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Abstract

We propose a preliminary algorithm which is designed to reduce aspects of the n-
body problem to a 2-body problem for holographic principle compliance. The objective
is to share an alternative view-point on the n-body problem to try and generate a
simpler solution in the future. The algorithm operates 2D and 3D data structures to
initiate the encoding of the chaotic dynamical system equipped with modified superfluid
order parameter fields in both 3D and 4D versions of the Inopin holographic ring (IHR)
topology. For the algorithm, we arbitrarily select one point-mass to be the origin and,
from that reference frame, we subsequently engage a series of instructions to consolidate
the residual (n − 1)-bodies to the IHR. Through a step-by-step example, we demon-
strate that the algorithm yields “IHR effective” (IHRE) net quantities that enable us to
hypothetically define an IHRE potential, kinetic, and Lagrangian.

Keywords: Newtonian mechanics; Relativistic mechanics; Gravitation; Holographic
principle; Inopin holographic ring; Geometry and topology; Chaos; Spontaneous symmetry
breaking; Superfluid order parameters.
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1 Introduction
The n-body problem is the ancient problem of predicting the motion

of a group of celestial objects that gravitationally interact with each other
[1, 2]. Solving this problem has been motivated by the need to understand
the motion of, for example, planets, stars, and black holes. Its first complete
mathematical formulation appeared in Isaac Newton’s Principia [1, 2]. Since
gravity is responsible for the motion of planets and stars, Newton had to
express gravitational interactions in terms of differential equations [1, 2].
In the Principia [1, 2], Newton proved that a spherically-symmetric body
can be modeled as a point-mass. Interestingly, quantized particles may also
modeled as point-masses [3, 4, 5, 6], which seems to indicate that a solution
to the n-body problem may be applied to a future unified theory of quantum
gravity. To date, the 2-body problem has been completely solved, but only
certain solutions exist for the 3-body problem [7].

Over a century ago, Poincaré’s work on the restricted version of the
3-body problem formed the foundation of deterministic chaos theory [7].
Chaos theory studies the behavior of dynamical systems that are highly
sensitive to initial conditions [8, 9]. In a chaotic dynamical system, minis-
cule differences in initial conditions yield widely diverging outcomes, thereby
generally rendering long-term predictions impossible [8, 9]. Chaos is abun-
dant in nature [9, 10, 11], and such complex, non-linear systems are widely
studied in mathematics [12, 13, 14], physics [15, 16, 17], gravitation and
cosmology [18, 19], astrophysics [20, 21], chemistry [22, 23, 24], biology
[25, 26, 27, 28, 29, 30, 31, 32], neuro-science [33, 34, 35], medicine [36, 37],
computation [38, 39, 40], cryptology [41, 42, 43], economics [44, 45], and war-
fare [46, 47, 48]. Chaos theory has significantly enhanced our general scien-
tific comprehension of a wide range of phenomena, from structural dynamics
to turbulence [8, 9, 46, 49] which applies to, for example, aquatic ecosystems
[50], weather [51], black holes [15], the cosmic microwave background [19],
galaxy distributions [20, 21], population biology [25], viruses and pathogens
[26], cancers and genetics [27, 52], military strategy [46, 47, 48], volcanoes
[53], earthquakes [54, 55], and the global stock market [44]. Moreover,
we note that fractals are the language of chaos theory [56, 57, 58], where
fractals are clearly everywhere in nature [12, 59] including, for example,
the allometric scaling laws in biology [28, 29, 30, 31, 32]. The plethora of
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well-documented scientific evidence for naturally-recurring n-body problems
fundamentally conveys the significance pertaining to this mode of research.
Thus, it is imperative to investigate such phenomenon from diverse perspec-
tives and attack these problems from multiple directions.

In this introductory paper, we propose the Newtonian Gravitational n-
Body Spherical Simplification Algorithm (NGNBSSA), which attempts to
simplify the apparent complexity of the unrestricted version of the (n > 2)-
body problem to that of a 2-body problem, for which the n = 2 solution
does exist ; the objective is to share an alternative view-point on the n-body
problem with a spherically-symmetric topology to try and generate a so-
lution (or partial solution) in the future. The NGNBSSA is a well-defined
procedure of instructions that engages the 2D/complex and 3D/triplex data
structure framework of [60] to encode 3D and 4D versions of the (spherically-
symmetric) IHR topology [61] equipped with modified superfluid order pa-
rameter fields [62] for holographic principle compliance [63].

In Section 2, we prepare for our systematic n-body attack by assembling
the requisite data structures for characterizing the chaotic gravitational sys-
tem state space. First, in Section 2.1, we devise the 2D data structures for
encoding 2D locations and 2D features in the 3D IHR topology of [60, 61].
Subsequently, in Section 2.2, we contrive the 3D data structures for encod-
ing 3D locations and 3D features in the 4D IHR topology of [60].

Next, in Section 3, we present the NGNBSSA via a step-by-step example
of instructions and illustrations. Thereafter, Section 3.1 demonstrates how
the NGNBSSA systematically operates in the 3D IHR topology with the
complex encoding framework [60, 61], while Section 3.2 explains how to
adjust the NGNBSSA so it can also function in the 4D IHR topology with
the triplex encoding framework [60]. In both scenarios, we use the results to
define an IHRE potential, kinetic, and Lagrangian that aims to intertwine
mechanics from Newton and Einstein.

Finally, the paper terminates with the conclusive discussion and future
outlook of Section 4, followed by the brief concessions of Section 5.

2 Data structures
In this section, we prepare for the NGNBSSA by assembling the n-body

chaotic gravitational system state space for encoding locations and features
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in the 3D and 4D IHR topologies [60, 61].

