Some results on Smarandache groupoids

H. J. Siamwalla† and A. S. Muktibodh‡

† Abeda Inamdar Senior College, Azam Campus, Pune, India ‡ Shri M. Mohota College of Science, Umred Road Nagpur, India

E-mail: siamwalla.maths@gmail.com amukti2000@yahoo.com

Abstract In this paper we prove some results towards classifying Smarandache groupoids which are in $Z^*(n)$ and not in $Z(n)$ when n is even and n is odd.

Keywords Groupoids, Smarandache groupoids.

§1. Introduction and preliminaries

In [3] and [4], W. B. Kandasamy defined new classes of Smarandache groupoids using Z_n . In this paper we prove some theorems for construction of Smarandache groupoids according as n is even or odd.

Definition 1.1. A non-empty set of elements G is said to form a groupoid if in G is defined a binary operation called the product denoted by $*$ such that $a * b \in G$, $\forall a, b \in G$.

Definition 1.2. Let S be a non-empty set. S is said to be a semigroup if on S is defined a binary operation ∗ such that

(i) for all $a, b \in S$ we have $a * b \in S$ (closure).

(ii) for all a, b, $c \in S$ we have $a * (b * c) = (a * b) * c$ (associative law).

 $(S, *)$ is a semi-group.

Definition 1.3. A Smarandache groupoid G is a groupoid which has a proper subset $S \subset G$ which is a semi-group under the operation of G.

Example 1.1. Let $(G, *)$ be a groupoid on the set of integer modulo 6, given by the following table.

Here, $\{0, 5\}, \{1, 3\}, \{2, 4\}$ are proper subsets of G which are semigroups under \ast .

Definition 1.4. Let $Z_n = \{0, 1, 2, \dots, n-1\}$, $n \geq 3$. For $a, b \in Z_n \setminus \{0\}$ define a binary operation $*$ on Z_n as: $a * b = ta + ub \pmod{n}$ where t, u are 2 distinct elements in $Z_n \setminus \{0\}$ and $(t, u) = 1$. Here "+" is the usual addition of two integers and "ta" mean the product of the two integers t and a.

Elements of Z_n form a groupiod with respect to the binary operation. We denote these groupoids by $\{Z_n(t, u), *\}$ or $Z_n(t, u)$ for fixed integer n and varying $t, u \in Z_n \setminus \{0\}$ such that $(t, u) = 1$. Thus we define a collection of groupoids $Z(n)$ as follows

 $Z(n) = \{Z_n(t, u), * \mid \text{for integers } t, u \in Z_n \setminus \{0\} \text{ such that } (t, u) = 1\}.$

Definition 1.5. Let $Z_n = \{0, 1, 2, \dots, n-1\}$, $n \geq 3$. For $a, b \in Z_n \setminus \{0\}$, define a binary operation $*$ on Z_n as: $a * b = ta + ub \pmod{n}$ where t, u are two distinct elements in $Z_n \setminus \{0\}$ and t and u need not always be relatively prime but $t \neq u$. Here "+" is usual addition of two integers and " ta " means the product of two integers t and a.

For fixed integer n and varying $t, u \in Z_n \setminus \{0\}$ s.t $t \neq u$ we get a collection of groupoids $Z^*(n)$ as: $Z^*(n) = \{Z_n(t, u), * \mid \text{for integers } t, u \in Z_n \setminus \{0\} \text{ such that } t \neq u\}.$

Remarks 1.1. (i) Clearly, $Z(n) \subset Z^*(n)$.

(ii) $Z^*(n)\backslash Z(n) = \Phi$ for $n = p + 1$ for prime $p = 2, 3$.

(iii) $Z^*(n)\backslash Z(n) \neq \Phi$ for $n \neq p+1$ for prime p.

We are interested in Smarandache Groupoids which are in $Z^*(n)$ and not in $Z(n)$ i.e., $Z^*(n)\backslash Z(n).$

§2. Smarandache groupoids when n is even

Theorem 2.1. Let $Z_n(t,lt) \in Z^*(n) \setminus Z(n)$. If n is even, $n > 4$ and for each $t =$ $2, 3, \dots, \frac{n}{2}-1$ and $l=2, 3, 4, \dots$ such that $lt < n$, then $Z_n(t,lt)$ is Smarandache groupoid.

Proof. Let $x = \frac{n}{2}$.

Case 1. t is even.

 $x * x = xt + Itx = (l + 1)tx \equiv 0 \mod n.$

 $x * 0 = xt \equiv 0 \mod n.$

 $0 * x = lxt \equiv 0 \mod n.$

 $0 * 0 = 0 \mod n$.

