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Abstract

Lower fractal dimensionality of the early Universe at higher energies is an
theoretical possibility as recently pointed out in [1].Gravitational-wave experiments
with interferometers and with resonant masses can search for stochastic
backgrounds of gravitational waves of cosmological origin.In this paper using
cosmological models with fractional action and Calcagni approach to cosmology in
fractal spacetime [18], we will examine a number of theoretical aspects of the
searches fractal dimensionality from a stochastic fractal background of GWs.
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I.Introduction

It has been recently urgently declared [1] that quantum gravity models where the
number of dimensions reduces at the ultraviolet (UV) exhibit a potentially observab-
le cutoff in the primordial gravitational wave (GW) spectrum.A new framework was
proposed in which the structure of spacetime is fundamentally (1  1)-dimensional
universe, but is "wrapped up" in such a way that it appears even higherdimensional
at larger distances.
Furthermore, the problems plaguing (3  1)-dimensional quantum gravity quanti-
zation programs are solved by virtue of the fact that spacetime is dimensionally-
reduced. Indeed, effective models of quantum gravity are plentiful in (21) and
even (11) dimensions.

However as pointed out in paper [2] this claim problematic and even misleading for
two distinct reasons.
I.Definition of dimensionality [2]: "It is completely ambiguous to which definition
of “dimension” is being used when referring to vanishing dimensions [1].
The only papers cited there which discuss vanishing dimensions in quantum
gravity are [3]-[4],which discuss the “spectral dimension” (SD).In particular [2]
refers to casual dynamical triangulations [CDTs], where it is the SD that flows to 2
in
the UV,not the topological [physical] dimension. The latter remains 4 [3]. It is not
true that CDTs “demonstrate that the four-dimensional spacetime can emerge
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from two-dimensional simplicial complexes”, as stated in [1]. 4-dimensional CDTs
by construction arise from 4-dimensional simplices.The SD is an analytic feature
that provides information about short-distance dispersion relations. The fact that it
runs to 2 at short distances does not mean that any physical modes decouple
there.
Consider, for instance, Hořava gravity,which is another theory where (Lorentz
violating) dispersion relations lead to a SD of 2 in the UV.The spin-2 graviton does
not decouple at high energies, it remains part of the physical excitation spectrum,
albeit with a strongly Lorentz violating dispersion relation.That is, in a wide class of
models where some notion of dimension is scale dependent, this is the SD.But the
SD is not the quantity that appears in the Feynman loop integrals (as in the
suggestions made in [1]); that is the physical dimension 4,which is not running".
Remark 2.However as pointed out in [16] for every SDl that flows to 2 or even to 0
in the UV regime,i.e.at short distances l, l  0,exists effective QGR theory on
SDl-dimensional fractal spacetime, which imbeded in canonical 4-dimensional
spacetime.In this approach in contrast with CDTs, the SDl is the quantity which
appears generically in the Feynman loop integrals. The spin-2 graviton does not
decouple at high energies,it remains part of the physical excitation spectrum,albeit
with a strongly Lorentz violating, but in contrast with Hořava gravity,only for any
fractional values of SDl.
II.Dimensionality and dynamics [2]: "Though there are some heuristic models
cited in [1] where it is the physical dimension that is running, e.g. [17],these are
quantum field theory models which do not include gravity.Let us nevertheless
entertain the idea that it is indeed the number of physical dimensions that reduces
in the UV in a quantum gravity model and one ends up with a lower-dimensional
theory.The argument used in support of the claim that such a theory would have no
local degrees of freedom is essentially that 2  1-dimensional general relativity
(GR) has this property [1].However, there is no particular reason to believe that a
generic quantum gravity model which reduces to a 2  1-dimensional theory at
high energies should share this characteristic".
Remark 2. As pointed out in [6],[16],[17] low dimensional general relativity (GR) in
fractal spacetime in contrast with classical 2  1, 1  1-dimensional general
relativity does not degenerate. For instance S.Vacaru [6] proved that even black
holes really exist in low dimensional fractional gravity.Consequently a generic
quantum gravity model which reduces to a low dimensional theory on fractal at high
energies, does not share specified above degenerative characteristic.
III. Additionally [2]: "There is no reason whatsoever for the theory in question to
be close to 2  1 dimensional GR in the UV. Clearly,if this is a to be a viable gravity
theory it should resemble 4-dimensional GR at low energies".
Remark 3. In contemporary GR and cosmology fractal nature of physical
spacetime is proposed even declared and argued in many papers [18]-[27].
Thus there is a reason in question: is fractal dimension of the real physical
spacetime chainges or not chainges,during the Universe evolution?
Remark 4. From general reasons specified in [2],heuristic model of physical
dimension crossover which proposed in [1] and which based on jumping crossover
1  1  2  1  3  1-dimensional spacetime is problematic.
Remark 5.[1] However, exactly at the crossover the description could be very
complicated.For example,systems whose e ective dimensionality changes with the
scale can exhibit fractal behavior, even if they are defined on smooth manifolds. As
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a good step in that direction,in [18]-[19] a field theory which lives in fractal
spacetime and is argued to be Lorentz invariant, power-counting renormalizable,
and causal was proposed.

II. Spacetimes with non-integer dimensions.

II.1.Ggeometric formalism with the fractional
Caputo derivative.

We assume that fx is a derivable function f : 1x, 2x  .The fractional
Caputo derivatives are defined respectively by formulae

left :
1x


x fx  1

s  

1x

x

x  x s1 
x 

s
fx dx ,

right : x


2x
fx  1

s  

x

2x

x   xs1  
x 

s
fx dx  .

2.1.1

We denote by x1x, 2x the set of those Lesbegue measurable functions fx on

1x, 2x for which fz  
1x

2x
fxdx

1/z
 .

For any real–valued function fx defined on a closed interval 1x, 2x there is a
function Fx  1x


Ix fxdx defined by the fractional Riemann–Liouville integral

1x

Ix fxdx  1 

1x

x
x  x 1fx dx ,when the function fx 

1x


x Fx, for all

x  1x, 2x satisfies the conditions
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1x


x 1x


Ix fxdx  fx,  0,

1x


x 1x


Ix Fxdx  Fx  F1x,

0    1.

2.1.2

Definition.2.1.1. A fractional volume integral is a triple fractional integral within a
region X  3, for instance, of a scalar field fxk :


I f 


I xk  fxk 


I x1 


I x2 


I x3  fxk. 2.1.3

For   1


I f 


I xk  fxk  

V
dVfx1,x2,x3. 2.1.4

An exterior fractional differential can be defined through the fractional Caputo
derivatives which is self–consistent with the definition of the fractional integral
considered above. We write the fractional absolute differential


d in the form


d  dxj 0


j ,


d x j  dxj xj1

2  
,

2.1.5
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where we consider 1x  0.

Definition.2.1.2. An exterior fractional differential is defined via formula


d  2  

j1

n
xj1


d xj 0


j . 2.1.6

Definition.2.1.3.The fractional integration for differential forms on an interval  
1x, 2x is defined




I x

1x


dx fx  f2x  f1x. 2.1.7

Definition.2.1.4.The exact fractional differential 0-form is a fractional differential of
the an function fx :

1x

dx fx  dx 1x


x fx , 2.1.8

where the equation (2.1.7) is considered as the fractional generalization of the
integral for a differential 1-form.
Thus the formula for the fractional exterior derivative can be written as

1x

dx  dxi

1x


i . 2.1.9

The fractional differential 1-form

 with coefficients ixk is
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
  dxiixk. 2.1.10

The exterior fractional derivatives of a fractional 1-form

 is a fractional 2-form

1x

dx


  dxi  dxj

1x


j ixk. 2.1.11

II.2.Einstein Equations on Fractional Manifolds.

Definition.2.2.1. A real manifold M, with integer dimension dimM  n, can be
endowed on charts of a covering atlas with a fractional derivative-integral structure
of Caputo type as we explained above. In brief, such a space (of necessary smooth
class)


M will be called a fractional manifold.

A tangent bundle TM over a manifold M of integer dimension is canonically defined
by its local integer differential structure i.A fractional generalization can be
obtained directly if instead of i we consider the left Caputo derivatives 1xi


i of type

(2.1.1), for every local coordinate xi.
On


T M, an arbitrary fractional frame basis is


e  e 

u

 , 2.2.1

where


 


j 

1x
j


j ,


b 

1y
b


b 2.2.2
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when j   1,2, . . . ,n and b  n  1,n  2, . . . ,n  n. There are also fractional
co-bases which are dual to (2.2.1)


e

 e

 u

d u , 2.2.3

where the fractional local coordinate co–basis is


d u  dxi, dya , 2.2.4

when the h- and v - components, dxi  and dx  are of type (2.1.10).

