

Reasoning about RFID-tracked Moving Objects in Symbolic Indoor Spaces

Sari Haj Hussein, Hua Lu, Torben Bach Pedersen

Department of Computer Science Aalborg University

2013-07-29

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Modeling	Observability	Translation	Reasoning

1 Introduction

2 Modeling

Observability

4 Translation

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Introduction	Modeling	Observability	Translation	Reasoning
Problem				

- Uniform support of reasoning applications in outdoor and indoor spaces (OI-spaces)
 - To track moving objects
 - To decide the parts that are covered by receptors

• To determine the locations of congestion

Introduction	Modeling	Observability	Translation	Reasoning
Contributio	NDC			

- Extension of a recent model of OI-spaces
- Investigation of the route observability concept
- Probabilistic translation of receptor data
- Reasoning about points of potential traffic load

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

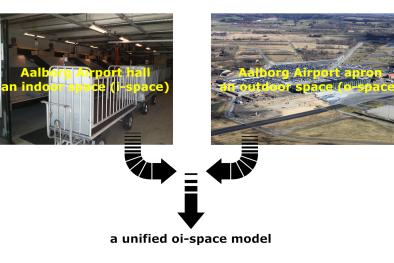
Introduction	Modeling	Observability	Translation	Reasoning

2 Modeling

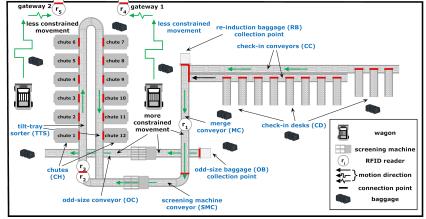
Observability

4 Translation

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●


Introduction Modeling Observability Translation

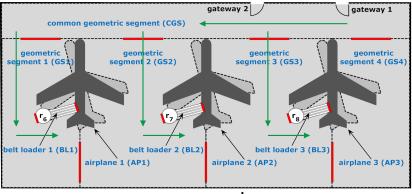
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @


A Recent Model

 Sari Haj Hussein, Hua Lu, and Torben Bach Pedersen.
Towards a unified model of outdoor and indoor spaces. In ACM SIGSPATIAL GIS 2012, Redondo Beach, California, The United States

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

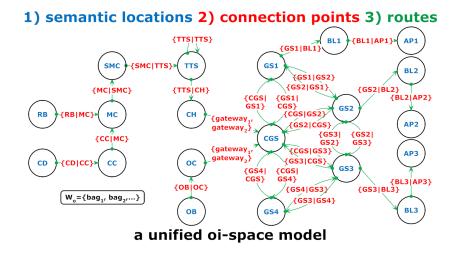
hall space plan



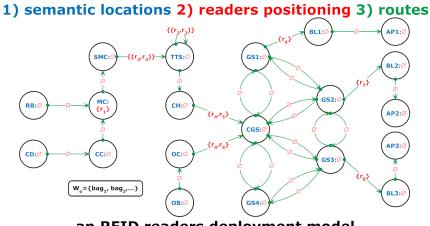
1) semantic locations 2) connection points 3) routes

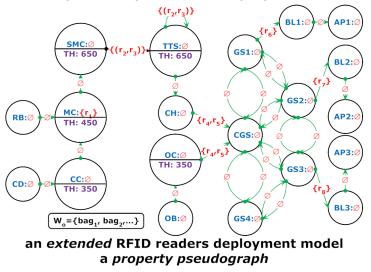
Introduction Modeling Observability Translation Reasoni

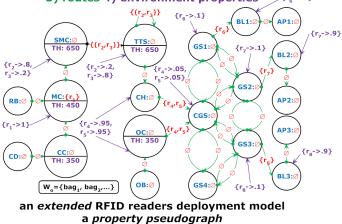
Introduction	Modeling	Observability	Translation	Reasoning


1) semantic locations 2) connection points 3) routes

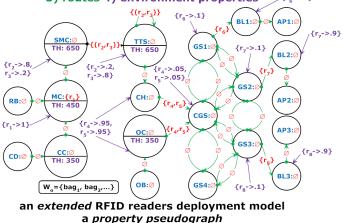
apron space plan


◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙


an RFID readers deployment model

semantic locations 2) readers positioning routes 4) environment properties


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

semantic locations 2) readers positioning routes 4) environment properties (r_c->.9)

Coverage Weight

semantic locations 2) readers positioning routes 4) environment properties (r₆->.9)

Coverage Weight

•
$$c_r(l) = \{r \to w(r) = \frac{ZONE(r) \cap AREA(l)}{ZONE(r)} : ZONE(r) \cap AREA(l) \neq \emptyset\}$$