2.1 2D structures in the 3D IHR topology
To encode 2D locations, we identify the Riemann surface X as the 2D

Position-Point State Space (2D-PPSS) [60, 61]. Thus, we define

PX ⊂ X = {~x1, ~x2, ..., ~xn} (1)

as the ordered set of spherically-symmetric point-particles of cardinality
n = |PX | with the corresponding generalized 2D Riemannian-coordinates
[60, 61]

1 : ~x1 = (~x1) = (|~x1|, 〈~x1〉)P = (~x1R , ~x1I)C
2 : ~x2 = (~x2) = (|~x2|, 〈~x2〉)P = (~x2R , ~x2I)C

...
n : ~xn = (~xn) = (|~xn|, 〈~xn〉)P = (~xnR , ~xnI)C ,

(2)

where (~xnR , ~xnI)C is in the 2D Cartesian notation and (|~xn|, 〈~xn〉)P is in the
2D polar notation. Each point-particle in PX has a location that is a 2D
Position-Point State (2D-PPS) from [60, 61]. For PX in eq. (1), we define

MX = {m1,m2, ...,mn} (3)

as the corresponding ordered set of non-zero 2D Position-Point-Masses (2D-
PPM) of cardinality n = |MX |. Moreover, each point-particle in PX also has
a velocity that is a 2D Velocity Field Order Parameter State (2D-VOPS)
defined using the 2D-OPS notation of [60]. Hence, we define

VX ≡ {~v1, ~v2, ..., ~vn} ≡ {~ψv(~x1), ~ψv(~x2), ..., ~ψv(~xn)} (4)

as the ordered 2D-VOPS set of cardinality n = |VX | with the corresponding
definitions

1 : ~v1 ≡ (~v1) ≡ ~ψv(~x1) ≡ (|~v1|, 〈~v1〉)P ≡ (~v1R , ~v1I)C
2 : ~v2 ≡ (~v2) ≡ ~ψv(~x2) ≡ (|~v2|, 〈~v2〉)P ≡ (~v2R , ~v2I)C

...

n : ~vn ≡ (~vn) ≡ ~ψv(~xn) ≡ (|~vn|, 〈~vn〉)P ≡ (~vnR , ~vnI)C ,

(5)
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where (~vnR , ~vnI)C is in the 2D Cartesian notation and (|~vn|, 〈~vn〉)P is in the
2D polar notation.

Next, we apply Newton’s law of universal gravitation to MX for PX
across X, where the force between between any two 2D-PPM is directly
proportional to their product and inversely proportional to the square of
the distance between them [1, 2]. To encode the gravitational force between
two such bodies in the 3D IHR topology, say mi,mj ∈ MX for i 6= j and
1 ≤ i, j ≤ n, we adopt and adjust the 2D-OPS notation of eq. (23) in
[60] and add a second 2D-PPS argument to define the 2D Newtonian Force
Field Order Parameter State (2D-FOPS)

~Fij ≡ ~FijR + ~FijI ≡
(
~Fij

)
≡
(
~FijR ,

~FijI

)
C
≡
(
|~Fij|, 〈~Fij〉

)
P

≡ ~ψF (~xi, ~xj) ≡ ~ψF (~xi, ~xj)R + ~ψF (~xi, ~xj)I ≡
(
~ψF (~xi, ~xj)

)
≡
(
~ψF (~xi, ~xj)R, ~ψF (~xi, ~xj)I

)
C
≡
(
|~ψF (~xi, ~xj)|, 〈~ψF (~xi, ~xj)〉

)
P

(6)

from the perspective of ~xi to ~xj, which applies to all such pairs in PX .
Hence, the 2D-OPS component constraints and notations of eqs. (18–25)
in [60] apply to the 2D-FOPS definition of eq. (6). Therefore, ∀~xi, ~xj ∈ PX
the gravitational 2D-FOPS-amplitude between mi,mj ∈MX is

|~Fij| ≡
√
~F 2
ijR

+ ~F 2
ijI
≡ G

mimj

d2ij

≡ |~ψF (~xi, ~xj)| ≡
√
~ψ2
F (~xi, ~xj)R + ~ψ2

F (~xi, ~xj)I,

(7)

where G is the gravitational constant and dij is defined as the Euclidean
distance

dij = d(~xi, ~xj) =
√

(~xjR − ~xiR)2 + (~xjI − ~xiI)2 (8)

between ~xi and ~xj using the 2D-PPS Cartesian-coordinate properties for
the geometrical line segment ~xi~xj.

Now, we can simplify the notation of eqs. (6–8) even further if we let
~xi = O be the origin-point of eq. (10) in [60] with the 2D-PPM re-labeling
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mO = mi. Thus, ∀~xj ∈ PX , eq. (6) is re-written as

~Fj ≡ ~ψF (O, ~xj) ≡ ~FjR + ~FjI ≡
(
~Fj

)
≡
(
~FjR ,

~FjI

)
C
≡
(
|~Fj|, 〈~Fj〉

)
P
, (9)

with respect to O, which clearly satisfies the 2D-OPS component constraints
and notations of eqs. (18–25) in [60]. Therefore, eq. (7) is re-written as

|~Fj| ≡ |~ψF (O, ~xj)| ≡
√
~F 2
jR

+ ~F 2
jI
≡ G

mOmj

d2j
, (10)

where dj is defined as the Euclidean distance by re-writing eq. (8) as

dj = d(O, ~xj) =
√

(~xjR −OR)2 + (~xjI −OI)2 = |~xj| (11)

between O and ~xj, which is the 2D-PPS-amplitude that corresponds to the
geometrical line segment O~xj.