Similarly to

T M, we can define a fractional vector bundle


E on M, when the fiber

indices of bases run values a,b, . . . n  1,n  2, . . . ,n  m.
Definition.2.2.2. Let us consider now a ”prime” (pseudo) Riemannian manifold V is
of integer dimension dim V  n  m, n  2,m  1. Its fractional extension is
modelled as a fractional nonholonomic manifold


V defined by a quadruple


V  V,


N,


d,


I,where


N-is a nonholonomic distribution defining a nonlinear

connection structure, the fractional differential structure

d is given by Eq.(2.2.1),

Eq.(2.2.3) and the non–integer integral structure

I.

Definition.2.2.3. A nonlinear connection (N–connection)

N for


V is defined by a

nonholonomic distribution (Whitney sum) with conventional h- and v-subspaces,
h

V and v


V,


T


V h


V v


V 2.2.5

Nonholonomic manifolds with a nonlinear connection

N are called, in brief,

N–anholonomic fractional manifolds. Locally, a fractional N–connection is defined
by its coefficients,


N  

Nia, when
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
N 

Niaudxi 

a . 2.2.6

For a N–connection

N we can always a class of fractional (co) frames linearly

depending on Ni

e 
ej 


j 

Nja

a ,

eb 

b ,

e   ej  dxj, eb  dyb  Nkbdxk.

2.2.7

The nontrivial nonholonomy coefficients are computed Wib
a 


b Nia and Wij

a 
ji

a  ei Nja  ej Nia (where ji
a are the coefficients of the N-connection

curvature) for e, e   e e  e e 
W

 e.
Definition.2.2.4. A fractional metric structure


g g is defined on a


V by a

symmetric second rank tensor


g 

gudu  du. 2.2.8

For N-adapted constructions, it is important to use the property that any fractional
metric


g can be represented equivalently as a distinguished metric (d–metric),


g gkj, gcb ,where
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
g 

gkjx,yek ej  gcbx,yec eb 

kj ek
 ej  cb ec

 eb ,

2.2.8

where matrices kj  diag1,1, . . . ,1 and cb  diag1,1, . . . ,1 are obtained
by frame transforms

kj  e k
k e j

j gkj, cb  e a
a e b

b gab.

Definition.2.2.5.A distinguished connection (d-connection)

D on a


V is a linear

connection preser- ving under parallel transports the Whitney sum (2.2.5).

To a fractional d-connection

D we can associate a N-adapted differential 1-form of

type (2.1.10)

 
 

 
 e, 2.2.9

where the coefficients are computed with respect to Eqs.(2.2.7) and parametrized
the form

 
 

Ljki ,
Lbka ,

Cjci ,
Cbca , 2.2.10

On fractional forms on

V, one can act with the absolute fractional differential

d  1x

dx  1y


dy . In N-adapted fractional form, the value d  e e consists

from exterior h-and v-derivatives of type (2.1.9), i.e.

10



1x

dx  dxi, 1x


i 

ej ej,

1y

dy  dxa, 1x


a 

eb eb,

2.2.11

Definition.2.2.6.The torsion and curvature of a fractional d–connection

D  

 
 

are computed, respectively,as fractional 2-forms,

T 

D e  d e   

  e,

R 
 


D 

 



d 
 

  

   
 

R 
 e  e,

d 
e e.

2.2.12

Definition.2.2.7. The fractional Ricci tensor Ric   R 
R 

  is

Rij 
R ijk

k , Ria  
R ika

k , Rai 
R aib

b , Rab 
R abc

c . 2.2.13

Definition.2.2.8.The scalar curvature of a fractional d-connection

D is

s
R 

g R 
R  S, R 

gij Rij,
S  gab Rab, 2.2.14

defined by a sum the h- and v-components of (2.2.13) and contractions with

11



the inverse coefficients to a d-metric (2.2.8).

Definition.2.2.9.We introduce the Einstein tensor G

G 
R  12

g s
R. 2.2.15

Note that for applications in geometry and physics, there are considered more
special classes of d-connections:
1.On a fractional nonholonomic


V, there is a unique canonical fractional

d-connection

D  
 




Ljk
i
, 

Lbk
a
, Cjc

i
, Cbc

a
 2.2.16

which is compatible with the metric structure,i.e.

D g  0, 2.2.17

and satisfies the conditions

T jk
i
 0, 


T bc
a
 0. 2.2.18

2.The Levi–Civita connection

  

 
  can be defined in standard from but by

using the fractional Caputo left derivatives acting the coefficients of a fractional
metric (2.2.8).
The coefficients of the fractional Levi–Civita and canonical d-connection satisfy the
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distorting relation


 
 

 




Z 
 . 2.2.19

The Einstein equations on a spacetime manifold V of integer dimension,for
anenergy-momentum source of matter T, are written in the form

E  R  12 gR  T. 2.2.20

where  const and the Einstein tensor is computed for the Levi–Civita connection
.The Einstein equations (2.2.20) can be rewritten equivalently using the canonical
d-connection D  


,

E  R  12 g 
sR  £, 2.2.21


Laj
c
 ea Nj

c ,Cjb
i
 0,ji

a  0, 2.2.22

where R is the Ricci tensor for R, sR  gR and £ is such a way
constructed that £ reduced to T when D  .
Remark 2.2.1.[6].There are two possibilities to make equivalent two different
systems of equations for  and, respectively, for D. In the first case, we can include
the contributions of distortion tensor Z

 from Eq.(2.2.19) into the source £ ~
T  z£Z

  in such a form that the system (2.2.21).The second case that is £
 T
but in order to keep fundamental the Einstein equations for .
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Introducing the fractional canonical d-connection D (2.2.15) into the Einstein
d-tensor,following the same principle of constructing the matter source £ as in
general relativity but for fractional d-connections, one derive geometrically a
fractional generalization of N-adapted Einstein equations

E  £. 2.2.23

Such a system can be restricted to fractional nonholonomic configurations
for  if we impose a fractional analog of constraints (2.2.22).

Laj
c
 ea Nj

c , Cjb
i
 0, ji

a  0. 2.2.24

Let us consider a fractional metric


g   ixk,vgixk, tdxidxi 

axk,vhaxk,veaea

e3  dv   i3xk,vwixk,vdxi,

e4  dy4   i4xk,vnixk,vdxi,

2.2.25

where the coefficients will be defined below and shall work with the ”prime”
dimension splitting of type 2  2 when coordinated are labeled in the form
u  x j,y3  v,y4, for i, j, . . . 1,2.
Remark 2.2.2.[6].The solutions of Einstein equations will be constructed for a
general source of type

14



£ 
  diag £;

£1 
£2 

£2xk,v; £3 
£4 

£4xk . 2.2.26

A straightforward computation of the components of the Ricci and Einstein
d-tensors corresponding to ansatz (2.2.25) reduces the Einstein equations (2.2.23)
to system of partial differential equations [6]:

a R 11 
R 22 

 1
2g1g2

g2 
g1 g2 
2g1

 g2 2

2g2
 g1 

g1 
2

2g1


 £4,

b R 33 
R 44 

 1
2h3h4

h4 
h42

2h4


h3
 h4
2h3

  £2,

R 3k 
wk
2h4

h4 
h42

2h4


h3
 h4
2h3



c
h4
3h4

1xi

xi

h3

kh4

h4
 1xk


xkh4
2h4

 0,

d R 4k 
h4
2h3

nk 
h4
h3

h3  32 
h4

nk
2h3

 0,

2.2.27

where we wrote the partial derivatives in the brief form:
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a 

1a  1x1


x1a,

a 

2a  1x2


x2a,

a 

va  1v


va.

2.2.28

Configurations with fractional Levi–Civita connection  can be extracted by
imposing additional constraints

wi  ei ln|h4 |,
ekwi  wkei,

ni  0,

ink 


kni.

