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Abstract

We construct a Dirac theory on causal sets; a key element in the
construction being that the causet must be regarded as emergent in an
appropriate sense too. We further notice that mixed norm spaces appear
in the construction allowing for negative norm particles and “ghosts”.
This work extends the theory initiated in [1, 2]

1 Introduction

Retrieving continuum concepts from a pure discrete setting or visa versa is al-
ways tricky as one often has the tendency to forget that they must be natural
from the discrete perspective too and in case of Fermi fields on causal sets; this
problem has defied anybody up till now. In contrast to the basic spacetime
geometric objects one requires for the scalar field; the concepts of vierbein and
Clifford bundle are mandatory for the continuum description. Given the com-
plete absence of such concepts for causal set theory, the best one may hope
for is the existence of an object which has no counterpart in the continuum
and replaces the aformentioned mathematical gadgets. The Dirac operator is
replaced by what we call a hidden structure which allows one to construct the
relevant Green’s function akin to the methods in the scalar case. As is stan-
dard for such enterprise, this section starts from fairly conventional ideas and
then moves gradually in the discrete direction in which some equalities are high-
lighted and others are merely approximated. I am aware I could have presented
section two more formally but have chosen not to do so in order to allow the
reader to see himself what is essential and what not. Section three contains
the general construction of Dirac theory and reveals the possibility of negative
norm particles and ghosts which have to enter the prescription. The last section
finally gives an explicit computation of massless Dirac theory on the diamond
for a particular hidden structure and comments on possible different physical
theories for distinct hidden structures.

2 The relevant Fermionic Green’s kernels.

We start this section by retrieving some results and terminology from Lorentzian
geometry. The one parameter family of Dirac operators Dm = iγaeµa∇µ −m in
signature (+−−−) with global Lorentz covariance and retarded Green’s kernels
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Rm(x, y) obeys

DmRm(x, y) =
δn(x, y)√
−g(y)

1.

Denoting by GR,m(x, y) the retarded solution to the Klein Gordon equation,
one calculates that, with

Sm(x, z) = −
∫
Rm(x, y)R−m(y, z)

√
−g(y)dny

the following equality holds

(�2 +m2)Sm(x, z) =
δn(x, z)√
−g(z)

1

and since Sm is retarded, Sm(x, z) = GR,m(x, z) 1. We define now two different
automorphisms ? and a by c? = c, c = c and −(γa)? = γa = −γa. One
notices then that −R?−m(x, y) = Rm(x, y) and Rm(x, y) = Rm(x, y); discretizing
according to the causal set scheme then gives that∑

y

Rm(x, y)R?m(y, z) = ρ 1⊗GR,m(x, z)

implying [Rm, R
?
m] = 0 and the reality condition that Rm = Rm. Denot-

ing by ˜ the composition of a with the reversion, taking into account that
−D−mGR,m(x, y) = Rm(x, y), one arrives at R̃m(x, y) = Rm(x, y). Causality
is then implemented at the discrete level by demanding that Rm has support
on the support of the incidence matrix union the diagonal and global Lorentz
covariance U = uδx,y, ũu = 1 implying that u? = u, translates as

R′m = U−1RmU.

Actually any transformation with the appropriate symmetries in the commu-
tant of GR,m leads to a recalibration of Rm. We could try to show that such
transformations lead to unitarily equivalent theories. We have that

Rm(x, y) = −mGR,m(x, y)− iγaeµa∂µGR,m(x, y)

and eµa∂µGR,m(x, y) = [Pa(I)] (x, y) is a polynomial expression in terms of the
incidence matrix I where I(x, y) = 0 unless x precedes y in which case it equals
one. Hence∑
y

(−mGR,m(x, y)−iγa [Pa(I)] (x, y))(−mGR,m(y, z)+iγb [Pb(I)] (y, z)) = ρGR,m(x, z).

One notices that not enough information is present in the causal set itself to
find a unique solution in this way; the problem being that too many expressions
can fit these equations and that the dimension is put in by hand.

We now persue the viewpoint that the causal set itself is emergent from a spinor
perspective in the following sense: consider ClR(p, q) and the trace state Tr on
it; then K ∈ ClR(p, q)⊗ Rn×n, K = Aa...cγ

a . . . γc with Aa...c(x, y) ∈ {0, 1,−1}
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having support on the union of the diagonal and the support of I is weakly
positively or negatively hidden in I if and only if

Tr(KK?) = ±I,

while it is positively or negatively strongly hidden if and only if

KK? +K?K = ±2 1⊗ I.