At this point, we have both the ~Fj of eq. (9) and the mj ∈ MX of eq.
(3), so Newton’s second law [1, 2] immediately comes to mind. Thus, using
the same notation of eq. (9), we define the 2D Newtonian Acceleration Field
Order Parameter State (2D-AOPS)

~aj ≡ ~ψa(O, ~xj) ≡ (~aj) ≡ (~ajR ,~ajI)C ≡ (|~aj|, 〈~aj〉)P , (12)

with respect to O, where the 2D-AOPS-amplitude is defined as

|~aj| ≡ |~ψa(O, ~xj)| ≡
√
~a 2
jR

+ ~a 2
jI
≡ |

~Fj|
mj

. (13)

Hence, for m0,mj ∈ MX , the 2D-FOPS-phase, 2D-AOPS-phase, and 2D-
PPS-phase bestow the equivalence

〈~Fj〉 ≡ 〈~aj〉 ≡ 〈~xj〉. (14)

The next step is to define, relative to mO with vO, the 2D Relative
Velocity Field Order Parameter State (2D-RVOPS) for some mj with vj as

~ϑj ≡ ~ψϑ(O, ~xj) ≡
(
~ϑj

)
≡
(
~ϑjR ,

~ϑjI

)
C
≡
(
|~ϑj|, 〈~ϑj〉

)
P
, (15)
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such that
~ϑjR ≡ ~vjR − ~vOR

~ϑjI ≡ ~vjI − ~vOI ,

(16)

where from eq. (22) in [60] we establish

|~ϑj| ≡
√
~ϑ 2
jR

+ ~ϑ 2
jI

~ϑjR ≡ |~ϑj| cos〈~ϑj〉

~ϑjI ≡ |~ϑj| sin〈~ϑj〉,

(17)

which is clearly similar to the constraints of eqs. (9) and (12) that fol-
low [60]. Eqs. (15–17) are preliminary relative velocity definitions that
are sufficient to introduce the NGNBSSA for the limited context of this
introductory paper; however, in future work it should be interesting and
beneficial to incorporate additional aspects of Einstein’s special relativity
into this developing framework.

We note that the 1-sphere IHR T 1 ⊂ X in eq. (13) of [60] with
amplitude-radius ε does apply to this scenario, but we must wait to es-
tablish T 1 in Section 3.1 because the value of ε depends on the NGNBSSA’s
intermediate results. A 2D-PPS that exists in T 1 is defined as an IHRE-2D-
PPS ; the 2D-PPM, 2D-FOPS, 2D-AOPS, 2D-VOPS, and 2D-RVOPS for an
IHRE-2D-PPS are defined as the IHRE-2D-PPM, IHRE-2D-FOPS, IHRE-
2D-AOPS, IHRE-2D-VOPS, and IHRE-2D-RVOPS, respectively. Thus, at
this point, we can encode the relevant n-body chaotic dynamical system
states in the 3D IHR topology of [60, 61] for the upcoming NGNBSSA in
Section 3.1.

2.2 3D structures in the 4D IHR topology
Here, we project the complex structures of Section 2.1 to a higher di-

mensional structure with one additional degree of freedom.
First, we project the 2D locations of eqs. (1–2) in accordance to [60].

Thus, to encode 3D locations, we identify the 3D real manifold Y as the 3D
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Position-Point State Space (3D-PPSS), such that X ⊂ Y [60]. Thus, we
define

PY ⊂ Y = {~y1, ~y2, ..., ~yn} (18)

as the ordered set of spherically-symmetric point-particles of cardinality
n = |PY | with the corresponding generalized 3D Riemannian-coordinates
[60]

1 : ~y1 = (~y1) = (|~y1|, 〈~y1〉, [~y1])S = (~y1R , ~y1I , ~y1Z )C
2 : ~y2 = (~y2) = (|~y2|, 〈~y2〉, [~y2])S = (~y2R , ~y2I , ~y2Z )C

...
n : ~yn = (~yn) = (|~yn|, 〈~yn〉, [~yn])S = (~ynR , ~ynI , ~ynZ

)C ,

(19)

where (|~yn|, 〈~yn〉, [~yn])S is in the 3D spherical notation and (~ynR , ~ynI , ~ynZ
)C

is in the 3D Cartesian notation. Each point-particle in PY has a location
that is a 3D Position-Point State (3D-PPS) from [60]. For PY in eq. (18),
we define

MY = {m1,m2, ...,mn} (20)

as the corresponding ordered set of non-zero 3D Position-Point-Masses (3D-
PPM) of cardinality n = |MY |. Moreover, each point-particle in PY also has
a velocity that is a 3D Velocity Field Order Parameter State (3D-VOPS)
defined using the 3D-OPS notation of [60]. Hence, we define

VY = {~v1, ~v2, ..., ~vn} = {~ψv(~y1), ~ψv(~y2), ..., ~ψv(~yn)} (21)

as the ordered 3D-VOPSs set of cardinality n = |VY | with the corresponding
definitions

1 : ~v1 ≡ (~v1) ≡ ~ψv(~y1) ≡ (|~v1|, 〈~v1〉, [~v1])S ≡ (~v1R , ~v1I , ~v1Z )C
2 : ~v2 ≡ (~v2) ≡ ~ψv(~y2) ≡ (|~v2|, 〈~v2〉, [~v2])S ≡ (~v2R , ~v2I , ~v2Z )C

...

n : ~vn ≡ (~vn) ≡ ~ψv(~yn) ≡ (|~vn|, 〈~vn〉, [~vn])S ≡ (~vnR , ~vnI , ~vnZ
)C .
(22)

Next, we apply Newton’s law of universal gravitation [1, 2] to MY for
PY across Y . To encode the gravitational force between two such 3D-PPMs
in the 4D IHR topology, say mi,mj ∈ MY for i 6= j and 1 ≤ i, j ≤ n, we
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adopt and adjust the 3D-OPS notation of eq. (50) in [60] and add a second
3D-PPS argument to define the 3D Newtonian Force Field Order Parameter
State (3D-FOPS)

~Fij ≡ ~FijR + ~FijI + ~FijZ ≡
(
~Fij

)
≡
(
~FijR ,

~FijI ,
~FijZ

)
C
≡
(
|~Fij|, 〈~Fij〉, [~Fij]

)
S

≡ ~ψF (~yi, ~yj) ≡ ~ψF (~yi, ~yj)R + ~ψF (~yi, ~yj)I + ~ψF (~yi, ~yj)Z ≡
(
~ψF (~yi, ~yj)