2.2.29

satisfying the conditions (2.2.24).
Remark 2.2.3.[6].One can construct ’non-Killing’ general fractional solutions
depending on all coordinates when:

g  gixkdxidxi  2x j,v,y4 hax k,v eaea,

e3  dy3  wixk,vdxi,

e4  dy4  nixk,vdxi,

2.2.30

for any  for which

ek 

k   k  nk


4   0, 2.2.31

where 2  1.
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I.Solutions with h3,4  0 and £2,4  0.
Such metrics are defined by ansatz:

g  expxkdxidxi  h3x k,v e3e3 

h4x k,v e4e4,

e3  dv  wi x k,v dxi,

e4  dy4  nixk,vdxi,

2.2.32

with the coefficients which is solutions of the system

a 
     2£4xk,

b h4 
2h3h4£2xi,v


,

2.2.33

a 
wi   i  0,

b ni  ni  0,
2.2.34

where
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a 
  ln

h4

|h3h4|
,   ln |h4 |3/2

|h3 |



,

b 
 i  h4


k ,   h4.

2.2.35

For h4  0  £2  0 we have also   0.The exponential function
expxk
in (2.2.32) is the fractional analog of the ”integer” exponential functions and
called the Mittag–Leffer function E x  1x


.We shall write usual symbols for

functions as in the case of integer calculus,but providing a label  considering such
fractional construction.
It is possible to consider any nonconstant   xi,v as a generating function,
we can construct exact solutions of Eq.(2.2.33)-Eq.(2.2.34).One have to solve
respec- tively the two dimensional fractional Laplace equation, for g1  g2 
 expxk Then one integrate on v, in order to determine h3, h4, ni,and
solving algebraic equations, for wi. Thus one obtain:

g1  g2  expxk, h3  
|xk,v|

£2
,

h4  0h4xk  2  1v


I v

exp2xk,v
£2

,

wi  

i /,

ni  1nkxi  2nkxi  1v


I

h3
|h4 |

3 ,

2.2.36

where 0
h4xk, 1nkxi and 2

nkxi are integration functions, and 1v


I  is the

fractional integral on variables v.To construct exact solutions for the Levi-Civita
connection , we have to constrain the coefficients (2.2.36) to satisfy the
conditions (2.2.29). For instance, we can fix a nonholonomic distribution when
2
nkxi  0 and 1

nkxi are any functions satisfying the conditions

18




i1nkxj 


k1nixj. 2.2.37

The constraints on xk,v are related to the N-connection coefficients wi 



i / following relations

wi  wih4 

ih4  0,


i1wkxj 


k1wixj,

2.2.38

where we denoted by wi and h4 the functional dependence on .Such
conditions are always satisfied for   v or   const where wixk,v can be
any functions.
II.Solutions with h4  0
The equation (2.2.27.b) can be solved for such a case h4  0, only iff £2  0.
Any set of functions wixk,v obviously define a solution of Eq.(2.2.27.c),and its
equivalent (2.2.34.a),because the coefficients ,  i are zero.The coefficients ni
are determined from Eq.(2.2.34.b) h4  0 and any given h3 which results in

nk  1nk  2nk 1v


Iv h3 . 2.2.39

It is possible to choose g1  g2  expxk with xk determined by
Eq.(2.2.33.a) for any given £4xk.This class of solutions is given by ansatz [6]:

g expxkdxidxi  h3xk,ve3e3 

0
h4xke4e4,

e3  dv  wixk,vdxi,

e4  dy4  1nk  2nk 1v


Iv h3  dxi,

2.2.40
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for every fractional functions h3xk,v, 0h4xk, wixk,v and integration fractional
functions 1nk, 2nk.A subclass of solutions for the Levi–Civita connection can be
obtained from (2.2.40) by using the conditions

2
nkxi  0,


i1nk 


k1ni,

wi 

i0h4  0,


i1wk 


k1wi,

2.2.41

for any such wixk,v and 0
h4xk

III.Solutions with h3  0 and h4  0.

The ansatz for metric is of the type

g expxkdxidxi  0
h3xke3e3 

h4xk,ve4e4,

e3  dv  wixk,vdxi,

e4  dy4  nixk,vdxi,

2.2.42

where g1  g2  expxk with xk determined from Eq.(2.2.33.a) for
any given £4xk.A function h4xk,v solves the equation (2.2.33.b) for h3  0
which can be represented in the form

h4 
h42

2h4
 20h3h4£2xk,v  0. 2.2.43
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The solutions for the N-connection coefficients are

wi  

i 


 / 



 ,

ni  1nkxi  2nkxi 1v


Iv 1/ |h4 |

3 ,



  ln

h4

|0h3h4|
.

2.2.44

The Levi–Civita conditions for ansatz (2.2.42) is

1
nkxi  0,


i1nk 


k1ni,

wi 




 wi 


 h4 








i h4 


  0,


i 1

wk 

 


k 1

wi 

 .

2.2.45

Note that for small fractional deformations, it is not obligatory to impose such
conditions.One can consider integer Levi-Civita configurations and then to
transform them nonholonomically into certain d-connection ones.
IV.Solutions with   const.

Fixing in (2.2.35.a)   0  const and considering h3  0 and h4  0, we get
that the general solutions of Eq.(2.2.33)-Eq.(2.2.34) are
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g expxkdxidxi 

0
h2fxi,v2£xi,ve3e3  f2xi,ve4e4,

e3  dv  wixi,vdxi,

e4  dy4  nkxi,vdxi,

2.2.46

where 0
h  const and g1  g2  expxk with xk determined from

Eq.(2.2.33.a) for any given £4xk.
By using the fractional function

£xi,v  40xi  0
h2
16 1v


Iv £2xk,v f 2xi,v 2 2.2.47

we write the fractional solutions for N-connection coefficients Ni
3  wi and

Ni
4  ni in the next form

wi 

i

£xk,v/£xk,v 2.2.48

and

nk  1nkxi  2nkxi 1v


Iv

f xi,v 2

f xi,v
2.2.49

If £xi,v  1 for £2  0,we take 40xi  1.For such conditions,the
functions
h3   0

h2 f xi,v 2 and h4  f 2xi,v satisfy the equation (2.2.33.b),when
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|h3 | 
0h |h4 |


2.2.50

is compatible with the condition   0  const.

II.3.Fractional Spacetimes and Black Holes.
Fractional deformations of the Schwarzschild

spacetime.

In the paper [6], was proved that black holes really exist in fractional gravity
contrary to the hope that involving a new type of derivative calculus,and changing
respectively the differential spacetime structure, we may eliminate ”ambiguities”
with singularities etc.The concepts of black hole,singularity and horizon seem to be
fundamental ones for various types of holonomic and nonholonomic, commutative
and noncommutative, pseudo–Riemanann and Finlser like,fractional and integer
etc. theories of gravity.
We consider a diagonal integer dimensional metric g depending on a small real
parameter 1    0,

g  dd  r2dd  r2 sin2dd  2dtdt 2.3.1

The local coordinates and nontrivial metric coefficients are parametrized:

x1  ,x2  ,y3    ,y4  t,

g 1  1,g 2  r2,h 3  r2 sin2,h 4  2,

   dr 1  2m0r  
r2

1/2
,

2r  1  2m0r  
r2
.

2.3.2
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For   0 in variable r and coefficients, the metric (2.3.1) is just the the
Schwarzschild solution written in spacetime spherical coordinates r,,, t with a
point mass m0.
In paper [6] was introduced a class of exact fractional vacuum solutions of type ( )
when the fractional metrics are generated by nonholonomic deformations

gi 

 ig i,ha 


ah a. 2.3.4

and some nontrivial wi, ni [where g i,h a are given via Eqs.(2.3.2)] and
parametrized by ansatz


g   1,, d d  2,,r2dd 

3,,,r2 sin2  4,,,2tt

  d  w1,,, d  w2,,, d ,

t  dt  n1,, d  n2,, d .

2.3.5

where the coefficients will be constructed determine solutions of the system of
equations ()–() with £  0.The equation () for £2  0 is solved via formulae

h3   0h2b2  3,,,r2 sin2,

h4  b2 4,,,2,

|3 |  0h2
h 4
h 3

|4 |
 2
.

2.3.6

Assume 0
h  const. It must be 0

h  2 in order to satisfy the condition () with zero
source, where 4 can be any function satisfying the condition 4  0.This way, it
is possible to generate a class of solutions for any function b,,, with
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b  0.
Remark 2.3.1.[6] Note that for classes of solutions with nontrivial sources, it is
more convenient to work directly with fractional polarizations 4 with 4  0.
In another turn, for vacuum configurations, it is better to chose as a generating
function, for instance,h4 with h4  0.
The fractional polarizations 1 and 2,when 1  2r2  exp,,
from () with £2  0, i.e.      0.
Putting the above coefficient in Eq.(2.3.5), we construct a class of exact vacuum
solutions in fractional gravity defining stationary fractional nonholonomic
deformations on a small parameter  of the Schwarzschild metric,


g   exp,, d d  dd 

4 |4,,,|
2
2 

4,,,2tt,

  d  w1,,, d  w2,,, d ,

t  dt  n1,, d  n2,, d .