In contrast to the continuum theory, we take the trace since an exact equality
would be too strong; in case of one Clifford generator, weakly hidden struc-
tures are also strongly hidden. Take for example the causal set associated to(

0 1
0 0

)
then ClR(1, 0) nor ClR(0, 1) do accomodate for a K such that K2 = I

or KK? = I. ClR(1, 0) does accomodate for a positively hidden structure

K =

(
0 1
0 1− β

)
since it obeys KK? =

(
0 1 + β
0 0

)
with β2 = 1. In C, no positively hid-

den structure exists which is hopeful since it selects the correct signature (i.e.
positive instead of imaginary mass). More in general,

K =

 0 1 0
0 1 + β −β
0 0 0


and

L =


0 1 0 0
0 1 + β −β 0
0 0 0 1
0 0 0 1 + β


show that the one dimensional structure persists since

KK? =

 0 1− β β
0 0 1 + β
0 0 0


and

LL? =


0 1− β β 0
0 0 1 + β −β
0 0 0 1− β
0 0 0 0


and similar negatively hidden structures exist. The causet

I =

 0 0 1
0 0 1
0 0 0


is one dimensional from the spinor structure as

K =

 0 0 β
0 0 β
0 0 1− β
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is positively hidden in I and likewise is

K =

 0 0 β
0 0 β
0 0 1 + β


negatively hidden. For the causal diamond, the reader can find a positively1 and
negatively hidden structure associated to ClR(1, 0) and it remains a question
to find the need for higher dimensional algebra’s. If K is hidden in I, so is
K? = K,−K,−K?. For the advanced case, we may use K̃T since

IT (x, y) = Tr ˜(KK?)
T

(x, y) = Tr(K̃T (K̃T )?)(x, y)

in accordance with the continuum theory. This implies the use of indefinite
metric spaces with as scalar product, in the previous examples,

〈v|w〉 =
(
v1 v2

)( 1 0
0 −1

)(
w1

w2

)
.

Denoting the latter matrix by δ and assuming that β is given by

β =

(
0 1
1 0

)
one observes that δβ + βδ = 0 and β† = δβδ = −β where the adjoint is
defined with respect to the indefinite product. That is, the adjoint acts like ˜ on
ClC(1, 0) and the total representation space is a 2n dimensional with a scalar
product of signature (n, n). A spectral theorem for self adjoint matrices exists
and one has real eigenvalues associated to k eigenvectors of positive and negative
norm respectively and to n − k pairs of null vectors associated to any complex
eigenvalue. That is, any self adjoint operator A can be written as

A =

k∑
r=1

(λr|vr〉〈vr|+ µr|wr〉〈wr|) +

n−k∑
r=1

(cr|mr〉〈nr|+ cr|nr〉〈mr|)

where 〈vi|vj〉 = δij = 〈wi|wj〉, 〈ni|mj〉 = δij and all other scalar products
vanish. We construct Rm from K and K? so that Rm = Rm and the product
equality R?mRm + RmR

?
m = 2ρ 1 ⊗ GR,m holds. In the massless case, where

GR = 1 + aI, the unique polynomial up to second order is given by

R0 =
√
ρ

[
1 + i

√
a(K −K?) +

1

2
(i
√
a(K −K?))2

]
1The following one is positively hidden

0 1 −β 0
0 1 + β 0 −β
0 0 1 + β 1
0 0 0 0


while 

0 1 β 0
0 −1 + β 0 β
0 0 1 + β −1
0 0 0 0


is negatively hidden.
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satisfying
R?0 R0 +R0R

?
0 = 2ρ(1 + aI +O(4)) ∼ 2ρ 1⊗GR,0

up to fourth order2 for a positive hidden structure K. For a negatively hidden
structure

R0 =
√
ρ
[
1 + i

√
a(K −K?)