)
S

≡
(
~ψF (~yi, ~yj)R, ~ψF (~yi, ~yj)I, ~ψF (~yi, ~yj)Z

)
C

≡
(
|~ψF (~yi, ~yj)|, 〈~ψF (~yi, ~yj)〉, [~ψF (~yi, ~yj)]

)
S

(23)
from the perspective of ~yi to ~yj, which applies to all such pairs in PY . Hence,
the 3D-OPS component constraints and notations of eqs. (45–52) in [60]
apply to the 3D-FOPS definition of eq. (23). Therefore, ∀~yi, ~yj ∈ PY the
gravitational 3D-FOPS-amplitude between mi,mj ∈MY is

|~Fij| ≡
√
~F 2
ijR

+ ~F 2
ijI

+ ~F 2
ijZ
≡ G

mimj

d2ij

≡ |~ψF (~yi, ~yj)| ≡
√
~ψ2
F (~yi, ~yj)R + ~ψ2

F (~yi, ~yj)I + ~ψ2
F (~yi, ~yj)Z ,

(24)

where dij is defined as the Euclidean distance

dij = d(~yi, ~yj) =
√

(~yjR − ~yiR)2 + (~yjI − ~yiI)2 + (~yjZ − ~yiZ )2 (25)

between ~yi and ~yj using the 3D-PPS Cartesian-coordinate properties for the
geometrical line segment ~yi~yj.

Now, we can simplify the notation of eqs. (23–25) even further if we
let ~yi = O be the 3D version of the origin-point in [60] with the 3D-PPM
re-labeling mO = mi. Thus, ∀~yj ∈ PY , eq. (23) is re-written as

~Fj ≡ ~ψF (O, ~yj) ≡ ~FjR+~FjI+
~FjZ ≡

(
~Fj

)
≡
(
~FjR ,

~FjI ,
~FjZ

)
C
≡
(
|~Fj|, 〈~Fj〉, [~Fj]

)
S
,

(26)
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with respect to O, which clearly satisfies the 3D-OPS component constraints
and notations of eqs. (45–52) in [60]. Therefore, eq. (24) is re-written as

|~Fj| ≡ |~ψF (O, ~yj)| ≡
√
~F 2
jR

+ ~F 2
jI

+ ~F 2
jZ
≡ G

mOmj

d2j
, (27)

where dj is defined as the Euclidean distance by re-writing eq. (25) as

dj = d(O, ~yj) =
√

(~yjR −OR)2 + (~yjI −OI)2 + (~yjZ −OZ)2 = |~yj| (28)

between O and ~yj, which is the 3D-PPS-amplitude that corresponds to the
geometrical line segment O~yj.

At this point, we have both the ~Fj of eq. (26) and the mj ∈ MY of eq.
(20), so again we recall Newton’s second law [1, 2]. Thus, using the same
notation of eq. (26), we define the 3D Newtonian Acceleration Field Order
Parameter State (3D-AOPS)

~aj ≡ ~ψa(O, ~xj) ≡ (~aj) ≡ (~ajR ,~ajI ,~ajZ )C ≡ (|~aj|, 〈~aj〉, [~aj])S , (29)

with respect to O, where the 3D-AOPS-amplitude is defined as

|~aj| ≡ |~ψa(O, ~xj)| ≡
√
~a 2
jR

+ ~a 2
jI

+ ~a 2
jZ
≡ |

~Fj|
mj

. (30)

Hence, for m0,mj ∈ MY , the 3D-FOPS-phase, 3D-AOPS-phase, and 3D-
PPS-phase bestow the equivalence

〈~Fj〉 ≡ 〈~aj〉 ≡ 〈~yj〉, (31)

while the 3D-FOPS-inclination, 3D-AOPS-inclination, and 3D-PPS-inclination
similarly yield

[~Fj] ≡ [~aj] ≡ [~yj]. (32)

The next step is to define, relative to mO with vO, the 3D Relative
Velocity Field Order Parameter State (3D-RVOPS) for some mj with vj as

~ϑj ≡ ~ψϑ(O, ~yj) ≡
(
~ϑj

)
≡
(
~ϑjR ,

~ϑjI ,
~ϑjZ

)
C
≡
(
|~ϑj|, 〈~ϑj〉, [~ϑj]

)
S
, (33)
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such that
~ϑjR ≡ ~vjR − ~vOR

~ϑjI ≡ ~vjI − ~vOI

~ϑjZ ≡ ~vjZ − ~vOZ
,

(34)

where from eq. (49) in [60] we establish

|~ϑj| ≡
√
~ϑ 2
jR

+ ~ϑ 2
jI

+ ~ϑ 2
jZ

〈~ϑj〉 ≡ arctan
(
~ϑjI
~ϑjR

)
[~ϑj] ≡ arccos

(
~ϑjZ
|~ϑj |

)
,

(35)

which is clearly similar to the constraints of eqs. (26) and (29) that follow
[60]. Eq. (35) illustrates the conventional conversion relation between 3D
spherical and 3D Cartesian components, and would be most useful with a
well-behaved 3D/triplex algebra [60] that is still under development.

We note that the 2-sphere IHR T 2 ⊂ Y in eq. (40) of [60] with
amplitude-radius ε does apply to this scenario, but we must wait to es-
tablish T 2 in Section 3.2 because the value of ε depends on the NGNBSSA’s
intermediate results. A 3D-PPS that exists in T 2 is defined as a IHRE-3D-
PPS ; the 3D-PPM, 3D-FOPS, 3D-AOPS, 3D-VOPS, and 3D-RVOPS for an
IHRE-3D-PPS are defined as the IHRE-3D-PPM, IHRE-3D-FOPS, IHRE-
3D-AOPS, IHRE-3D-VOPS, and IHRE-3D-RVOPS, respectively. Thus, at
this point, we can encode the relevant n-body chaotic dynamical system
states in the 4D IHR topology of [60] for the upcoming NGNBSSA in Sec-
tion 3.2.