2.3.7

III.COSMOLOGICAL MODELS WITH FRACTIONAL
ACTION FUNCTIONAL

III.1.Friedmann-Robertson-Walker cosmology with
a fractional time dimensions.
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Let’s consider a smooth manifold M and denote  :   TM   be the smooth
Lagrangian function. For any piecewise smooth path  : 0, t1    we define the
generalized fractional action S0, 

0,1
as corresponding Colombeau

generalized function via formula [11] :

S,1 
0,1

 1



0

t
 ,, d

t  1  i 



S0, 
0,1

 
0

t
 ,, d

t    i 

,

  , 1,

3.1.1

where   1  . For   0,1 generalized fractional action (3.1) can be rewritten
as the strictly singular Riemann-Liouville type fractional derivative Lagrangian

S0,1  1


0

t
 ,,t  1d 

S0,1  
0

t
 ,, d

t  
,

3.1.2

where   1  . Let  :   TM   be the Lagrangian map, p0, are two fixed
points and smooth path  : 0, t1    be a smooth path such that ti  pi, i  0,1

and S  S for any smooth path  joining from p0 to p1.Then,  satisfies the
fractional or modified Euler-Lagrange equation:



 d
d




 1  
t    i




. 3.1.3
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Let’s consider Lagrangian

x ,x,  gx ,xx x . 3.1.4

Then corresponding geodesic equation is

x    1
t  i

x   
 x x  0 3.1.5

where 
 is the Christoffel symbol.It was showed in [12] that equation (3.5) will

modify the General Relativity by perturbing the gravitational constant G by a certain
decaying factor given by:

G 
31  
4Gt

R
R , 3.1.6

where  being the fluid density and Rt is the scale factor of the universe.It is easy
to see that in Friedmann-Robertson-Walker cosmology (FRW cosmology), the term
G modifies the Friedman equations in the absence of the cosmological constant
as follows

R
R

2

2  1

t
R
R  k

R2

8G
3 ,

R
R    1

t
R
R   4G3   3p,

3.1.7  3.1.8

Where k  1,0,1 for open, flat and closed fractal spacetime respectively.For zero
pressure, while in case of radiation (  3p), from Eq.(3.1.7) one obtain
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R
R

2

2  1

t
R
R  k

R2

8G
3 ,

R
R 

2  1
t

R
R   8G3 .

3.1.9  3.1.10

Equations (3.1.7) and (3.1.9) can be rewritten like:

R
R

2
 k
R2

 8G
3   1  

t
3
4G

R
R 

8G
3   ,

3.1.11

where

 
31  R
4GRt . 3.1.12

This is to say that the density is perturbed.

III.2. (3 ) DIMENSIONAL FRACTAL
UNIVERSE.THE VACUUM CASE.

Let us now consider the very early universe and choose for simplicity the spatially
flat solution ( k  0 ). Eq.(3.1.9) with p   gives:
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R
R

2

2  1

t
R
R  0. 3.2.1

Solution is

Rt  t21. 3.2.2

Solution (3.2.2) corresponds to an accelerated expansion for 0    1/2, to an
eternal expansion for 1/2    1 and to a decelerating expansion for   1.

III.3.(3  ) DIMENSIONAL UNIVERSE.THE

RADIATION-DOMINATED EPOCH.

This is characterized by the equation of state p  /3 and is modeled by
equations (8) and (9) combined in the following form (k  0) :

R
R 

4  1
t

R
R  R

R
2
 0. 3.3.1

A possible solution is given also by the power-law Rt  tp,p  5  4/2.
p  1 for     1 and the acceleration of the universe may be attributed of the
fractional dissipative force. For   1 the usual (31)-dimensional behavior is
permitted:
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Rt  t . 3.3.2

III.4.(3   ) DIMENSIONAL UNIVERSE.THE

INFLATIONARY EPOCH.

We consider the spatially flat solution ( k  0 ). From equation (3.1.7), we obtain:

R
R

2

2  1

t
R
R 

8G
3 . 3.4.1

In the absence of the gravity perturbations (  1), the solution of Eq.(3.4.1) is
given by the classical de-Sitter inflationary solution:

Rt  expHt,

H 
8G
3  const,

3.4.2

where  and G are constants. In the presence of the perturbed gravity, a possible
inflationary solution is given via formula [11] :
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Rt  H et
21  



exp 
2  Ht2   2  Ht2

2  Ht2   2  Ht2
 ln 

Ht 
2

Ht2
 1

3.4.3

where   1   and     1.

3.4.4

III.5. (3  ) dimensional Universe. Cosmological
models of scalar field with fractional action.

The classical Einstein-Hilbert action-like functional for FRW model of the (3  1)
dimensional Universe ds2  N2tdt2  a2tdr2  frd2, where N is a laps
function, filled with a real homogeneous scalar field t, is:

SEH  1


0

t
Nt 

 3
8G

a2tät
N2t

 ata t
N2t

 a
2ta tN t
N2t

 kat  a3t
3

a3 
 2t
2N2t

 Vt dt.

3.5.1

where V is a potential of the field. By variation over at,t and Nt (with the
subsequent choice of the gauge N  1) in the action (3.5.1), one obtains the
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following standard Friedmann and scalar field equations:

a   3 aa   
dV
d  0,

b 2 äa  a
a

2
 k
a2

  8G3  2  V  
3 ,

c a
a

2
 a

a  k
a2

 8G
3 

 2

2  V  
3 .

3.5.2

Remark 3.5.1.Besides, instead of Eq.(3.5.2.b) one frequently uses the following
equation:

ä
a  k

a2
  8G3  2  V  

3 , 3.5.3

which follows from Eq.(3.5.2.b)-Eq.(3.5.2.c).One can rewrite Eq.(3.5.2.a) -
Eq.(3.5.3.c) in terms of effective energy density t and pressure pt, taking into
account standard expressions:

  
 2

2  V,p  
 2

2  V.
3.5.4

From Eq.(3.5.2)-Eq.(3.5.4) one obtains

a   3 aa   p  0,

b äa   8G3   3p  
3 ,

c a
a

2
 k
a2

 8G
3   

3 .

3.5.5
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Let’s remind how these equations play out in the simplest universe,the Einstein-
de Sitter universe. This is a universe that is spatially flat and consists only of matter
(w  0).It is NOT the real universe because it doesn’t have a  (  0).Density
today is given by the Friedmann equation in terms of the Hubble constant is:

H02  8
3 G0,

0 
3H02
8G .

3.5.6

The scale factor at as a function of time t is

at  3
2 H0t

3/2
. 3.5.7

The time t as a function of scale factor is

t  2
3H0

a3/2t. 3.5.8

The Hubble constant Ht as a function of scale factor is

Ht  H0a3/2t. 3.5.9

The conformal time   t is
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t  2
H0
a1/2t. 3.5.10

From Eq.(3.5.9)-Eq.(3.5.10) one obtain

Htt  2a1t, 3.5.11

and

t  2
atHt

. 3.5.12

We consider now the generalized cosmological model of a scalar field,which
follows from the variational principle for the fractional action (3.1.2). In this section
we have use the modified Einstein-Hilbert action [15]:

SEH  
0

t
EH d 3.5.13

as the following fractional integral:

SEH  1


0

t
Nt 

 3
8G

a2tä
N2t


ata t
N2t

 a
2aN
N2t

 kat  a3t
3

a3 
 2t
2N2

 Vt t  t 1d,

3.5.14
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where all functions in EH depend on the intrinsic time t, and   1,1 for the
usual and phantom scalar fields respectively.Varying the action (3.5.14) over t,
at and Nt with the subsequent choice of the gauge N  1, we obtain the
following equations:

a   3 a
a  1  3t   

dV
d  0,

b äa  1  2t
a
a  1  2  

2t2
  8G3  2  V  

3 ,

c a
a

2
 1  

t
a
a  k

a2
 8G

3 
 2

2  V  
3 .

3.5.15

One can rewrite equations (3.5.15.a) - (3.5.15.c) in terms of effective energy
density t and pressure pt, taking into account the well known expressions:

  
 2

2  V,p  
 2

2  V.
3.5.16

From Eq.(3.5.15)-Eq.(3.5.16) one obtain

a   3 a
a  1  3t   p  0,

b äa  1  2t
a
a  1  2  

2t2
  8G3   3p  

3 ,

c a
a

2
 1  

t
a
a  k

a2
 8G

3   
3 .