∴ ${0, x}$ is semigroup in $Z_n(t, l t)$.

∴ $Z_n(t, l t)$ is Smarandache groupoid when t is even.

Case 2. t is odd.

(a) If l is even.

 $x * x = xt + Itx = (l + 1)tx \equiv x \mod n.$

 ${x}$ is semigroup in $Z_n(t,lt)$.

∴ $Z_n(t, l t)$ is Smarandache groupoid when t is odd and l is even.

(b) If l is odd then $(l + 1)$ is even.

 $x * x = xt + Itx = (l + 1)tx \equiv 0 \mod n.$

 $x * 0 = xt \equiv x \mod n.$

- $0 * x = Itx \equiv x \mod n.$
- $0 * 0 \equiv 0 \mod n$.

 \Rightarrow {0, x} is semigroup in $Z_n(t, l t)$.

∴ $Z_n(t, l_t)$ is Smarandache groupoid when t is odd and l is odd.

Theorem 2.2. Let $Z_n(t, u) \in Z^*(n) \setminus Z(n)$, *n* is even $n > 4$ where $(t, u) = r$ and $r \neq t$, *u* then $Z_n(t, u)$ is Smarandache groupoid.

Proof. Let $x = \frac{n}{2}$.

Case 1. Let r be even i.e t and u are even.

 $x * x = tx + ux = (t + u)x \equiv 0 \bmod n.$

 $0 * x = ux \equiv 0 \bmod n$.

 $x * 0 = tx \equiv 0 \bmod n.$

$$
0 * 0 = 0 \bmod n.
$$

 $\{0, x\}$ is semigroup in $Z_n(t, \mathcal{U})$.

∴ $Z_n(t, l t)$ is Smarandache groupoid when t is even and u is even.

Case 2. Let r be odd.

(a) when t is odd and u is odd,

 $\Rightarrow t + u$ is even. $x * x = tx + ux = (t + u)x \equiv 0 \bmod n.$ $x * 0 = tx \equiv x \bmod n.$ $0 * x \equiv u \equiv x \mod n$. $0 * 0 \equiv 0 \bmod n$. $\{0, x\}$ is a semigroup in $Z_n(t, u)$. ∴ $Z_n(t, u)$ is Smarandache groupoid when t is odd and u is odd.

(b) when t is odd and u is even,

 $\Rightarrow t + u$ is odd. $x * x = tx + ux = (t + u)x \equiv x \mod n.$ ${x}$ is a semigroup in $Z_n(t, u)$. ∴ $Z_n(t, u)$ is Smarandache groupoid when t is odd and u is even.

(c) when t is even and u is odd,

 $\Rightarrow t + u$ is odd. $x * x = tx + ux = (t + u)x \equiv x \mod n.$ ${x}$ is a semigroup in $Z_n(t, u)$. ∴ $Z_n(t, u)$ is Smarandache groupoid when t is even and u is odd.

By the above two theorems we can determine Smarandache groupoids in $Z^*(n) \backslash Z(n)$ when *n* is even and $n > 4$.

We find Smarandache groupoids in $Z^*(n)\backslash Z(n)$ for $n = 22$ by Theorem 2.1.

