) j cos(ω1x1) sin(ω2x2) d

2x

+
∫
R2
f(x)k sin(ω1x1) sin(ω2x2) d

2x. (3.2)

Equation (3.2) clearly shows how the QFT separates real signals into four quater-
nion components, i. e. the even-even, odd-even, even-odd and odd-odd components
of f . Let us now take an example to illustrate this expression.

Example 3.3. Consider the quaternionic distribution signal (see Fig. 1), i. e. the

6



x
1

x
2

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

x
1

x
2

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

x
1

x
2

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

x
1

x
2

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Fig. 1. Quaternionic signal of Example 3.3 in the spatial domain (u0 = v0 = 2). The
resulting patterns are identical, apart from π/4 phase shifts along x1 and x2 [18].

QFT kernel of (3.1)
f(x) = ejv0x2eiu0x1 . (3.3)

It is easy to see that the QFT of f is a Dirac quaternion function, i. e.

Fq{f}(ω) = (2π)2δ(ω − ω0), ω0 = u0e1 + v0e2. (3.4)

The following theorem tells us that the QFT is invertible, that is, the original sig-
nal f can be recovered by simply taking the inverse of the quaternionic Fourier
transform (3.1).

Theorem 3.4. Suppose that f ∈ L2(R2;H) and Fq{f} ∈ L1(R2;H). Then the
QFT Fq{f} of f is an invertible transform and its inverse is given by

F−1q [Fq{f}](x) = f(x) =
1

(2π)2

∫
R2
Fq{f}(ω)ejω2x2eiω1x1 d2ω. (3.5)
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3.2 Major Properties of the QFT

This subsection describes important properties of the QFT which will be used to
establish a new uncertainty principle for the QFT. For detailed discussions of the
properties of the QFT and their proofs, see e.g. [6,5,18]. We now first establish a
Plancherel theorem, specific to the right-sided QFT.

Theorem 3.5 (QFT Plancherel). The inner product (2.19) of two quaternion mod-
ule functions f, g ∈ L2(R2;H) and their QFT is related by

〈f, g〉L2(R2;H) =
1

(2π)2
〈Fq{f},Fq{g}〉L2(R2;H). (3.6)

In particular, with f = g, we get Parseval’s theorem, i. e.

‖f‖2L2(R2;H) =
1

(2π)2
‖Fq{f}‖2L2(R2;H). (3.7)

This shows that the total signal energy computed in the spatial domain is equal to
the total signal energy computed in the quaternionic domain. The Parseval theo-
rem 1 allows the energy of a quaternion-valued signal to be considered in either the
spatial domain or the quaternionic domain and the change of domains for conve-
nience of computation.

In following we give an alternative proof of Plancherel’s theorem (compare to
Hitzer [6]).

〈f, g〉L2(R2;H) =
1

(2π)4

∫
R2

[ ∫
R2
Fq{f}(ω)ejω2x2eiω1x1d2ω

×
∫
R2
e−iω

′
1x1e−jω

′
2x2Fq{g}(ω′)d2ω′

]
d2x

=
1

(2π)4

∫
R2

∫
R2

∫
R2
Fq{f}(ω)ejω2x2eix1(ω1−ω′

1)e−jω
′
2x2Fq{g}(ω′)d2xd2ω′d2ω

=
1

(2π)2

∫
R2

∫
R2
Fq{f}(ω)δ(ω − ω′)Fq{g}(ω′)d2ωd2ω′

=
1

(2π)2

∫
R2
Fq{f}(ω)Fq{g}(ω)d2ω. (3.8)

This completes the proof of theorem 3.5. 2

Due to the non-commutativity of the quaternion exponential product factors we
only have a left linearity property for general linear combinations with quaternionic
constants and a special shift property.

1 Different from the QFT Plancherel Theorem 3.5, the Parseval theorem (3.7) can be es-
tablished for all three variants of the QFT: right-sided, left-sided and two-sided.
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Theorem 3.6 (Left linearity property). The QFT of two quaternion module func-
tions f, g ∈ L1(R2;H) is a left linear operator 2 , i. e.

Fq{µf + λg}(ω) = µFq{f}(ω) + λFq{g}(ω), (3.9)

where µ and λ ∈ H are quaternionic constants.