3 Algorithm
In this section, we explain how certain aspects of Newton’s (n > 2)-PPM

problem can be reduced to a (n = 2)-PPM problem for compliance with the
holographic principle [63]; for this, the complete NGNBSSA is communi-
cated via an example with step-by-step diagrams. The NGNBSSA’s ulti-
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mate objective is to partition the (n > 2)-PPMs into 2-PPMs: the Origin
Position-Point-Mass (O-PPM) and the IHRE Position-Point-Mass (IHRE-
PPM) Singleton. To summarize this process, we arbitrarily select one PPM
to be the origin centered on O, namely the O-PPM, and subsequently en-
gage a series of IHRE Normalization Adjustment (IHRE-NA) instructions to
consolidate the residual (n−1)-PPMs to a single, consolidated IHRE-PPM,
where the location and feature vectors of the (n− 1)-PPMs are summed to
produce net vectors with effective quantities. The IHRE-PPM along T 1 (or
T 2 in the 4D IHR case) represents the spherically-symmetric effective mass
centered on O with amplitude-radius ε from [60, 61] for which the gravita-
tional force and relative effects are preserved under the IHRE-NAs. From
there, we demonstrate that it is possible calculate the net IHRE quantities
between the O-PPM and the IHRE-PPM so we may exercise the IHRE
potential, kinetic, and Lagrangian definitions in the IHR topology [61].

In this systematic illustration, we choose to solve the (n = 3)-PPM
base case in the 3D IHR topology due to its visualization simplicity—it is
easier to draw Figures 1–6 on X and reduce 3-PPMs to 2-PPMs. But as
we shall see, the guidelines of the NGNBSSA are kept generalized and can
be directly applied to (n > 3)-PPMs. Moreover, the NGNBSSA is almost
identical for both 3D and 4D IHR topology scenarios. Thus, in Section
3.1, we introduce and define the NGNBSSA with step-by-step depictions
for the 3D IHR topology with T 1 ⊂ X [60, 61]. Then in Section 3.2, we
explain precisely how to apply it to 4D IHR topology with T 2 ⊂ Y [60] by
simply “swapping out” the data structures and making a couple of slight
algorithmic adjustments.

3.1 2D algorithm for the 3D IHR topology
The (n = 3)-PPM illustration for the NGNBSSA in the 3D IHR topology

is defined by the following sequence:

• Routine 1: Initializing the n-Body Particles

1. Randomly generate or experimentally identify n = 3 distinct
PPSs on X to create the ordered PPS set PX in the form of eq.
(1) with the 2D Riemannian-coordinates of eq. (2); we let these
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2D-PPSs be
PX ⊂ X = {~xA, ~xB, ~xC}

(for this example, we assert that ~xB and ~xC are different dis-
tances from ~xA for illustration purposes, but certainly this is not
a necessary requirement).

2. Randomly assign or experimentally measure the three PPMs to
create the ordered PPM set MX in the form of eq. (3) that
correspond to the established PPSs of PX ; let

MX = {mA,mB,mC}

be the ordered 2D-PPM set of three 2D-PPM elements that re-
spectively correspond to PX , such that mA,mB,mC > 0.

3. Randomly assign or experimentally measure the three VOPSs to
create the ordered VOPS set VX of eq. (4) in the form of eq. (5)
that correspond to the established PPSs of PX ; let

VX = {~vA, ~vB, ~vC}

be the ordered 2D-VOPS set of three 2D-VOPS elements that
respectively correspond to PX .

4. See Figure 1.

• Routine 2: Initializing the IHR Topology

1. Arbitrarily select a PPS from PX ; let us choose ~xA ∈ PX .

2. Determine the closest PPS to the selected ~xA using the Euclidean
distance; using the 2D Euclidean distance of eq. (8) we determine
that ~xB ∈ PX is the closest to the selected ~xA, where the distance
between them is dAB.

3. Draw the 1-sphere IHR T 1 ⊂ X to represent the “time zone”
from eq. (13) in [60], where the selected ~xA is T 1’s center, such
that ~xB lies precisely on T 1; we construct the 1-sphere IHR T 1 ⊂
X with center ~xA, where T 1’s amplitude-radius ε from eq. (15)
in [60] is equal to the Euclidean distance dAB between ~xA and
~xB, so dAB = ε for the geometrical line segment ~xA~xB, such that
~xB ∈ T 1.
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4. Label the spatial sub-surfaces that are simultaneously dual to
T 1; T 1 topologically delineates the “micro space zone” X− ⊂ X
and “macro space zone” X+ ⊂ X for the “space-time duality” of
the IHR topology in [60, 61].

5. See Figure 2.

• Routine 3: Initializing the O-PPM and Reference Frame, and As-
signing the OPSs

1. Designate the selected ~xA as the origin-point O of X to establish
the reference frame; we re-name ~xA as O to thereby assign O =
~xA as the origin and point-of-reference, and additionally re-name
the PPM mA as the O-PPM of X to thereby assign mO = mA.

2. Use eqs. (9–10) to assign FOPSs to the PPM that is the closest
to mO (namely mB at ~xB) and all remaining PPMs in MX (which
is just mC at ~xC because n = 3); for O and ~xB, the 2D-FOPS
between the corresponding mO and mB is

~FB = ~FBR + ~FBI = (~FB) = (|~FB|, 〈~FB〉)P = (~FBR ,
~FBI)C ,

such that

|~FB| = G
mOmB

|~xB|2
= G

mOmB

|dB|2
= G

mOmB

ε2

〈~FB〉 = 〈~xB〉,

and for O and ~xC, the 2D-FOPS between the corresponding mO

and mC is

~FC = ~FCR + ~FCI = (~FC) = (|~FC |, 〈~FC〉)P = (~FCR ,
~FCI)C ,

such that

|~FC | = G
mOmC

|~xC |2
= G

mOmB

|dC |2

〈~FC〉 = 〈~xC〉.
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3. Use eqs. (12–13) to assign AOPSs to mB,mC ∈MX , with respect
to mO; for O and ~xB, the 2D-AOPS between the corresponding
mO and mB is

~aB = ~aBR + ~aBI = (~aB) = (|~aB|, 〈~aB〉)P = (~aBR ,~aBI)C ,

such that

|~aB| =
|~FB|
mB

〈~aB〉 = 〈~FB〉 = 〈~xB〉,

and for O and ~xC, the 2D-AOPS between the corresponding mO

and mC is

~aC = ~aCR + ~aCI = (~aC) = (|~aC |, 〈~aC〉)P = (~aCR ,~aCI)C ,

such that

|~aC | =
|~FC |
mB

〈~aC〉 = 〈~FC〉 = 〈~xC〉.