]
would give the correct quadrature upto second order in K,K?. Johnston [2]
proposes a mass expansion for the massive propagator

Rm = R0 + bR2
0 + b

2
R3

0 + . . . = R0(1− bR0)−1

where b is mass assymetric. Summarizing, we construct from a positively hidden
structure K a retarded Green’s function for the massless case satisfying R0R

?
0 +

R?0R0 = 2ρ(1 + aI + O(4)) and R0 = R0; from this we compute with a mass
series expansion Rm satisfying Rm = Rm and to a good approximation the
quadrature formula. Furthermore, the radiative Dirac propagator reads

∆m = Rm − R̃Tm

and we build a theory of fermions in the next section and compute some massless
examples in section four in which also different positive hidden structures K are
compared.

3 Dirac Theory.

Dirac theory contains the equations

{ψαx, ψβy} = 0

and
{ψαx, ψβy} = i∆αβ(x, y)

where in our case ψαx = ψHαxδ⊗ 1 (H denotes the Hermitian conjugate) so that

{ψαx, ψHβy} = i∆ακ(x, y)δκβ .

Using the spectral decomposition of i∆, this equation is equivalent to

{ψαx, ψHβy} =

k∑
r=1

(
λrvr,αxv

H
r,βy + µrwr,αxw

H
r,βy

)
+

n−k∑
r=1

(
κrmr,αxn

H
r,βy + κrnr,αxm

H
r,βy

)
where the orthogonality is with respect vHδ ⊗ 1w, λr, µr ∈ R and κr ∈ C.
Therefore i∆ splits representation space K = C2 ⊗Cn in three subspaces K+ ⊕
K− ⊕ K0 where K+ = SpanC{vr|r = 1 . . . k}, K− = SpanC{wr|r = 1 . . . k} and
K0 = SpanC{mr, nr|r = 1 . . . k}. Define then H0 as the subspace spanned by all
eigenvectors or null eigenpairs corresponding to a zero eigenvalue. Then, define
for any j such that λj 6= 0, aj = vjψ, in case µj 6= 0 we have that b†j = −wjψ

2One notices that the right hand side equals the first three terms in the power series
expansion of exp

(
i
√
a(K −K?)

)
. Note also, that unlike the continuum, our proposal does

not satisfy −R?
0 = R0 however it does approximately in case the first order term dominates.
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and finally in case κj 6= 0 we define cj = njψ and dj = mjψ. In other words,
we pose that

ψ =
∑
j:λj 6=0

vjaj +
∑
j:µj 6=0

wjb
†
j +

∑
j:κj 6=0

(mjcj + njdj)

then the above anticommutation relations lead to the following nonzero com-
mutation relations (all other relations vanish)

{ai, a†j} = λjδij

{bi, b†j} = µjδij

{ci, d†j} = κjδij

as can be computed directly from their definition. For example, an elementary
computation yields {aj , bk} = −ivj∆wk = 0 and {aj , a†k} = ivj∆vk = λjδjk.
Now, we are ready to pose the equivalent of the Dirac equations of motion: any
v ∈ H0 automatically satisfying v∆ = 0 gives vψ = 0. In short, our theory con-
tains positive and negative norm particles and anti-particles depending whether
λj , µj > 0 or smaller than zero. Also, it contains complex ghosts which cannot
be ignored from the prescription; the vacuum |0〉 is then defined as the state
annihilated by all ai, bj , ck and dk. It is rather interesting that negative norm
particles enter the prescription of causal set fermions which is no surprise to
this author as its use in physics has been advocated in plenty of other places.

4 Examples.

We work out massless theory on a diamond with a positively hidden structure
given by

K =


0 1 −β 0
0 1 + β 0 −β
0 0 1 + β 1
0 0 0 0


and a = 1

4 gives the following retarded propagator

R0 =
1

8


8 0 1− 4iβ 0
0 7 + 4iβ 0 1− 4iβ
0 0 7 + 4iβ 0
0 0 0 8

 .

Hence, the Pauli-Jordan function equals

∆0 =
1

8


0 0 1− 4iβ 0
0 0 0 1− 4iβ

1− 4iβ 0 0 0
0 1− 4iβ 0 0


and has eigenvalues i

8 + 1
2 ,−

i
8 −

1
2 plus its conjugates. Each eigenvalue and its

conjugate corresponds to two conjugate null pairs and therefore the theory is
one of two ghosts. The reader notices that distinct hidden structures can give
rise to an inequivalent particle content and we leave such issues for the future.
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