Theorem 3.7 (Shift property). If the argument of f ∈ L1(R2;H) is offset by a
constant vector x0 = x0e1 + y0e2, i. e. fx0(x) = f(x− x0), then [6]

Fq{fx0}(ω) = Fq{fe−iω1x0}(ω) e−jω2y0 . (3.10)

Proof. Equation (3.1) gives

Fq{fx0}(ω) =
∫
R2
f(x− x0) e

−iω1x1e−jω2x2 d2x. (3.11)

We substitute t for x− x0 in the above expression, and get with d2x= d2t

Fq{fx0}(ω) =
∫
R2
f(t) e−iω1(t1+x0)e−jω2(t2+y0) d2t

=
∫
R2

(
f(t)e−iω1x0

)
e−iω1t1e−jω2t2 d2t e−jω2y0 . (3.12)

This proves (3.10).

Dual to Theorem 3.7 the following modulation type formula holds for the inverse
QFT.

Theorem 3.8. If the argument of Fq{f} ∈ L2(R2;H), Fq{f} ∈ L1(R2;H) is
offset by a constant frequency vector ω0 = ω01e1 + ω02e2 ∈ R2, then f0(x) and
Fq{f}(ω) are related by

f0(x) = F−1q [Fq{f}(ω − ω0)](x) = F−1q {Fq{f}(ω) e−jω02x2}(x) e−iω01x1 .
(3.13)

Remark 3.9. Equation (3.10) and (3.13) are specific for the right-sided definition of
Definition 3.1. The usual form of the modulation property of the complex FT does
not hold for the QFT. It is obstructed by the non-commutativity of the exponential
factors (eq. (38) of [6])

e−iω1x1e−jω2x2 6= e−jω2x2e−iω1x1 . (3.14)

Next we give an explicit proof of the derivative properties stated in Table 2 of [6].

2 The QFT is also right linear for real constants µ, λ ∈ R.
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Theorem 3.10. If the QFT of the n-th partial derivative of f ∈ L1(R2;H) with
respect to the variable x1 exists and is in ∈ L1(R2;H), then the QFT of ∂nf

∂xn1
i−n is

given by

Fq{
∂nf

∂xn1
i−n}(ω) = ωn1Fq{f}(ω), ∀n ∈ N. (3.15)

Proof. We first prove the theorem for n = 1. Applying integration by parts and
using the fact that f tends to zero for x→∞ we immediately obtain

Fq{
∂

∂x1
f i−1}(ω) =

∫
R2

(
∂

∂x1
f(x) i−1

)
e−iω1x1e−jω2x2 d2x

=
∫
R

[∫
R

(
∂

∂x1
f(x) i−1

)
e−iω1x1 dx1

]
e−jω2x2 dx2

=
∫
R

[
f(x) i−1e−iω1x1|x1=∞x1=−∞

−
∫
R
f(x) i−1 ∂

∂x1
e−iω1x1dx1

]
e−jω2x2dx2

=
∫
R2
f(x)ω1e

−iω1x1e−jω2x2 d2x

=ω1Fq{f}(ω). (3.16)

Using mathematical induction we can finish the proof of Theorem 3.10.

Theorem 3.11. If the QFT of the m-th partial derivative of a quaternion-valued
function f ∈ L1(R2;H) with respect to the variable x2 exists and is in L1(R2;H),
then

Fq{
∂mf

∂xm2
} (ω) = Fq{f}(ω)(jω2)

m, m ∈ N. (3.17)

Proof. Direct calculation gives

∂f(x)

∂x2
=

∂

∂x2

1

(2π)2

∫
R2
Fq{f}(ω)ejω2x2eiω1x1 d2ω

=
1

(2π)2

∫
R2
Fq{f}(ω)

(
∂

∂x2
ejω2x2

)
eiω1x1 d2ω

=
1

(2π)2

∫
R2

[Fq{f}(ω) jω2] e
jω2x2eiω1x1 d2ω

=F−1q [Fq{f}(ω)jω2] . (3.18)

We therefore get

Fq{
∂f

∂x2
} (ω) = Fq{f}(ω)jω2. (3.19)
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By successive differentiation with respect to the variable x2 and with induction we
easily obtain

Fq{
∂mf

∂xm2
} (ω) = Fq{f}(ω)(jω2)

m, ∀m ∈ N. (3.20)

This ends the proof of (3.17).