$\mathbf t$	\boldsymbol{l}	lt < 22	$Z_n(t,lt)$	Proper subset	Smarandache groupoid
				which is semigroup	$\mathrm{in}Z^*(n)\backslash Z(n)$
	$\overline{2}$	$\overline{4}$	$Z_{22}(2,4)$	${0, 11}$	$Z_{22}(2,4)$
	3	66	$Z_{22}(2,6)$	${0, 11}$	$Z_{22}(2,6)$
	4	$8\,$	$Z_{22}(2,8)$	${0, 11}$	$Z_{22}(2,8)$
$\sqrt{2}$	5	$10\,$	$Z_{22}(2,10)$	${0, 11}$	$Z_{22}(2,10)$
	6	12	$Z_{22}(2,12)$	$\{0, 11\}$	$Z_{22}(2,12)$
	$\overline{7}$	14	$Z_{22}(2,14)$	$\{0, 11\}$	$Z_{22}(2,14)$
	$8\,$	$16\,$	$Z_{22}(2,16)$	$\{0, 11\}$	$Z_{22}(2,16)$
	9	$18\,$	$Z_{22}(2,18)$	$\{0, 11\}$	$Z_{22}(2,18)$
	10	$20\,$	$Z_{22}(2,20)$	$\{0, 11\}$	$Z_{22}(2,20)$
	$\overline{2}$	66	$Z_{22}(3,6)$	${11}$	$Z_{22}(3,6)$
	$\boldsymbol{3}$	9	$Z_{22}(3,9)$	$\{0, 11\}$	$Z_{22}(3,9)$
3	4	$12\,$	$Z_{22}(3,12)$	${11}$	$Z_{22}(3,12)$
	5	$15\,$	$Z_{22}(3,15)$	$\{0, 11\}$	$Z_{22}(3,15)$
	6	$18\,$	$Z_{22}(3,18)$	${11}$	$Z_{22}(3,18)$
	7	21	$Z_{22}(3,21)$	$\{0, 11\}$	$Z_{22}(3,21)$
	$\overline{2}$	$8\,$	$Z_{22}(4,8)$	$\{0, 11\}$	$Z_{22}(4,8)$
$\overline{4}$	$\boldsymbol{3}$	$12\,$	$Z_{22}(4,12)$	$\{0, 11\}$	$Z_{22}(4,12)$
	$\overline{4}$	16	$Z_{22}(4,16)$	${0, 11}$	$Z_{22}(4,16)$
	$\overline{5}$	$20\,$	$Z_{22}(4,20)$	$\{0, 11\}$	$Z_{22}(4,20)$
	$\overline{2}$	$10\,$	$Z_{22}(5,10)$	${11}$	$Z_{22}(5,10)$
$\bf 5$	$\boldsymbol{3}$	$15\,$	$Z_{22}(5,15)$	$\{0, 11\}$	$Z_{22}(5,15)$
	4	$20\,$	$Z_{22}(5,20)$	${11}$	$Z_{22}(5,20)$
	$\overline{2}$	$12\,$	$Z_{22}(6,12)$	$\{0, 11\}$	$Z_{22}(6,12)$
$\,6$	$\boldsymbol{3}$	18	$Z_{22}(6,18)$	$\{0,11\}$	$Z_{22}(6,18)$
	$\overline{2}$	14	$Z_{22}(7,14)$	${11}$	$Z_{22}(7,14)$
$\overline{7}$	$\boldsymbol{3}$	21	$Z_{22}(7,21)$	${0, 11}$	$Z_{22}(7,21)$
8	$\overline{2}$	16	$Z_{22}(8,16)$	$\{0, 11\}$	$Z_{22}(8,16)$
9	$\overline{2}$	18	$Z_{22}(9,18)$	${11}$	$Z_{22}(9,18)$
$10\,$	$\overline{2}$	$20\,$	$Z_{22}(10,20)$	${0, 11}$	$Z_{22}(10,20)$

Next, we find Smarandache groupoids in $Z^*(n)\Z(n)$ for $n = 22$ by Theorem 2.2.

§3. Smarandache groupoids when n is odd

Theorem 3.1. Let $Z_n(t, u) \in Z^*(n) \setminus Z(n)$. If *n* is odd, $n > 4$ and for each $t = 2, \dots, \frac{n-1}{2}$, and $u = n - (t - 1)$ such that $(t, u) = r$ then $Z_n(t, u)$ is Smarandache groupoid.

Proof. Let $x \in \{0, \dots, n-1\}$.

$$
x * x = xt + xu = (n+1)x \equiv x \bmod n.
$$

∴ $\{x\}$ is semigroup in Z_n .

∴ $Z_n(t, u)$ is Smarandanche groupoid.

By the above theorem we can determine the Smarandache groupoids in $Z^*(n)\backslash Z(n)$ when n is odd and $n > 4$.

Also we note that all $\{x\}$ where $x \in \{0, \dots, n-1\}$ are proper subsets which are semigroups in $Z_n(t, u)$.

Let us consider the examples when n is odd. We will find the Smarandache groupoids in $Z^*(n)\backslash Z(n)$ by Theorem 3.1.

Open Problems:

- 1. Let *n* be a composite number. Are all groupoids in $Z^*(n) \setminus Z(n)$ Smarandache groupoids?
- 2. Which class will have more number of Smarandache groupoids in $Z^*(n)\backslash Z(n)$?
	- (a) When $n + 1$ is prime.
	- (b) When n is prime.

References

[1] G. Birknoff and S. S. Maclane, A Brief Survey of Modern Algebra, New York, U.S.A., The Macmillan and Co., 1965.

[2] R. H. Bruck, A Survey of Binary Systems, Springer Verlag, 1958.

[3] W. B. Vasantha Kandasamy, New Classes of Finite Groupoids using Z_n , Varahmihir Journal of Mathematical Science, 1(2001), 135-143.

[4] W. B. Vasantha Kandasamy, Smarandache Groupoids, http://www/gallup.unm.edu/sm arandache/groupoids.pdf.