4. Relative to mO with ~vO, use eqs. (15–17) to assign RVOPSs to
mB,mC ∈ MX with ~vB, ~vC ∈ VX ; for O and ~xB, the 2D-RVOPS
for the corresponding ~vO and ~vB is

~ϑB = ~ϑBR + ~ϑBI = (~ϑB) = (|~ϑB|, 〈~ϑB〉)P = (~ϑBR ,
~ϑBI)C ,

such that

~ϑBR = ~vBR − ~vOR = |~ϑB| cos〈~ϑB〉
~ϑBI = ~vBI − ~vOI = |~ϑB| sin〈~ϑB〉
|~ϑB| =

√
~ϑ 2
BR

+ ~ϑ 2
BI
,

and for O and ~xC, the 2D-RVOPS for the corresponding ~vO and
~vC is

~ϑC = ~ϑCR + ~ϑCI = (~ϑC) = (|~ϑC |, 〈~ϑC〉)P = (~ϑCR ,
~ϑCI)C ,
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such that

~ϑCR = ~vCR − ~vOR = |~ϑC | cos〈~ϑC〉
~ϑCI = ~vCI − ~vOI = |~ϑC | sin〈~ϑC〉
|~ϑC | =

√
~ϑ 2
CR

+ ~ϑ 2
CI
.

5. See Figure 3.

• Routine 4: Constructing the IHRE-PPM Set

1. Use X’s built-in IHR duality of eq. (17) in [60] to map all the
PPMs that are currently in X+ to T 1 to acquire the IHRE-PPSs
that share the uniform amplitude-radii ε, namely the IHRE-PPS
Set of the IHRE-PPM Set, for spherically-symmetric normaliza-
tion, where these mappings are IHRE-NAs that satisfy the two
IHRE-NA Constraints :

– IHRE-NA Phase Constraint: when the external PPMs in X+

are mapped to their corresponding IHRE-PPMs in T 1, the
phase of the PPS, IHRE-PPS, FOPS, IHRE-FOPS, AOPS,
and IHRE-AOPS must be equivalent for each PPM trans-
formation (to preserve the directional effect), and

– IHRE-NA Amplitude Constraint: when the external PPMs
in X+ are mapped to their corresponding IHRE-PPMs in
T 1, the amplitude of the FOPS and IHRE-FOPS must be
equivalent (to preserve the gravitational force effect);

for the PPM mC at the PPS ~xC ∈ X+, we identify and create
the corresponding IHRE-PPM mC∗ at the IHRE-PPS ~xC∗ ∈ T 1,
with the PPS IHRE-NA

~xC → ~xC∗ , (36)

and select/calculate the corresponding IHRE-PPM solution mC∗,
such that mC∗ 6= mC, which satisfies the (2D) IHRE-NA Phase
Constraint

〈~xC∗〉 = 〈~xC〉 = 〈~FC∗〉 = 〈~FC〉 = 〈~aC∗〉 = 〈~aC〉

|~xC∗ | 6= |~xC | ⇒ ~xC∗ 6= ~xC ,

(37)
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and also satisfies the IHRE-NA Amplitude Constraint

|~FC∗| = |~FC | = GmOmC∗
d2
C∗

= GmOmC

d2C
= mC |~aC | = mC∗ |~aC∗|

mC∗ 6= mC , dC∗ 6= dC , dC∗ = ε, dC 6= ε

(|~FC∗| = |~FC |) ∧ (dC∗ 6= dC)⇒ (mC∗ 6= mC),
(38)

mB and mC∗ comprise the resulting IHRE-PPM Set for ~xB and
~xC∗, respectively, of the corresponding IHRE-PPS Set.

2. See Figure 4.

• Routine 5: Constructing the Initial IHRE-PPM Singleton

1. For the newly acquired Initial IHRE-PPM Set (all IHRE-PPMs
currently in T 1), sum the corresponding IHRE-PPSs to calculate
the net PPS of the Initial IHRE-PPM Singleton; for the IHRE-
PPMs mB and mC∗ in T 1, we sum the corresponding IHRE-PPSs
{~xB, ~xC∗} ∈ T 1 to determine the net PPS

~xD = ~xnet = ~xB + ~xC∗ (39)

for the Initial IHRE-PPM Singleton mD.

2. For the Initial IHRE-PPM Set, sum the corresponding IHRE-
FOPSs to calculate the net FOPS of the Initial IHRE-PPM Sin-
gleton; for the IHRE-PPMs mB and mC∗ in T 1, we sum the
corresponding FOPSs ~FB and ~FC∗ to determine the net FOPS

~FD = ~Fnet = ~FB + ~FC∗ , (40)

such that the net FOPS amplitude is

|~FD| = |~Fnet| = G
mOmD

|~xD|2
= G

mOmD

d2D
= G

mOmnet

d2net
(41)

and the corresponding net FOPS phase is

〈~FD〉 = 〈~Fnet〉 = 〈~xD〉 = 〈~xnet〉 (42)

for the Initial IHRE-PPM Singleton mD = mnet.
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3. For the Initial IHRE-PPM Singleton mD, use the results of eqs.
(39–42) to calculate the net AOPS ; for the Initial IHRE-PPM
Singleton mD, the net AOPS ~aD = ~anet has the net AOPS am-
plitude

|~aD| = |~anet| =
|~FD|
mD

=
|~Fnet|
mnet

(43)

and the net AOPS phase

〈~aD〉 = 〈~anet〉 = 〈~FD〉 = 〈~Fnet〉 = 〈~xD〉 = 〈~xnet〉, (44)

so now there are just two PPMs to deal with, namely mO and
mD!