As consequence of Theorem 3.10 we immediately obtain the following corollary.

Corollary 3.12. Suppose that the QFT of a partial derivative ∂n+mf/∂xn1∂x
m
2 of a

quaternion-valued function f ∈ L1(R2;H) is in L1(R2;H), and that f = f0 + if1,
then

Fq{
∂n+mf

∂xn1∂x
m
2

}(ω) = (iω1)
nFq{f}(ω)(jω2)

m, m, n ∈ N. (3.21)

Proof. For n ∈ N and m = 0 multiplication of (3.15) with in from the left gives

Fq{(
∂

∂x1
)nf}(ω) = (iω1)

nFq{f}(ω), n ∈ N. (3.22)

The combination of (3.22) and (3.20) for f = f0 + if1 gives (3.21).

Another important consequence of Theorems 3.10 and 3.11 is formulated in the
following lemma.

Lemma 3.13. If the QFT of the 1st partial derivative of f ∈ L2(R2;H) with respect
to the variable xk, k ∈ {1, 2} exists and is in ∈ L2(R2;H), then

(2π)2
∫
R2
| ∂
∂xk

f(x)|2 d2x =
∫
R2
ω2
k|Fq{f}(ω)|2d2ω, k ∈ {1, 2}. (3.23)

Proof. For k = 1 straightforward calculation using Parseval’s theorem (3.7) and
Theorem 3.10 gives

(2π)2
∫
R2
| ∂
∂x1

f(x)|2 d2x (2.13)
= (2π)2

∫
R2
| ∂
∂x1

f(x) i−1|2 d2x

(3.7)
=

∫
R2
|Fq{

∂

∂x1
f i−1}(ω)|2 d2ω

(3.15)
=

∫
R2
ω2
1|Fq{f}(ω)|2d2ω. (3.24)

For k = 2 we similarly use Theorem 3.11 to get
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Table 1
Properties of quaternionic Fourier transform of quaternion functions f, g ∈ L2(R2;H), the
constants are α, β ∈ H, a ∈ R \ {0}, x0 = x0e1 + y0e2 ∈ R2 and n ∈ N.

Property Quaternion Function Quaternionic Fourier Transform

Left linearity αf(x)+βg(x) αFq{f}(ω)+ βFq{g}(ω)

Scaling f(ax) 1

|a|2
Fq{f}(ωa )

x-Shift f(x− x0) Fq{fe−iω1x0}(ω) e−jω2y0

Part. deriv.
(

∂
∂x1

)n
f(x) i−n ωn1Fq{f}(ω), f ∈ L2(R2;H)(

∂
∂x1

)n
f(x) (iω1)

nFq{f}(ω), f = f0 + if1(
∂
∂x2

)n
f(x) Fq{f}(ω)(jω2)

n, f ∈ L2(R2;H)

Plancherel 〈f1, f2〉L2(R2;H) =
1

(2π)2
〈Fq{f1},Fq{f2}〉L2(R2;H)

Parseval ‖f‖L2(R2;H) =
1
2π‖Fq{f}‖L2(R2;H)

(2π)2
∫
R2
| ∂
∂x2

f(x)|2 d2x (3.7)
=

∫
R2
|Fq{

∂

∂x2
f }(ω)|2 d2ω

(3.17)
=

∫
R2
|Fq{f}(ω)jω2|2d2ω.

(2.13)
=

∫
R2
ω2
2|Fq{f}(ω)|2d2ω. (3.25)

Some important properties of the QFT are summarized in Table 1. For more details
we refer to [6].

Example 3.14. Consider a two-dimensional Gaussian quaternion function (Fig. 2)
of the form

f(x) = C0 e
−(a1x21+a2x

2
2), (3.26)

where C0 = C00+iC01+jC02+kC03 ∈ H is a quaternion constant and a1, a2 ∈ R
are positive real constants. Then the QFT of f as shown Fig. 3 is given by

Fq{f}(ω) =
∫
R

∫
R
C0 e

−a1x21 e−a2x
2
2e−iω1x1 e−jω2x2 dx1dx2

=C0

∫
R
e−a2x

2
2

(∫
R
e−a1x

2
1e−iω1x1dx1

)
e−jω2x2dx2

=C0

∫
R
e−a2x

2
2

(√
π

a1
e−ω

2
1/(4a1)

)
e−jω2x2dx2.