3.5.17

It is easy to integrate equation (3.5.17.a) for the perfect fluid with equation of state
p   :
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t  0
a31t11a

. 3.5.18

Let us consider an example of an exact solution for the flat model (k  0) and for
the quasivacuum state of matter:  1.From (3.5.18) it follows that t  0 
 constant.Then, the remaining equations of (3.5.17) for the Hubble parameter and
-term can be rewritten as follows:

a H  1  2t H  1  2  
2t2

 0,

b H2  1  
t H  k

a2
 8G

3 0  
3 .

3.5.19

From Eq.(3.5.19.a) one obtain

Ht,  c
t  H0t

1
2 ,c 

1  2  
3  

,

H0  const.

3.5.20

The scale factor at, as a function of time t is

at,  a0tc exp 3  
2 H0 t

3
2 . 3.5.21

while the cosmological t,-term as a function of time t is
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t,  3H02t1  3H0
1  2  

3  
t 12 

31  22  5  2
3  2

t2  8G0.

3.5.22

The conformal time t is

t  
t0

t dt
at,

 1
a0 t0

t
tc exp  3  2 H0 t

3
2 . 3.5.23

It is obvious that in the limit   1, the solutions (3.5.20) - (3.5.23) reduce to the
well known exponential expansion of the (3  1)-dimensional Universe :

at  a0 expH0t,Ht  H0  const,

t,  3H02  8G0.

3.5.24

Let us consider now the dynamics of the flat model of the Universe (k  0) filled by
a scalar field .It is convenient to rewrite equations (3.5.17.a) - (3.5.17.c) in terms
of the Hubble parameter H  a

a in the following form:

a   3 H  1  3t   
dV
d  0,

b H  1  2t H  1  2  
2t2

 4G 2,

c H2  1  
t H  k

a2
 8G

3 
 2

2  V  
3 .

3.5.25

It is easy to see that the given set of the independent equations can contain some
arbitrariness in a choice of unknown functions, for instance Ht or Vt, only if the
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cosmological -term depends on time t. However, it is possible to proceed from
some dependence t. Let us rewrite Eqs.(3.5.25) in the form [15]:

H  3H2  24  t H  1  2  
2t2

 t
1   ,

3H2  35  2t H  31  2  
2t2

 4G 2  t
1   ,

8GV   
37  3

2t H 
31  2  

2t2
,

  1.

3.5.26

IV.Crossover from low dimensional to 3  1-
dimensional universe.

IV.1. Mureika and Stojkovic crossover from

(2  1)- dimensional fractal universe to standard
(3  1)-dimensional universe.

In order to determine an approximate value for the frequency of the PGWs,we
revisit the current state of PGW detection. Standard cosmological theory
generalizad on the case of fractal spacetime MDt,Df , predicts that gravitational
waves in fractal spacetime MDt,Df  will be generated in the pre/postinflationary
regime due to quantum fluctuations of the fractal spacetime manifold MDt,Df .
At temperatures below the Dt  3,Df  2  Dt  3,Df  3 cross-over scale, a
standard 3Dt FRW cosmology is assumed, with the usual radiation- and matter-
dominated eras.Gravity waves can be produced at different times t  t0  H1,
when the temperature of the universe was T. The co-moving entropy per volume of
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the universe at temperature T can be expressed as a function of the scale factor
Rt as

S ~ gSTR3tT3, 4.1.1

where the factor gS represents the effective number of degrees of freedom at
temperature T in terms of entropy by formula

gST  i
Ti
T  78  j

Tj
T . 4.1.2

The parameters i, j runs over all particle species.In the standard model, this
assumes a constant value for T  300 GeV, with gST  106.75 due to the fact that
all species were thermalized to a common temperature. Assuming that entropy is
generally conserved over the evolution of the universe, one can write

gSTR3tT3  gST0R3t0T03. 4.1.3

The characteristic frequency of a gravitational wave produced at some time t in the
past is thus redshifted to its present-day value

f0  f
Rt
Rt0

4.1.4

by the factor [13]

f0  9.37  105HzH  1mm1/2  g1/12 g
gS

1/3
T2.728, 4.1.5
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where the original production frequency f0 is bounded by the horizon size of the
universe at time t,i.e. f ~ 1 ~ H1.Note that this is an upper bound,and the
actual value may be smaller by a factor H1although the final result is weakly
sensitive to the value   1.This quantity can be related to the temperature T by
noting that, during the radiation-dominated phase, the scale is

H2 
83gT4

90MPl
4
. 4.1.6

Remark 4.1.1.[1].Note that above was used equations valid only in the 3  1-
dimen- sional regime.Without the details of an underlying lower dimensional
cosmology we do not know the size of a lower dimensional Hubble volume as a
function of the temperature. However, in order to estimate the frequency cut-off ,
we are approaching the dimensional cross-over from the known
3  1-dimensional regime. Thus, while Eq.(4.1.6) is not valid in a lower
dimensional regime, it is valid a few Hubble times after the dimensional crossover.
Since most of the 3D volume of the universe comes from the last few Hubble times,
this will be a reasonable
estimate of the size of the 3D Hubble volume after the dimensional cross-over.

If we plug T  1TeV,we see that H1~1mm, which is much larger than TeV1.This
is not in contradiction with our assumption that the cross-over happened at T  1
TeV since the size of a 2-dimensional plane/universe could be arbitrarily large
before the cross-over.Since the size of the 2D universe does not matter (no gravity
waves), the crucial thing here is that the highest frequency that PGWs can carry is
limited by the size of a 3D Hubble volume right after the dimensional cross-over,
which is given by Eq.(4.1.6).With above assumptions, combining Eq.(4.1.5) and
Eq.(4.1.6), the frequency of PGWs that would be detectable is

f  7.655  105g1/6 T
TeV Hz 

1.67  104 Hz,

4.1.7

where the latter equality holds for g~102. When T  1 TeV, the frequency is
f ~ 104 Hz. This is well below the seismic limit of f ~ 40 Hz on ground-based
gravity wave interferometer experiments like LIGO or VIRGO [1], but sits precisely
at the threshold of LISA’s sensitivity range.
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FIG.4.1.Frequency threshold for primordial gravitational
waves produced when the universe was at temperature T

LISA.[1].

A (2  1)-dimensional FRW metric is

ds2  dt2  R2t dr2
1  kr2

 r2d2 . 4.1.8

where Rt is the scale factor and k  1,0,1.The Einstein’s equations for this
metric are

R
R

2
 2G  k

R2
,

d
dt R

2  p ddt R
2  0

4.1.9

where G is the (21) dimensional gravitational constant, p is the pressure and is the
energy density. In a radiation dominated universe p  1/2 and R3  0R03  const.
For k  0 the solution to these equations is

41



Rt  9
2 G0R0

3 t2/3. 4.1.10

Remark 4.1.2. Note that three-dimensional solution Rt  t2/3 is different from the
usual four-dimensional behavior Rt  t in radiation dominated era.
Assume that the crossover from (2  1)-dimensional to (3  1)-dimensional
universe happened when the temperature of the universe was T2D3D ~ 1 TeV [1].
Working backwards,we can estimate the size of the Universe at the transition from
the ratio of scale sizes at various epochs, speci cally between present day (ttoday 
1017 sec), the radiation/matter-dominated era (tRM  1010 sec) and the TeV-era
(tTeV  1012 sec).

RTeV
Rtoday

 tTeV
tRM

1/2 tRM
ttoday

2/3


1012
1010

1/2 1010
1017

2/3
 1011  1014/3  1015.6.

4.1.11

The scale factor at the latter epoch is thus RTeV  1015.6Rtoday.

This value may also be obtained by noting that conservation of entropy requires the
product RtTt to be constant,and so RTeV  1015.6Rtoday (since Ttoday ~ 103eV).
Eq.(4.1.11) implies that the size of the currently visible universe (1028cm) at
T  1 TeV was 1013.6cm. This distance is macroscopic but it is not in contrast with
assumption [1] that the crossover from (2  1)-dimensional to (3  1)-dimensional
universe happened when the temperature of the universe was T ~ 1 TeV, since the
causally connected universe today contains many causally connected regions of
some earlier time.
Going towards even higher temperatures, the spacetime becomes (1  1)-
dimensio-
nal [1]. To avoid large hierarchy in the standard model, the crossover from an
(1  1)-dimensional to (2  1)-dimensional universe needs to happen when the
temperature of the universe was T1D2D  100 TeV. Conservation of entropy (if
between T  1 TeV and T  100 TeV nothing nonadiabatic happened) requires
RtTt  const. This implies
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R2D3D
R1D2D

 T1D2D
T2D3D

~ 100 4.1.12

and R1D2D  102R2D3D  1011.6 cm.