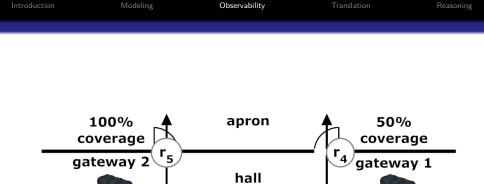
Introduction	Modeling	Observability	Translation	Reasoning


Introduction

2 Modeling

Observability

4 Translation



Introduction	Modeling	Observability	Translation	Reasoning

Route Observability

• A measure of the extent to which a given route is covered by RFID readers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

route₂ is *more observable* than route₁ albeit both routes are covered by one reader

route,

(日) (四) (日) (日) (日)

route,

Introduction	Modeling	Observability	Translation	Reasoning

Route Observability Function

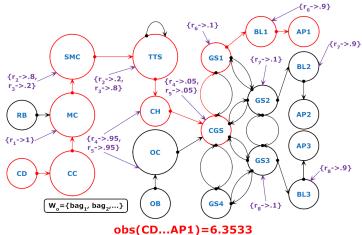
•
$$obs(R) = \sum_{l \in \mathcal{V}(R)} \sum_{w(r) \in c_r(l)} \log(w(r) + 1)$$

Function Bounds

•
$$0 \le obs(R) \le \sum_{l \in \mathcal{V}(R)} \log\left(\overline{c_r(l)} + |c_r(l)|\right) : \overline{c_r(l)} = \sum_{w(r) \in c_r(l)} w(r)$$

Introduction	Modeling	Observability	Translation	Reasoning

Route Observability Function


•
$$obs(R) = \sum_{l \in \mathcal{V}(R)} \sum_{w(r) \in c_r(l)} \log(w(r) + 1)$$

Function Bounds

•
$$0 \le obs(R) \le \sum_{l \in \mathcal{V}(R)} \log \left(\overline{c_r(l)} + |c_r(l)|\right) : \overline{c_r(l)} = \sum_{w(r) \in c_r(l)} w(r)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

bounds(CD...AP1)=0.3333

Introduction	Modeling	Observability	Translation	Reasoning

Observability and Uncertainty

• The higher a route observability, the less the uncertainty in tracking moving objects along this route

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	Modeling	Observability	Translation	Reasoning

1 Introduction

2 Modeling

Observability

Translation

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Introduction	Modeling	Observability	Translation	Reasoning

	The trajectory of bag_1 during $[t_1, t_{37}]$					
	ar-id	obj-id	reader-id	s-time	e-time	
appearance	ar_1	bag_1	r_1	t_1	t_2	
records	ar_2	bag_1	r_2	t_5	t_6	
	ar_3	bag_1	r_3	t_7	t_8	
	ar_4	bag_1	r_2	t_{11}	t_{12}	
	ar_5	bag_1	r_3	t_{13}	t_{14}	
	ar_6	bag_1	r_4	t_{19}	t_{29}	
	ar_7	bag_1	r_7	t_{32}	t_{37}	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

3: for each $l \in W_l$ do 4: if $ar_i.reader.id \in c_l(l)$ then 5: insert $\langle ar_i, ar_i.obj.id, l, ar_i.s.time, ar_i.e.time \rangle$ into inter-ds 6: break 7: for each $m = (l_i, l_j) \in W_m : l_i, l_j \in W_l$ do 8: if $(ar_i.reader.id \in c_m(m) \text{ or } (ar_i.reader.id, ar_{i+1}.reader.id) \in c_m(m))$ then 9: insert $\langle ar_i, ar_i.obj.id, l_i, ar_i.s.time, ar_i.e.time \rangle$ and $\langle ar_i, ar_i.obj.id, l_j, ar_i.s.time, ar_i.e.time \rangle$ into inter-ds

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

The intermediate records of bag_1 during $[t_1, t_{37}]$

			01	0117
ar-id	obj-id	loc	s-time	e-time
ar_1	bag_1	MC	t_1	t_2
ar_2	bag_1	SMC	t_5	t_6
ar_2	bag_1	TTS	t_5	t_6
ar_2	bag_1	TTS	t_5	t_6
ar_2	bag_1	TTS	t_5	t_6
ar_3	bag_1	\mathbf{SMC}	t_7	t_8
ar_3	bag_1	TTS	t_7	t_8
ar_3	bag_1	TTS	t_7	t_8
ar_3	bag_1	TTS	t_7	t_8
ar_4	bag_1	SMC	t_{11}	t_{12}
ar_4	bag_1	TTS	t_{11}	t_{12}
ar_4	bag_1	TTS	t_{11}	t_{12}
ar_4	bag_1	TTS	t_{11}	t_{12}
ar_5	bag_1	SMC	t_{13}	t_{14}
ar_5	bag_1	TTS	t_{13}	t_{14}
ar_5	bag_1	TTS	t_{13}	t_{14}
ar_5	bag_1	TTS	t_{13}	t_{14}
ar_6	bag_1	CH	t_{19}	t_{29}
ar_6	bag_1	\mathbf{CGS}	t_{19}	t_{29}
ar_6	bag_1	OC	t_{19}	t_{29}
ar_6	bag_1	\mathbf{CGS}	t_{19}	t_{29}
ar_7	bag_1	GS2	t_{32}	t_{37}
ar_7	bag_1	BL2	t_{32}	t_{37}