=C0

√
π

a1
e−ω

2
1/(4a1)

√
π

a2
e−ω

2
2/(4a2)

=C0
π

√
a1a2

e
−(

ω2
1

4a1
+

ω2
2

4a2
)
. (3.27)
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Fig. 2. Quaternion Gaussian function for a1 = a2 = 1, C00 = 1, C01 = 2, C02 = 4, and
C03 = 5 in the spatial domain. Top row: real part and imaginary part i. Bottom row:
imaginary parts j and k.

This shows that the QFT of the Gaussian quaternion function is another Gaussian
quaternion function.

4 Uncertainty principle for QFT

In physics the uncertainty principle [10] was introduced for the first time 80 years
ago by Heisenberg who demonstrated the impossibility of simultaneous precise
measurements of a particle’s momentum and its position. In a communication the-
ory setting, an uncertainty principle states that a signal cannot be arbitrarily con-
fined in both the spatial and frequency domains. Many efforts have been devoted
to extend the uncertainty principle to various types of functions and Fourier trans-
forms. Shinde et al. [19] established an uncertainty principle for fractional Fourier
transforms which provides a lower bound on the uncertainty product of signal
representations in both time and frequency domains for real signals. Korn [20]
proposed Heisenberg type uncertainty principles for Cohen transforms which de-
scribe lower limits for the time-frequency concentration. In our previous papers
[13,16,17,21], we established a new directional uncertainty principle for the Clif-
ford Fourier transform which describes how the variances (in arbitrary but fixed
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Fig. 3. Quaternion Gaussian function in the quaternionic frequency domain. Top row: real
part and imaginary part i. Bottom row: imaginary parts j and k.

directions) of a multivector-valued function and its Clifford Fourier transform are
related.

Bülow [2] showed a quaternion uncertainty principle, for quaternion valued signals
according to which

4x14x24ω14ω2 ≥
1

16π2
, (4.1)

where 4xk, k = 1, 2 is the effective width and 4ωk, k = 1, 2 is its effective
bandwidth, defined as in Definition 4.1, only replacing Fq by a two-sided version
of the QFT. [The factor 1

4π2 results from Bülow’s use of the linear substitution
ω → 2πω in (3.1), compare Remark 3.2.] He showed that a Gabor filter can lead
to equality in (4.1). It must be remembered that he applied the two-sided QFT
for his uncertainty principle. His uncertainty principle is similar to the uncertainty
principle for the conventional two-dimensional Fourier transform.

In the following we explicitly generalize and prove the classical uncertainty prin-
ciple to quaternion module functions. We also give an explicit proof for Gaus-
sian quaternion functions (Gabor filters) to be indeed the only functions that min-
imize the uncertainty. We further emphasize that our generalization is non-trivial
because the multiplication of quaternions and the quaternion Fourier kernel are
non-commutative. For this purpose we introduce the following definition.
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Definition 4.1. Let f ∈ L2(R2;H) be a quaternion-valued signal such that xkf ∈
L2(R2;H), k = 1, 2, and let Fq{f} ∈ L2(R2;H) be its QFT such that ωkFq{f} ∈
L2(R2;H), k = 1, 2. The effective spatial width or spatial uncertainty 4xk of f is
evaluated by

4xk =
√
V ark{f}, k ∈ {1, 2}, (4.2)

where V ark{f} is the variance of the energy distribution of f along the xk axis
defined by

V ark{f} =
‖xkf‖2L2(R2;H)

‖f‖2L2(R2;H)

=

∫
R2 |f(x)|2x2k d2x∫
R2 |f(x)|2 d2x

, k ∈ {1, 2}. (4.3)

Similarly, in the quaternionic domain we define the effective spectral width as

4ωk =
√
V ark{Fq{f}}, k ∈ {1, 2}, (4.4)

where V ark{Fq{f}} is the variance of the frequency spectrum of f along the ωk
frequency axis given by

V ark{Fq{f}} =
‖ωkFq{f}‖2L2(R2;H)

‖Fq{f}‖2L2(R2;H)