Similarly one obtain

R1D2D
R#

 T#
T1D2D

4.1.13

where R# and T# are the scale factor and temperature of the universe the first time
it appears classically. It is tempting to set R#  MPl

1 and T#  MPl .However
MPl  1019 GeV is inherently (3  1)-dimensional quantity whose meaning is not
quite clear in the context of evolving dimensions.
A pure (1  1)-dimensional FRW metric is

ds2  dt2  R2t dx2
1  kx2

. 4.1.14

The denominator in the second term in Eq.(4.1.14) can be absorbed into a
definition of the spatial coordinate x. Moreover, all (1  1)-dimensional spaces are
conformally
flat,i.e. one can always use coordinate transformations (independently of the
dynamics) and put the metric in the form g  exp .
Remark 4.1.3. [1] Einstein’s action in a twodimensional spacetime is just the Euler
characteristics of the manifold in question, so the the theory does not have any
dynamics, unless the scalar eld is promoted into a dynamical eld by adding a
kinetic term for it. Even in this case there are no gravitons in theory, so there are no
gravity waves and the threshold of importance remains the 1  1  2  1 transi-
tion.
Remark 4.1.4.[1] However, exactly at the crossover the description could be very
complicated.For example,systems whose effective dimensionality changes with the
scale can exhibit fractal behavior, even if they are defined on smooth manifolds. As
a good step in that direction,in [18-19] a field theory which lives in fractal spacetime
and is argued to be Lorentz invariant, power-counting renormalizable, and causal
was proposed.
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Since entropy ST,Df is generally conserved over the evolution of the(Df  1)-
dimensional fractal universe, we obtain

sT,DfRDft,DfTDf  sT0, 3R3t0T0
3 4.1.15

[compare with standard case given by Eq.(4.1.3)]. From Eq.(4.1.15) one obtain

Rt,Df 
sT0, 3
sT,Df

1/Df R3/Dft0T0
3/Df

T
~

~ R
3/Dft0T 3/Df

T
.

4.1.16

Let us consider dimensional crossover from (Df  21)-dimensional fractal
Universe to (31)-dimensional standard Universe by using Eq.(4.1.15). Assume
that T0   Ttoday  103eV, T  1TeV  1012eV, Rt0  Rtoday  1028 cm. Thus

Rt,Df  2  T1R3/2t0T0
3/2 

1013Rtoday
3/2  1029 cm.

4.1.17

IV.2.Cross-over from (3   )- to (3 1)-dimensional

fractal universe using -FRW cosmology.

In the case of the RD epoch the -FRW solution is given also by the power-law
Rt  tp,p  5  4/2 i.e.,
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Rt  t 542 4.2.1

for     1.For   1 the usual (3  1)-dimensional behavior is permitted:

Rt  t . 4.2.2

Remark 4.2.1.We note that in (3  )-dimensional fractal universe standard
conservation law is permitted:

gST3Rt3T3  const. 4.2.3

Let us consider crossover from (3  1 )-dimensional fractal universe to (3  2)-
dimensional universe with 1  2  1.From Eq.(4.2.1) and Eq.(4.2.3) one obtain

RTeVt31 
RRMt32 


gST32 
gST31 

T32
T31

, 4.2.4

where

RTeVt31   t31

5  41
2 ,RRMt32   t32

6  42
3 ,

T31  Tt31 ,T32  Tt32 .

4.2.5

From Eq.(4.2.4)-Eq.(4.2.5) we obtain
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5  41
2 ln t31 

6  42
3 ln t32  ln

gST32 
gST31 

T32
T31

. 4.2.6

Assume for instance that crossover from (3  1)-dimensional fractal universe to
(3  2)-dimensional universe with 2  1 happened when the temperature of the
universe was T31 32   1TeV. The Universe at the transition from the TeV-era:
t31   tTeV  1012 sec, T31   1TeV  1012eV to radiation/matter-dominated era:
t32   tRM  1010 sec, T32  ~ 1MeV  0.7MeV. Note that at the energy scales
above  1 TeV,gSSMT  106.75 and gSMSSM  220 [34]. From Eq.(4.2.6) we obtain
1  30/24.

IV.3.Crossover from Df  Dt(1 -  )- to (3 1)-

dimensional universe by using G.Colgany
cosmology.

The Ansatz for the gravitational action of the G.Colgany gravity [18]-[19] in fractal
spacetime is

Sg  1
22  d

Dtx vx gx Rx  2  vxvx 4.3.1

where gx is the determinant of the metric tensor gx,2  8G is Newton’s
constant,  is a bare cosmological constant, and the term vxvx
proportional to  has been added, because vx is now dynamical variable.
Assuming that matter is minimally coupled with gravity, the total action is
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S  Sg  Sm,

Sm   vxmd4x.
4.3.2

If   p  0 from (4.3.1) one get a purely gravitational constraint [18]:

H  Dt  1H2  H vv  v
v  vv  v 2  0. 4.3.3

The continuity equation vxT
  vxm  0 gives

  Dt  1H  vv   p  0. 4.3.4

Substitution    2/2  V,p   2/2  V gives

  Dt  1H  vv   V   0. 4.3.5

For the case vx  tDf ,Df  Dt1   one obtain formulae

H vv  H 
t ,

v
v 


t Dt  1H 

1  
t . 4.3.6

Let us consider the cases   0 and   0 separately.

1.We assume: Dt  4,Df  2, vx  tDf ,   0.Solution is [18]:
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at  t9  c1/3

t2
,

Ht  t9  2c
tt9  c

,

   H
H2



t9  14  3 22 c t9  14  3 22 c

t9  2c2
,

4.3.7

where c is an integration constant. The energy density and pressure is

t   3
2

t9  4ct9  2c
 

,

pt   3
2

t9  14  3 22 c t9  14  3 22 c

t9  2c2

4.3.7

These expressions are sufficient to characterize three cases:
(a) c  0 : From t  t  2c1/9 to t  t1  14  3 22 c1/9, the universe expands
in superacceleration   0,while for t  t1 the expansion is only accelerated. The
energy density  is negative for t  t while the pressure p is always negative.
(b) c  0 : Linear (decelerating) expansion, a  t, while   p  0 always.
(c)
All these scenarios need a matter component with non-positive definite energy
density.
2.We assume: Dt  4,Df  2, vx  tDf ,   0.There is only one real solution to
the gravitational constraint,namely [18]:
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at  1
t2
 11

4 ,
13
4 ,

3
2t4

,

Ht   2t 
22
13t5

 15
4 ,

17
4 ,

3
2t4

 11
4 ,

13
4 ,

3
2t4

,

a,b, z  b
a n0

 a  n
b  n

zn
n! .

4.3.8

The formulae for t and pt are

t  22  3t43  4t4
t10

 482
132t10

 11
4 ,

17
4 ,

3
2t4

 11
4 ,

13
4 ,

3
2t4



 242  3t
4

13t10
2 11

4 ,
17
4 ,

3
2t4

2 11
4 ,

13
4 ,

3
2t4

,

pt  22  3t46  5t4
t10

 482
132t10

 11
4 ,

17
4 ,

3
2t4

 11
4 ,

13
4 ,

3
2t4

.

4.3.9

At early times one must distinguish between positive and negative . For   0,
the
universe is contracting and the fluid behaves like an effective cosmological
constant:
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at
t0
 const 

exp 
2t4
t4/3

, Ht
t0
  2

t5
,


t0
  5t

4

2 ,w t0
 1,

t
t0
 122

t10
, pt

t0
  12

2

t10
.

4.3.10

Figure1.The scale factor at,Hubble parameter H,slow-rollparameter ,
energy density and pressure pt dashed linefor   1. [18]
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Figure 2.The equation of state w  p
 for   1. [18]

For   0, at early times the universe expands and accelerates, even if the perfect
fluid is stiff:

at
t0
 const  t5/3,Ht

t0
 5
3t ,


t0
 3
5 ,t t0

 2||
t6
,

pt
t0
 2||

t6
,w

t0
 1.

