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Abstract 

 

Using Jiang function we prove Jiang prime -tuple theorem.We find  true singular 

series. Using the examples we prove the Hardy-Littlewood prime -tuple conjecture 

with wrong singular series.. Jiang prime k -tuple theorem will replace the 

Hardy-Littlewood prime -tuple conjecture. 
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(A) Jiang prime -tuple theorem with true singular series[1, 2]. k

We define the prime -tuple equation k

                      , ip p n ,                          （1） 

where 2 , 1, 1in i k  . 

we have Jiang function [1, 2] 
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which is true. 

If ( ) 1P P    then 2 ( ) 0J  

( )

. There exist infinitely many primes  such that 

each of  is prime. If 

P

iP n 1P P    then 2 ( ) 0J   . There exist finitely many 

primes  such that each of P inP   is prime. 2 ( )J   is a subset of Euler function 

( )  [2]. 

 If 2 ( ) 0J   , then we have the best asymptotic formula of the number of prime 
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is Jiang true singular series.  

Example 1. Let 2, , 2k P P  , twin primes theorem. 

From (3) we have 

                (2) 0, ( ) 1P    if ,                  （6） 2P 

Substituting (6) into (2) we have 

                 2 3
( ) ( 2) 0

P
J P


                              （7） 

There exist infinitely many primes  such that P 2P   is prime. Substituting (7) into 

(4) we have the best asymptotic formula  
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Example 2. Let 3, , 2, 4k P P P   . 

From (3) we have 

              (2) 0, (3) 2                         （9） 

From (2) we have 

                          2 ( ) 0J   .                          （10） 

It has only a solution , 3P  2 5P   , 4 7P   . One of , 2, 4P P P   is always 

divisible by 3. 

Example 3. Let 4, ,k P P n  , where 2,6,8n  . 

From (3) we have 

(2) 0, (3) 1, ( ) 3P      if .                （11） 3P 

Substituting (11) into (2) we have 

                  2 5
( ) ( 4) 0

P
J P


    ,                            （12） 

There exist infinitely many primes  such that each of P P n  is prime. 

Substituting (12) into (4) we have the best asymptotic formula 
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Example 4. Let 5k  , , , where P P n 2,6,8,12n  . 

From (3) we have 

 2



            (2) 0, (3) 1, (5) 3, ( ) 4P        if            （14） 5P 

Substituting (14) into (2) we have  

               2 7
( ) ( 5) 0

P
J P


                               （15） 

There exist infinitely many primes  such that each of P P n  is prime. Substituting 

(15) into (4) we have the best asymptotic formula 
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Example 5. Let 6k  ， , , where P P n 2,6,8,12,14n  . 

From (3) and (2) we have 

                   2(2) 0, (3) 1, (5) 4, (5) 0J                 （17） 

It has only  solution , a 5P  2 7P   , 6 11P   , 8 13P   , , 

. One of  is always divisible by 5. 

12 17P  

14 19P   P  n

（B）The Hardy-Littlewood prime -tuple conjecture with wrong singular 

series[3-14]. 

k

This conjecture is generally believed to be true, but has not been 

proved(Odlyzko et al.1999). 

We define the prime -tuple equation k

                 , iP P n                                （18） 

where 2 , 1, , 1in i k  . 

In 1923 Hardy and Littlewood conjectured the asymptotic formula 
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is Hardy-Littlewood wrong singula series, 

( )P  is the number of solutions of congruence 
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which is wrong. 

From (21) we have ( )P P   and ( ) 0H k  . For any prime -tuple equation there k
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exist infinitely many primes  such that each of P iP n  is prime, which is false. 

Conjecture 1. Let , twin primes theorem  2, , 2k P P 

From (21) we have 

        ( ) 1P                         （22） 

Substituting (22) into (20) we have 
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Substituting (23) into (19) we have the asymptotic formula 
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which is wrong see example 1. 

Conjecture 2. Let . 3, , 2, 4k P PP 

)

From (21) we have 

                 (2 1, ( ) 2P    if                  （25） P 2

Substituting (25) into (20) we have 

                     
2

33

( 2)
4

( 1)P

P P
H

P


                     （26） (3)  



Substituting (26) into (19) we have asymptotic formula 
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which is wrong see example 2. 

Conjecture 3. Let , 4k  n , where 2,n 6,8 . 

From (21) we have 

               (2) 1, ) 2, ( ) 3P(3      if               （28） 3P 

Substituting (28) into (20) we have 
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Substituting (29) into (19) we have asymptotic formula  
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Which is wrong see example 3. 
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Conjecture 4. Let , where 5, ,k P P n 2,6,8,12n   

From (21) we have 

      (2) 1, (3) 2, (5) 3, ( ) 4P        if                （31） 5P 

Substituting (31) into (20) we have 

                      
4 4

5 5
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Substituting (32) into (19) we have asymptotic formula  
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Which is wrong see example 4. 

Conjecture 5. Let , , 6k  P P n , where 2,6,8,12,14n  . 

From (21) we have 

            (2) 1, (3) 2, (5) 4, ( ) 5P        if          （34） 5P 

Substituting (34) into (20) we have 

                      
5 5

13 65
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Substituting (35) into (19) we have asymptotic formula 
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which is wrong see example 5. 

 

Conclusion. The Jiang prime k-tuple theorem has true singular series.The 

Hardy-Littlewood prime -tuple conjecture has wrong singular series.. The tool of 

additive prime number theory is basically the Hardy-Littlewood wrong prime k-tuple 

conjecture which are wrong[3-14]. Using Jiang true singula series we prove almost all 

prime theorems. Jiang prime -tuple theorem will replace Hardy-Littlewood prime 

-tuple Conjecture. There cannot be really modern prime theory without Jiang 

function. 
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