(ロ)、

Introduction Modeling Observability **Translation** Reasoning

// Stage 2. Transformation.10: Transform inter-ds into prob-ds.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	Modeling	Observability	Translation	Reasoning

obj-id	prob-loc	s-time	e-time
bag_1	[MC : 1]	t_1	t_2
bag_1	[SMC : .25, TTS : .75]	t_5	t_6
bag_1	[SMC : .25, TTS : .75]	t_7	t_8
bag_1	[SMC : .25, TTS : .75]	t_{11}	t_{12}
bag_1	[SMC : .25, TTS : .75]	t_{13}	t_{14}
bag_1	[CH: .25, OC: .25, CGS: .5]	t_{19}	t_{29}
bag_1	[GS2:.5, BL2:.5]	t_{32}	t_{37}

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

 $\mathbf{T} \mathbf{b} = \mathbf{a} + \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{b} + \mathbf{c} + \mathbf{$

Introduction	Modeling	Observability	Translation	Reasoning

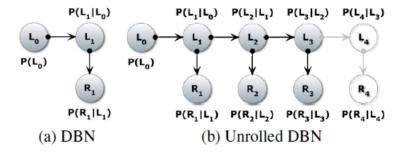
// Stage 3. Inferring the information gaps.

- 11: for each p-rec_i \in prob-ds do
- inject p-rec_i.prob-loc and p-rec_{i+1}.prob-loc as evidence into DBN
- update DBN beliefs using EPIS-BN

14:
$$bel1 \leftarrow first-DBN-belief$$

15:
$$beln \leftarrow last-DBN-belief$$

16: insert (p-rec_i.obj-id, bel1, p-rec_i.s-time, p-rec_i.e-time) and (p-rec_{i+1}.obj-id, beln, p-rec_{i+1}.s-time, p-rec_{i+1}.e-time) into infer-ds

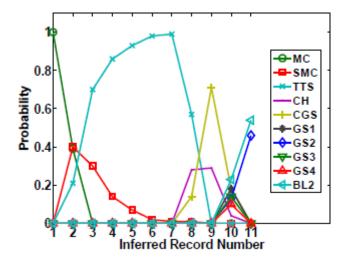

17:
$$start \leftarrow p - rec_i \cdot e - time + inv$$

18:
$$end \leftarrow p \text{-} rec_{i+1} \text{.} s \text{-} time - 1$$

- 19: if $start \leq end$ then
- 20: evolve infer-loc from DBN
- 21: insert (p-rec_i.obj-id, infer-loc, start, end) into infer-ds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Modeling	Observability	Translation	Reasoning



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Modeling	Observability	Translation	Reasoning

	file interior of oug1 and g	["1,""]	
obj-id	infer-loc	s-time	e-time
bag_1	[MC:1]	t_1	t_2
bag_1	[MC:.39, SMC:.40, TTS:.21]	t_3	t_4
bag_1	[SMC : .30, TTS : .70]	t_5	t_6
bag_1	[SMC: .14, TTS: .86]	t_7	t_8
bag_1	[SMC : .07, TTS : .93]	t_9	t_{10}
bag_1	[SMC : .02, TTS : .98]	t_{11}	t_{12}
bag_1	[SMC : .01, TTS : .99]	t_{13}	t_{14}
bag_1	[SMC:.01, TTS:.57, CH:.28,	t_{15}	t_{18}
	CGS : .14]		
bag_1	[CH:.29, CGS:.71]	t_{19}	t_{29}
bag_1	[CH:.04, CGS:.18, GS1:.18,	t_{30}	t_{31}
	GS2:.13, GS3:.14, GS4:.10,		
	BL2 : .23]		
bag_1	[GS2:.46, BL2:.54]	t_{32}	t_{37}

The inferred route of bag_1 during $[t_1, t_{37}]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Introduction	Modeling	Observability	Translation	Reasoning

1 Introduction

2 Modeling

Observability

4 Translation

ntroduction Mo	deling
----------------	--------

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dynamic BP Estimate

• Given:

- An RFID graph $\mathcal{D}_{rfid} = (\mathcal{W}_{l}, \mathcal{W}_{m}, c_{l}, c_{m}, c_{r})$
- The infer ds
- A monitoring period T of a location $I \in \mathcal{W}_I$

• $\forall I \in \mathcal{W}_I : \mathbf{E}_{BP}^T(I) = Pr(obj_1 \text{ at } I, \dots, obj_n \text{ at } I) : obj_i \in \mathcal{W}_o$

Introduction	Modeling	Observability	Translation	Reasoning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dynamic BP Monitoring Query

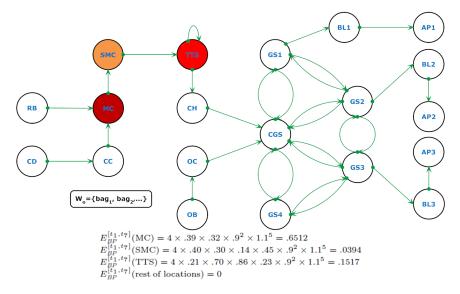
•
$$BPMQ^T = \{E_{BP}^T(I) : I \in \mathcal{W}_I\}$$

troduction	Modeling	Observability	Translation	Reasoning
A	Igorithm Answering a	BPMQ		
_	a probability tweaking parame		for for ds, a monitoring period T , lization function ψ to $[0, 1]$.	
	Output: $\psi(E_{BP}^T)$.			
	extract I - $REC(T)$ from the			
	$increase = 1.0 + \eta/100.0$ $decrease = 1.0 - \eta/100.0$			
	for each $l \in W_l$ do)		
	$E_{RP}^{T}(l) = \{i \text{-} rec \in I \text{-} l\}$	$REC(T): l \in i$	$-rec\} $	
6	for each <i>i</i> -rec \in <i>I</i> -REC		51	
7		-rec.s-time		
	if i-rec.pr(obj at l) >			
9	$E_{BP}^{T}(l) = E_{BP}^{T}(l) >$	< i-rec.pr(obj a	at l)	
1	: repeat t times			
1	$E_{BP}^{T}(l) = E_{BP}^{T}(l)$	$l) \times increase$		
1	2: else			
	repeat t times			
14	-DF(-) - DF(-)	$l) \times decrease$		
1.	: return $\psi(E_{BP}^T)$			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The interfed foute of bag_1 during $[t_1, t_{37}]$				
obj-id	infer-loc	s-time	e-time	
bag_1	[MC:1]	t_1	t_2	
bag_1	[MC:.39, SMC:.40, TTS:.21]	t_3	t_4	
bag_1	[SMC : .30, TTS : .70]	t_5	t_6	
bag_1	[SMC : .14, TTS : .86]	t_7	t_8	
bag_1	[SMC : .07, TTS : .93]	t_9	t_{10}	
bag_1	[SMC : .02, TTS : .98]	t_{11}	t_{12}	
bag_1	[SMC : .01, TTS : .99]	t_{13}	t_{14}	
bag_1	[SMC : .01, TTS : .57, CH : .28,	t_{15}	t_{18}	
	CGS : .14]			
bag_1	[CH : .29, CGS : .71]	t_{19}	t_{29}	
bag_1	[CH:.04, CGS:.18, GS1:.18,	t_{30}	t_{31}	
	GS2:.13, GS3:.14, GS4:.10,			
	BL2 : .23]			
bag_1	[GS2:.46, BL2:.54]	t_{32}	t_{37}	
The inferred route of bag_2 during $[t_3, t_{28}]$				
obj-id	infer-loc	s-time	e-time	
bag_2	[MC : 1]	t_3	t_4	
bag_2	[MC : .32, SMC : .45, TTS : .23]	t_5	t_7	
bag_2	[SMC : .06; TTS : .94]	t_8	t_{10}	
bag_2	[CH : .31, CGS : .69]	t_{11}	t_{25}	
bag_2	[GS1 : .41; BL1 : .59]	t_{26}	t_{28}	

The inferred route	of	bag_1	during	$[t_1, t_{37}]$	
--------------------	----	---------	--------	-----------------	--


Introduction	Modeling	Observability	Translation	Reasoning

obj-id	infer-loc	s-time	e-time
bag_1	[MC : 1]	t_1	t_2
bag_1	[MC:.39, SMC:.40, TTS:.21]	t_3	t_4
bag_1	[SMC : .30, TTS : .70]	t_5	t_6
bag_1	[SMC : .14, TTS : .86]	t_7	t_8
bag_2	[MC : 1]	t_3	t_4
bag_2	[MC : .32, SMC : .45, TTS : .23]	t_5	t_7

 $I DEC([t \ t])$ extracted from the infer de

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

Modeling

Observability

Translation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Reasoning

Thank You!