=

∫
R2 |Fq{f}(ω)|2ω2

k d
2ω∫

R2 |Fq{f}(ω)|2 d2ω
. (4.5)

Theorem 4.2. Let f ∈ L2(R2;H) be a quaternion-valued signal such that both
(1 + |xk|)f(x) ∈ L2(R2;H) and ∂

∂xk
f(x) ∈ L2(R2;H) for k = 1, 2. Then two

uncertainty relations are fulfilled

4x14ω1 ≥
1

2
, and 4x24ω2 ≥

1

2
. (4.6)

The combination of the two spatial uncertainty principles above leads to the uncer-
tainty principle for the two-dimensional quaternion signal f(x) of the form

4x14x24ω14ω2 ≥
1

4
. (4.7)

Equality holds in (4.7) if and only if f is a Gaussian quaternion function, i. e.

f(x) = K0 e
−(

x21
2a1

+
x22
2a2

)
, (4.8)

where K0 is a quaternion constant, and a1, a2 ∈ R are positive real constants.

Analogous to complex numbers, we will use equation (2.17) to derive the following
lemma which will be necessary to prove Theorem 4.2.

Lemma 4.3. For two quaternion-valued functions f, g ∈ L2(R2;H), the Schwarz
inequality takes the form[∫

R2
(gf̄ + fḡ)d2x

]2
≤ 4

∫
R2
ff̄d2x

∫
R2
gḡd2x = 4

∫
R2
|f |2d2x

∫
R2
|g|2d2x (4.9)

15



Remark 4.4. An alternative form of Lemma 4.3 is given by equation (4.14).

To prove Schwarz’s inequality, let ε ∈ R be a real constant. Then

0 ≤
∫
R2

(f + εg)(f + εg) d2x. (4.10)

Applying the second part of (2.5) and then expanding the above inequality we can
rewrite it in the following form

0≤
∫
R2

(f + εg)(f̄ + εḡ) d2x

=
∫
R2
ff̄ d2x+ ε

∫
R2

(gf̄ + fḡ) d2x+ ε2
∫
R2
gḡ d2x. (4.11)

The right-hand side of equation (4.11) is a quadratic expression in ε. The discrimi-
nant of this quadratic polynomial must be negative or zero and gives therefore

[∫
R2

(gf̄ + fḡ)d2x
]2
− 4

∫
R2
ff̄d2x

∫
R2
gḡd2x ≤ 0, (4.12)

which is equivalent to (4.9). This finishes the proof of Lemma 4.3. 2

Now let us begin the proof of Theorem 4.2.

Proof. We prove Theorem 4.2 for k ∈ 1, 2. First, by applying Lemma 3.13 and the
Parseval theorem (3.7) we immediately obtain

4x2k4ω2
k =

∫
R2 x2k|f(x)|2 d2x

∫
R2 ω2

k|Fq{f}(ω)|2d2ω∫
R2 |f(x)|2 d2x

∫
R2 |Fq{f}(ω)|2 d2ω

Lemma 3.13
=

∫
R2 x2k |f(x)|2 d2x (2π)2

∫
R2 | ∂∂xk f(x)|2 d2x∫

R2 |f(x)|2 d2x
∫
R2 |Fq{f}(ω)|2 d2ω

(3.7)
=

∫
R2 |xkf(x)|2 d2x

∫
R2 | ∂∂xk f(x)|2 d2x

(
∫
R2 |f(x)|2 d2x)2

Lemma 4.3
≥

[∫
R2

(
∂
∂xk

f(x)xkf̄(x) + xkf(x) ∂
∂xk

f̄(x)
)
d2x

]2
4 ‖f‖4L2(R2;H)

=

(∫
R2 xk

∂
∂xk

[
f(x)f̄(x)

]
d2x

)2
4 ‖f‖4L2(R2;H)

. (4.13)

Second, using integration by parts we further get
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4x2k4ω2
k≥

(
[
∫
R xk|f(x)|2dxl]xk=∞xk=−∞−

∫
R2 |f(x)|2 d2x

)2
4 ‖f‖4L2(R2;H)

=
(0−

∫
R2 |f(x)|2 d2x)2

4 ‖f‖4L2(R2;H)

=
1

4
,

where l ∈ {1, 2}, l 6= k. This proves (4.6).