4.3.11
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Figure 3.The scale factor at,Hubble parameter H,slow-roll parameter ,
energy density and pressure pt dashed linefor   1. [18]

Figure 4.The equation of state w  p
 for   1. [18]

The most natural possibility is that a classical FRW background,either exact or
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linearly perturbed, is not realistic. Then, one would have to treat the UV limit as
highly inhomogeneous.This is not at all unexpected,as we are dealing with
quantum scales where the minisuperspace equations (maximal symmetry) are
likely to fail.

V.Calculation of the primordial gravitational wave
Spectrum in fractal cosmology.

V.1.The power spectrum, h2k,, and relative
spectral energy density, hk,,of the fractional

gravitational wave background.

In this section we define the power spectrum, h2k,, and relative spectral energy
density, hk,,of the fractional gravitational wave background.Units are chosen

as c    kB  1 and 8G is retained.Indices ,,, . . . run from 0 to 3, and
i, j,k, . . . run from 1 to 3.Over-dots are used for derivatives with respect to
coordinate time t throughout the paper. In this section for instance we will be used
the perturbed -FRW metric, ds2  dt2  R2t,dr2  frd2  sin2d2.We
define the confor- mal time  by t  

t0

t dt
Rt

.When we do perturbation theory it

will be useful to write the metric ds2 with  instead of t. Since dt  ad (where we
denote by a, the scale factor Rt, as a function of the conformal time ) we
have
ds2  a2d2  dr2  frd2  sin2d2.
For tensor perturbations on an isotropic, uniform and flat background spacetime,
the metric is given by
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ds2  a2d2   ij  hijdxidxj ,

g  a2  h,

  diag1,1,1,1,

h00  h0i  0, |hij |  1.

5.1.1-5.1.3

We assume that hij,j  0,h i
i  0.We shall denote the two independent polarization

states of the perturbation as   , and sometimes suppress.We decompose hij
into plane waves with the comoving wave number, |k| k, as

hij,x 

 d 3k
23

h;kij expik  x, 5.1.4

where ij is the polarization tensor.The equation for the wave amplitude, h;k 
 h,k in the linear order is

 12 hij;
;  8Gij,

G  G  G

5.1.5

where G given by Eq.(3.1.6) and ij is the anisotropic part of the stress tensor,
defined by writing the spatial part of the perturbed energy-momentum tensor as
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Tij  pgij  a2ij 5.1.6

where p is pressure. For a perfect fluid ij  0. In the cosmological context, the
amplitude of gravitational waves is affected by anisotropic stress when neutrinos
are freely streaming (less than  1010K) As we only deal with tensor
perturbations,hij,
we may treat each component as a scalar quantity under general coordinate
transformation, which means e.g. hij;  hij,. The left-hand side of Eq. (5.1.5)
becomes

hij;
;  ghij,   hij, 

h ij  2
a2

hij  3 a
a h ij,

5.1.7

where equalities 00  00 ,ij0   ija a,gij   ija2 have been used. Commas denote
partial derivatives, while semicolons denote covariant derivatives in Eqs. (5.1.5)
and (5.1.7). Transforming this equation into Fourier space, we obtain

h ,k  3 a
a h ,k  k2

a2
h,k  16G,k. 5.1.8

Using conformal time derivative   


one obtain

h,k  2 a
a h,k  k2h,k  16Ga2,k. 5.1.9

This is just the massless Klein-Gordon equation for a plane wave in an expanding
space with a source term. Thus, each polarization state of the wave behaves as a
massless, minimally coupled, real scalar field.Let us consider the time evolution of
the spectrum. After the fluctuations left the horizon, k  aH, equation (5.1.9) would
become
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h,k ,
h,k ,

  2a
,
a,

. 5.1.10

Hence

h,k,  c1  c2 
0

 d 
a2 ,

, 5.1.11

where c1 and c2 are integration constants.Ignoring the second term that is a
decaying mode, one finds that h,k, remains constant outside the horizon.Note
that we have ignored the effect of anisotropic stress outside the horizon, as this
term is usually given by causal mechanism which must vanish outside the horizon.
Therefore, one may write a general solution of h,k, at any time as

h,k,  h,k
prim,,k,, 5.1.12

where h,k
prim,is the primordial gravitational wave mode in fractal spacetime that

left the horizon during inflation. The transfer function,,k,, then describes the
sub-horizon evolution of gravitational wave modes in fractal spacetime after the
modes entered the horizon.The transfer function is normalized such that,k,
 1 as k  0. The power spectrum of gravitational waves in fractal spacetime,
h2k,,may be defined as

hij,x,hij,x,   dkk h2,k,. 5.1.13

From Eq.(5.1.13) one obtain
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h2,k,  2k3
22 

|h,k,|2 . 5.1.14

From Eq.(5.1.14) and Eq.(5.1.12) one obtain the time evolution of the power
spectrum via formula

h2,k,  h,prim2 |,k,|2, 5.1.15

where

h,prim2   2k3
22 

|h,k |2 ~ Hinf
MPl

. 5.1.16

We have used the prediction for the amplitude of gravitational waves from de-Sitter
inflation in fractal spacetime at the last equality, and Hinf is the perturbed Hubble
constant during inflation. One may easily extend this result to slow-roll inflation
models in fractal spacetime.The energy density of gravitational waves in fractal
spacetime is given by the 0  0 component of stress-energy tensor of gravitational
waves:

, 
hij ,x,hij,x,

32Ga2,
5.1.17

The relative spectral energy density,h, k,, is then given by the Fourier
transform of energy density,
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,k,  dh,k,
d lnk

5.1.18

divided by the critical density of the fractal universe, cr,

h, k, 
,k,
cr,



h,prim2

a2,H2,
|,k,|2.

5.1.19

V.2.THE EFFECTIVE RELATIVISTIC DEGREES OF
FREEDOM: g(T).

During the radiation era many kinds of particles interacted with photons frequently
so that they were in thermal equilibrium. In an adiabatic system, the entropy ST
per unit comoving volume in (31)-dimensional spacetime must be conserved
[32],[34]:

ST  sTa3T,  const.

sT  22
45 gsTT

3.
5.2.1.a

In an adiabatic system in fractal spacetime, the entropy ST,Df per unit comoving
volume VDt,Df  in (Df1)-dimensional fractal spacetime must be conserved:
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ST,Df  sT,DfaDfT,  const.

sT,Df  cDfgsT,DfT3,

5.2.1.b

see Appendix I.
The entropy density, sT,Df, is given by the energy density and pressure

sT,Df 
T,Df  pT,Df

T . 5.2.2

The energy density and pressure in such a plasma-dominant (31)-dimensional
universe are given by

T  2
30 gTT

4,

pT  1
3 T

5.2.3.a

respectively, where we have defined the “effective number of relativistic degrees of
freedom”, g and gs, following [14].
The energy density T,Df and pressure pT,Df in such a plasma-dominant
fractal universe are given by

T,Df  gT,DfT1Df ,

pT,Df  1
3 T,Df,

5.2.3.b

see Appendix I.Equation (5.2.2.a) and (5.2.3.a) immediately imply that energy
density of the (31)-dimensional universe during the radiation era should evolve as
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  ggs4/3a4. 5.2.4

Therefore, unless g and gs are independent of time, the evolution of  would
deviate from   a4. In other words,the evolution of  during the radiation era is
sensitive to how many relativistic species the universe had at a given epoch. As the
wave equation of gravitational waves contains a,Df/a,Dfh,k , the solution of
h,k would be affected by gand gs via the perturbed fractional Friedman equation
(3.3.1).Although the interaction rate among particles and antiparticles is assumed
to be fast enough (compared with the expansion rate) to keep them in thermal
equilib-
rium, the interaction is assumed to be weak enough for them to be treated as ideal
gases. In the case of the (31)-dimensional universe and ideal gas at temperature
T, each particle species of a given mass, mi  xiT,would contribute to g and gs
the amount given by formulae

gi  gi 154 xi

du

u2  xi2 u2

eu  1 ,

gs,i  gi 154 xi

du

u2  xi2 u2  xi2/4
eu  1 ,

5.2.5

where the sign is  for bosons and  for fermions and gi is the number of
helicity states of the particle and antiparticle.Note that an integral variable is
defined as
u  E/T,where E  |p|2  m2 .We assume that the chemical potential,i,is
negligible. One might also define a similar quantity for the number density,

nT  3
2

gnT3, 5.2.6

where 3  1.20206 is the Riemann zeta function at 3. Each species in case of
the (31)-dimensional universe would contribute to gn by
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gn,i  1
23 xi


du

u2  xi2 u
eu  1

5.2.7

The effective number relativistic degrees of freedom is then given by thetempera-
ture-weighted sum of all particles contributions:

gT  i
giT Ti

T
3
,

gsT  i
gs,iT Ti

T
3
,

gnT  i
gn,iT Ti

T
3
,

5.2.8.a

where we have taken into account the possibility that each species i may have a
thermal distribution with a different temperature from that of photons.
For the case of the (Df1)-dimensional fractal universe we obtain

gT,Df  i
giT Ti

T
Df
,

gsT  i
gs,iT Ti

T
Df
,

gnT  i
gn,iT Ti

T
Df
,

5.2.8.b
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FIG.5.2.1. [34].Evolution of the effective number of relativistic degrees of
freedom contributing to energy density,g,as a function of temperature T.
At the energy scales above  1TeV, gSM  106.75 and gMSSM  220.