4. Determine if the Initial IHRE-PPM Singleton mD qualifies as
a Final IHRE-PPM Singleton, which means that ~xD must be
precisely on T 1 (this is an edge case); we observe that ~xD 6∈ T 1

and ~xD 6= O, but rather ~xD ∈ X+, so mD is not a Final IHRE-
PPM Singleton and therefore we must proceed to Routine 6 to
obtain some final mD∗ by re-applying the IHRE-NAs one last
time.

5. See Figure 5.

• Routine 6: Constructing the Final IHRE-PPM Singleton

1. Similarly to Routine 4, we employ X’s built-in IHR duality to
IHRE-NA map the Initial IHRE-PPM Singleton mD to its corre-
sponding Final IHRE-PPM Singleton mD∗ to establish the Final
IHRE-PPS requirement ~xD∗ ∈ T 1 in accordance to the IHRE-NA
Constraints; for the Initial IHRE-PPS Singleton ~xD ∈ X+ we
identify the corresponding Initial IHRE-PPS Singleton ~xD∗ ∈ T 1

via the mapping adjustment

~xD → ~xD∗ (45)

and thereby select/calculate the corresponding Final IHRE-PPM
Singleton mD∗, such that mD∗ 6= mD, which satisfies the IHRE-
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NA Phase Constraint

〈~xD∗〉 = 〈~xD〉 = 〈~FD∗〉 = 〈~FD〉 = 〈~aD∗〉 = 〈~aD〉

|~xD∗| 6= |~xD| ⇒ ~xD∗ 6= ~xD,

(46)

and also satisfies the IHRE-NA Amplitude Constraint

|~FD∗| = |~FD| = GmOmD∗
d2
D∗

= GmOmD

d2D
= mD|~aD| = mD∗|~aD∗|

mD∗ 6= mD, dD∗ 6= dD, dD∗ = ε, dD 6= ε

(|~FD∗| = |~FD|) ∧ (dD∗ 6= dD)⇒ (mD∗ 6= mD),
(47)

so finally we can encode the (n = 3)-PPM chaotic system state
of X with a total of 2-PPMs because, in addition to mO, we’ve
obtained the mD∗ for ~xD∗ ∈ T 1 with the relevant net OPS quan-
tities!

2. See Figure 6.

Thus, from eq. (50) in [61], we propose that the NGNBSSA’s IHRE
Lagrangian for mO and mD∗ may be defined as

L[mO, ~xD∗ ,mD∗ , ~ϑD∗ ] ≡ EK [mD∗ , ~ϑD∗ ]− EP [mO, ~xD∗ ] (48)

using our generalized coordinates, where EK and EP are the IHRE kinetic
and IHRE potential, respectively, for the IHR-PPM mD∗ relative to the
O-PPM mO. Using eq. (51) in [61] we define the EP between mO and mD∗

as

EP [mO, ~xD∗ ] ≡

√
1− 2

(
mO

|~xD∗ |

)
|~xD∗|

≡

√
1− 2

(
mO

ε

)
ε

, (49)

and subsequently employ eq. (52) in [61] to define the corresponding EK as

EK [mD∗ , ~ϑD∗ ] ≡ 1

2
mD∗|ϑD∗|2 ≡ 1

2

(
|~FD∗ |
|aD∗|

)
|ϑD∗|2, (50)
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Fig. 1: The Routine 1 depiction of the n = 3 NGNBSSA. The three 2D-PPSs

{~xA, ~xB , ~xC} = PX ⊂ X correspond to the ordered 3-body set {mA,mB ,mC} = MX .

where ϑD∗ is the IHRE RVOPS (net value) of mD∗ at ~xD∗ relative to mO at
O in the 3D IHR topology of X. Here, we note that the above NGNBSSA
results and particularly eqs. (48–50) are preliminary outcomes that must
be subjected to additional scrutiny in future work.
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Fig. 2: The Routine 2 depiction of the n = 3 NGNBSSA. The 2D-PPS ~xA is the center

of the 1-sphere IHR T 1 ⊂ X, which is isometrically embedded on X, where ~xB ∈ T 1.
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Fig. 3: The Routine 3 depiction of the n = 3 NGNBSSA. The 2D-PPS O = ~xA becomes

X’s origin for the reference frame. Using Newton’s laws, we assign 2D-FOPSs and 2D-

AOPSs to the 2D-PPMs mB and mC located at the 2D-PPSs ~xB and ~xC , respectively,

such that |~xB | = ε and |~xC | 6= ε, respectively.
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Fig. 4: The Routine 4 depiction of the n = 3 NGNBSSA. The objective is to IHRE-NA

map all of the external 2D-PPSs in X+ to T 1 so one 2D-PPM, namely the O-PPM mO,

is at O, while the residual (n− 1) 2D-PPMs are mapped to T 1 to construct the IHRE-

PPM Set, which is a foundation and prerequisite for the construction of the Initial and

Final IHRE-PPM Singletons. The procedure adheres to the IHRE-NA Phase Constraint

and the IHRE-NA Amplitude Constraint that enable us simplify the problem state with

IHRE-NAs. Here, we have ~xB ∈ T 1, so the 2D-PPM mB already lies precisely on T 1.

