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ABSTRACT

Majorana and Dirac equations are usually considered as two different and
mutually exclusive equations. In this paper we demonstrate that both of
them can be considered as a special cases of the more general equation.
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Dirac and Majorana equations: Definitions

Majorana and Dirac equations are usually considered as two different and mutually ex-
clusive equations. However, both of them can be considered as a special cases of the more
general equation.

Let’s start with Dirac equation written in terms of the ”left” (ξ) and ”right” (η̇) spinor
components:  ∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

 η1̇

η2̇

 = −im

 ξ1

ξ2


 ∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

 ξ1

ξ2

 = −im

 η1̇

η2̇


(1)

The Majorana equation has the same form as Dirac equation, but with additional Lorentz
invariant condition (known as Majorana condition, or Neutrality condition):

η1̇ = + ξ2

η2̇ = − ξ1

ξ1 = − η2̇

ξ2 = + η1̇

(2)

If we will put (2) into Dirac equation (1), we will obtain: ∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3


 + ξ2

− ξ1

 = −im

 ξ1

ξ2



 ∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

 ξ1

ξ2

 = −im

 + ξ2

− ξ1


(3)

Hence, Majorana condition makes both pairs of Dirac equation equivalent, leaving only
one independent pair.
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Dirac and Majorana equations: Generalization

Let us now introduce the more general equation by replacing the mass terms in Dirac
equation with the ”mass matrix” M

M =

 M1
1 M1

2

M2
1 M2

2

 (4)

and it’s complex conjugated matrix Ṁ

Ṁ =

 Ṁ 1̇
1̇

Ṁ 1̇
2̇

Ṁ 2̇
1̇

Ṁ 2̇
2̇

 (5)

The modified equation will have the form: ∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂0 − ∂3

 η1̇

η2̇

 =

 M1
1 M1

2

M2
1 M2

2

 ξ1

ξ2


 ∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

 ξ1

ξ2

 =

 Ṁ 1̇
1̇

Ṁ 1̇
2̇

Ṁ 2̇
1̇

Ṁ 2̇
2̇

 η1̇

η2̇


(6)

If we require that ”left” spinor ξ is an eigenvector of matrix M , and ”right” spinor η̇
is an eigenvector of matrix Ṁ , both corresponding to the same eigenvalue (−im)

Mξ = −im ξ

Ṁη̇ = −im η̇
(7)

we again reproduce the structure of Dirac equation (1).

Now the ”type” of equation (i.e. Dirac, Majorana or Weyl) will only depend on the
special choice of matrix M .

For instance, if we choose M as

M =

[
0 m

−m 0

]

Ṁ =

[
0 m

−m 0

] (8)
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the eigenvectors corresponding to the eigenvalue (−im) will be:

ξD =

 1

−i

φ(x) η̇D =

 1

−i

φ(x) (9)

as it should be in the case of Dirac fermions (see, for instance, Peskin & Schroeder,
Chapter 3.3).

Alternatively, we can choose M as

M =

[
im 0
0 −im

]

Ṁ =

[
−im 0

0 im

] (10)

and the eigenvectors corresponding to the eigenvalue (−im) will be:

ξM =

 0

1

φ(x) η̇M =

 1

0

φ(x) (11)

It is easy to check that spinors ξM and η̇M automatically satisfy Majorana condition
(3).

The most general form of the ”mass matrix” M in the generalized equation (6) is as
follows:

M =

 M1
1 M1

2

M2
1 −M1

1

 = F kσk =

 F 3 F 1 − iF 2

F 1 + iF 2 −F 3

 , k = 1, 2, 3 (12)

and it’s eigenvalues are

λ± = ±
√

(F 1)2 + (F 2)2 + (F 3)2 (13)

The matrix M belongs to the Lie algebra of the group SL(2, C).

In order to preserve Lorentz invariance of the equation (6), the components F k of the
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mass matrix M are required to transform like vector Ek− iBk, where Ek and Bk are spa-
tial components of the electric and magnetic field strengths. In that case the eigenvalues
(13) of matrix M will be invariant w.r.t. Lorentz transformations.

Further generalization of the equation (by allowing M to be not constant, but variable
matrix) lead to the model that explains the origin of mass and charge in electrodynamics
(see [1]).
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