Remark 4.5. Consequently replacing the right-sided QFT (3.1) by the left-sided
QFTF left

q {f}(ω) =
∫
R2 e−jω2x2e−iω1x1f(x) d2x, allows to establish a correspond-

ing Parseval theorem, left-sided QFT formulas for the partial derivatives (analogous
to Theorems 3.10 and 3.11), and formulas for the norms ‖∂kf‖, k ∈ {1, 2} (cor-
responding to Lemma 3.13). Theorem 4.2 applies therefore also to the left-sided
QFT.

We finally show that the equality in (4.6) is satisfied if and only if f is a Gaussian
quaternion function.

Using (2.17) we can rewrite Lemma 4.3 in the following form (compare to Chui
[11]) [∫

R2
Sc(gh)d2x

]2
≤
∫
R2
|h|2d2x

∫
R2
|g|2d2x. (4.14)

For k = 1, 2 we first take g = xkf(x) ∈ L2(R2;H) and h = ∂
∂xk

f(x) ∈ L2(R2;H).
Equation (4.14) can then be expressed as

[∫
R2

Sc
(
xkf(x)

∂

∂xk
f(x)

)
d2x

]2
≤
∫
R2
|xkf(x)|2 d2x

∫
R2
| ∂
∂xk

f(x)|2 d2x.

(4.15)
Equality in (4.15) implies that

−Sc
(
xkf(x)

∂

∂xk
f(x)

)
= |xkf(x)

∂

∂xk
f(x)|, (4.16)

and

|xkf(x)| = ak|
∂

∂xk
f(x)|, (4.17)

where the ak are positive real constants. From equation (4.17) we obtain

xkf(x) = q ak
∂

∂xk
f(x), k = 1, 2, (4.18)

where q is a unit quaternion. Equation (4.16) implies that

−xkf(x)
∂

∂xk
f(x) ≥ 0. (4.19)
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Multiplying both sides of (4.18) by − ∂
∂xk

f(x) we get

−xkf(x)
∂

∂xk
f(x) = −q ak|

∂

∂xk
f(x)|2, k = 1, 2. (4.20)

Applying (4.19) we get q = −1. Hence, we conclude that

∂

∂xk
f(x) = − 1

ak
xkf(x), k = 1, 2. (4.21)

Solving the equations (4.21) we further obtain that f must be a Gaussian quaternion
function

f(x) = K0 e
−(

x21
2a1

+
x22
2a2

)
, k = 1, 2, (4.22)

where K0 ∈ H is a quaternion constant. 2

Since the Gaussian quaternion function f(x) of (4.22) achieves the minimum width-
bandwidth product, it is theoretically a very good prototype wave form. One can
therefore construct a basic wave form using spatially or frequency scaled versions
of f(x) to provide multiscale spectral resolution. Such a wavelet basis construction
from a Gaussian quaternion function prototype waveform has for example been re-
alized in the quaternion wavelet transforms of [22]. The optimal localization in
space and frequency is also the reason why (algebraically related to quaternions)
two-dimensional Clifford Gabor bandpass filters (with Gaussian impulse response)
were suggested in [23].

5 Conclusion

Using the basic concepts of quaternion algebra H we introduced the two-dimensional
quaternionic Fourier transform (QFT). Important properties of the QFT such as
partial derivative, Plancherel and Parseval theorems, specific shift- and modulation
properties, and the quaternion function Schwarz inequality were demonstrated. We
finally proposed a new uncertainty principle for the right-sided QFT.

So far no such uncertainty principle for a one-sided QFT (left or right) had been
established. In our previous works on Clifford FT uncertainty principles, we always
had the benefit of invariant vector derivatives. As far as we know, in quaternion
calculus no suitable analogue to such a vector derivative has been established.

Before introducing the QFT Plancherel theorem 3.5, we pointed out that this the-
orem is specific for the right-sided QFT. With the definition of the inner product
(2.19) it seems not possible to establish a similar QFT Plancherel theorem for the
left-sided QFT. But as explained in Remark 4.5, the uncertainty principle for the
right-sided QFT can be shown to apply to the left-sided QFT as well.
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The case of the two-sided QFT is solved. A Parseval theorem can be shown [2,6]
and equation (3.21) holds for general f ∈ L1(R2;H).
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