But ~xC ∈ X+, so ~xC 6∈ T 1 is an external 2D-PPS, thus we must use X’s built-in IHR

duality to deploy the IHRE-NA mapping ~xC → ~xC∗ to create the corresponding mC∗ for

T 1 because we need some ~xC∗ ∈ T 1.
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Fig. 5: The Routine 5 depiction of the n = 3 NGNBSSA. The net 2D-FOPS ~FD is the

2D-FOPS sum of ~FB and ~FC∗ for the resulting gravitational force field that corresponds

to the Initial IHRE-PPS Singleton ~xD and the Initial IHRE-PPM Singleton mD. This

consolidates the residual (n − 1) 2D-PPMs to mD to establish an IHRE 2-body system

composed of mO and mD; now there are just 2-bodies to deal with!
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Fig. 6: The Routine 6 depiction of the n = 3 NGNBSSA. So ~xD /∈ T , thus for ~xD ∈ X+

we identify the corresponding Final IHRE-PPS Singleton ~xD∗ ∈ T via the IHRE-NA

~xD → ~xD∗ to calculate the Final IHRE-PPM Singleton mD∗ . Now we’ve finally delivered

a gravitationally normalized IHRE-based 2-body system of mO and mD∗ !
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3.2 3D algorithm for the 4D IHR topology
So how do we apply our NGNBSSA to the 4D IHR topology? Well

first, we recall that in Section 2.2 we’ve already provided a preliminary
3D framework for encoding locations and features in the 4D IHR topology.
Hence, our initial step is to revisit the NGNBSSA of Section 3.1 and simply
swap the 2D data structures in Section 2.1 with their 3D counterparts in
Section 2.2. Moreover, we also recall that the NGNBSSA is almost identical
for both 3D and 4D IHR topology scenarios, ∀n > 2, but there are a couple
of slight modifications that we need to make:

• In Routine 1:

1. Replace the 2D-PPSS X with the 3D-PPSS Y .

2. Replace the ordered 2D-PPS set PX of eqs. (1–2) with the or-
dered 3D-PPS set PY of eqs. (18–19).

3. Replace the ordered 2D-PPM set MX of eq. (3) with the ordered
3D-PPM set MY of eq. (20).

4. Replace the ordered 2D-VOPS set VX of eqs. (4–5) with the
ordered 3D-VOPS set VY of eqs. (21–22).

• In Routine 2:

1. Use the 3D Euclidean distance of eq. (25) instead of the 2D
Euclidean distance of eq. (8).

2. Replace 2D form of T 1 from eq. (15) in [61] with the 3D form of
T 2 from eq. (40) in [60].

• In Routine 3:

1. Replace the 2D-FOPS notation of eq. (9) with the 3D-FOPS
notation of eq. (26) and add the pertinent 3D-FOPS-inclination
equivalences.

2. Replace the 2D-AOPS notation of eq. (12) with the 3D-AOPS
notation of eq. (29) and add the pertinent 3D-AOPS-inclination
equivalences.
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3. Replace the 2D-RVOPS notation of eq. (15) with the 3D-RVOPS
notation of eq. (33).

• In Routine 4:

1. Create, define, and apply the IHRE-NA Inclination Constraint

[~yC∗ ] = [~yC ] = [~FC∗ ] = [~FC ] = [~aC∗ ] = [~aC ] (51)

to extend the IHRE-NAs to an additional degree of freedom.

• In Routine 5:

1. Replace T 1’s 2D IHRE-PPM construction with a 3D IHRE-PPM
construction for T 2.

• In Routine 6:

1. Apply the IHRE-NA Inclination Constraint of Routine 4 to fi-
nalize construction of T 2’s 3D IHRE-PPM.

Thus, we’ve listed the requisite modifications to apply the NGNBSSA to
the 4D IHR topology.

At this point, we propose that the 2D IHRE Lagrangian definition of
eq. (48) may be re-written in the 3D form

L[mO, ~yD∗ ,mD∗ , ~ϑD∗ ] ≡ EK [mD∗ , ~ϑD∗ ]− EP [mO, ~yD∗ ], (52)

so eq. (49) becomes

EP [mO, ~yD∗ ] ≡

√
1− 2

(
mO

|~yD∗ |

)
|~yD∗ |

≡

√
1− 2

(
mO

ε

)
ε

, (53)

and eq. (50) becomes

EK [mD∗ , ~ϑD∗ ] ≡ 1

2
mD∗|ϑD∗|2 ≡ 1

2

(
|~FD∗|
|aD∗|

)
|ϑD∗ |2 (54)

for the 4D IHR topology of T 2 ⊂ Y .



28

4 Conclusion and discussion
In this preliminary paper, we introduced, defined, and constructed a

framework that is designed to simplify certain aspects of Newton’s gravita-
tional n-body problem. We started by outlining the importance of further
comprehending the chaos inherent to this natural problem, which applies
to multiple and diverse realms within the disciplines of science, mathemat-
ics, computation, and engineering. Subsequently, we assembled the IHR
topology, generalized coordinate system, and modified (superfluid) order
parameter data structures to implement the first version of our NGNBSSA.
During this initial pursuit, we demonstrated that the obtained results are
significant because our developing NGNBSSA framework provides an ab-
stract, powerful, and flexible state space encoding methodology for n-body
chaotic gravitational systems with some possible creative applications to the
said disciplines. Moreover, we found that the NGNBSSA and its structural
framework encompass a relatively simplistic formulation which enables us
to represent variable degrees of complexity for this mode of analysis.

For the future, we suggest that this model should be extended to in-
clude additional aspects of classical, quantum, and relativistic mechanics for
physics, chaos, and fractal geometry via the scientific method. It may be in-
triguing and beneficial to implement the NGNBSSA on a super-computing
cluster so one can conduct parallel simulations to further refine the direct
practicality of these ideas. Also, it may be beneficial to match the predic-
tions of this theory with, for example, real-time astronomical data and con-
duct high-energy physics experiments to prove (or disprove) pertinence to
hadronic mechanics [64, 65] and magnecules [66, 67, 68, 69, 70, 71, 72]. Fur-
thermore, an iso-mathematics [73, 74, 75, 76, 77] treatment for the NGNB-
SSA should be in order.

In our opinion, the NGNBSSA is a powerful systematic process with an
enormous potential for direct application to modern physics—theoretical
and experimental. So although this model is still under development, we
suspect that through further investigation, scrutiny, refinement, collabora-
tion, and hard work, these ideas may reveal additional key facets in math-
ematics, computation, engineering, and science.
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