V.3.ANALYTICAL SOLUTIONS OF PERTURBED
WAVE EQUATIONS.

In this section we shall discuss solutions of the equation of motion Eq.(5.1.9).While
we assume ij  0 in this section. Imposing appropriate boundary conditions
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a hk, 
16G

a, 2k
1  i

k expikk 

 
a,

8Gk h1
2kk - Inflation,

b hk,  j0khk
prim - RD,

c hk, 
3j1k
k hk

prim - MD,

j0k 
sink
k , j1k  1

k
sink
k  cosk ,

h1
2k   1k 1  i

k eik.

5.3.1

where k is a generalized stochastic variable satisfying

kk  k  k. 5.3.2

We classify wave modes by their horizon crossing time, hc :

|k|  k
 keqthe modes that entered the horizon during RD:hc  eq

 keqthe modes that entered the horizon during MD:hc  eq
5.3.3

where eq denotes the time at the matter-radiation equality, and hc denotes the
time when fluctuation modes crossed the horizon, khc  1. Notice that |hk|2 for
each solution (5.3.1.a) - (5.3.1.c) does not depend on time ( |hk

prim|2) at the
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super-horizon scale, |k|  1.
The tensor mode fluctuations from the inflationary universe left the horizon and
froze out. Its dimensionless spectrum is given from Eq.(5.3.1.a) is

h2k,  4k3
hk
inf

2

22


4k3
22

16G
2ka2,

1  1
k22



64G 1
a2,

k
2

2
1  1

k22


64G
Hinf
eff  k
2

2

1  1
k22



 16


Hinf
eff
MPl

2

 4k3
hk
prim

2

22
,

|k|  1.

5.3.4

where Hinf is the effective Hubble parameter during inflation and

  1/a,Hinf
eff 5.3.5

is used in the fourth equality of the (5.3.4). Note that the conventional factor 4 is
from equality
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 dkk h2k,  hijhij   2|h |2   |h |2 

 4h2,
5.3.6

where |h |  |h |  h.The dimensionless spectrum (5.3.4) is nearly independent k.
This is the famous prediction well known from the standard inflationary scenario in
(31)spacetime known as a nearly scale invariant spectrum.
From the fractional Friedman equation (3.5.3) during inflation,one obtains

Hinf
eff  8

3MPl
2 V,

h,prim2   10
MPl
4 V.

5.3.7

Using the transfer function ,k, [Eq.(5.1.12)], we obtain the time evolution of
the amplitude of gravitational waves as

a   eq,k  keq  j0k,

b   eq,k  keq 
eq
 Ak,j1k  Bk,y1k,

c ,k  keq 
3j1k
k ,

y1k   1k
1
k cosk  sink .

5.3.8

Their conformal time derivatives are given as
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a   eq,k  keq  j1k,

b   eq,k  keq  
eq
 Ak,j2k  Bk,y2k,

c ,k  keq  
3j2k
k ,

j2k  1
k

3
k22

 1 sink  3
k cosk ,

y2k   1k
3
k22

 1 cosk  3
k sink .

5.3.9

Eqs. (5.3.9.a) and (5.3.9.b) are the evolution of modes which entered the horizon
during the radiation era, while Eq. (B8) is the evolution of modes which entered the
horizon during the matter era. Coefficients A(k) and B(k) are obtained by equating
a solution (B6) with (B7) and their first derivatives [(B11) and (B12)] at the
corespon-
ding matter-radiation equality.

Appendix I.Fractal equilibrium thermodynamics.

We assume the second law of thermodynamics in fractal spacetime with integer
fractal dimensions Df  Dt in the form:

TdS  d VDt,Df   pdVDt,Df   d   pVDt,Df   VDt,Df dp 1.1
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where  and p are the equilibrium energy density density and pressure. Moreover,
the integrability condition,

2S
TVDt,Df 

 2S
VDt,Df T

1.2

gives

T dpTdT  T  pT 1.3

or

dpT  T  pT
T dT. 1.4

Substitution Eq.(1.4) into Eq.(1.1) gives

dS  1
T d T  pTVDt,Df   T  pTVDt,Df  dT

T2


d T  pTVDt,Df 
T  const .

1.5

From Eq.(1.5) one obtain

SDf 
T  pTVDt,Df 

T  const. 1.6
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The law of energy conservation is

d T  pTVDt,Df   VDt,Df dpT. 1.7

Substituting Eq.(1.4) into Eq.(1.7), it follows that

d T  pTVDt,Df 
T  0. 1.8

Hence in thermal equilibrium, the entropy S per comoving fractal volume VDt,Df  is
conserved.
Let us define the fractal entropy density sDf :

sDf  S
VDt,Df 


T  pT

T . 1.9

Remind that in 3  1 spacetime the number density nT,,energy density T,
and pressure pT, of a dilute, weakly-interacting gas of particles with g internal
degrees of freedom is given in terms of its phase space distribution function f p is
[30]:

nT,  g
23

 f p d3p,

T,  g
23

 E p,m f p d3p,

pT,  g
23

 p 2

3E p,m
f p d3p,

E2 p,m  p 2
 m2.

1.10
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For a species in kinetic equilibrium phase space distribution function f p is

f p  exp
E p,m  

T  1
1

1.11

where  is the chemical potential of the species, and here and throughout 1 per-
tains to Fermi-Dirac species and 1 to Bose-Einstain species.
In Dt,Df  1 spacetime with Dt  3, the number density n ,Df  nT,,Df,energy
density Df  T,,Df and pressure pDf  pT,,Df of a dilute, weakly-interacting
gas of particles with g internal degrees of freedom is given in terms of its phase
space distribution function f p is

nT,,Df 
g

23
 f p d3,Df p  g

23
 f p p Ďfd 3p,

T,,Df 
g

23
 E p,m f p d3,Df p 

g
23

 E p,m f p p Ďfd 3p,

pT,,Df 
g

23
 p 2

3E p,m
f p d3,Df p 

g
23

 p 2Ďf

3E p,m
f p d 3p,

E2 p,m  p 2
 m2,

1.12

where Ďf  Dt  Df,Dt  3.

From Eq.(1.11)-Eq.(1.12) by using polar coordinate with   p , one obtain
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nT,,Df 
g
2

0

 2Ďf

expE,m  /T  1
d,

T,,Df 
g
2

0

 E,m2Ďf

expE,m  /T  1
d,

pT,,Df 
g
32 0

 4Ďf

E,mexpE,m  /T  1
d,

E,m  2  m2 ,Ďf  Dt  Df,Dt  3.

1.13

In the relativistic limit (T  m), for T  , from Eqs.(1.13) we obtain

nT,,Df 
g
2

0

 2Ďf

exp/T  1
d  gT3Ďf 1

2

0

 u2Ďf
expu  1

du ,

T,,Df 
g
2

0

 3Ďf

exp/T  1
d  gT4Ďf 1

2

0

 u3Ďf
expu  1

du ,

pT,,Df 
g
32 0

 3Ďf

exp/T  1
d  1

3 gT
4Ďf 1

2

0

 u3Ďf
expu  1

du ,

Ďf  3  Df.

1.14

From Eqs.(1.14) finally we obtain
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T,,Df  BDfgT4Ďf  cBgT1Df (BOSE)

T,,Df  FDfgT4Ďf  cFgT1Df (FERMI)

nT,,Df  nBDfgT3Ďf  nBgTDf (BOSE)

nT,,Df  nFDfgT3Ďf  nFgTDf (FERMI)

pT,,Df  1
3 T,,Df.

1.15

In Dt,Df  1 spacetime with Dt  3, the total energy density tot
Df  totT,Df and

pressure ptot
Df  ptotT,Df of all species in equilibrium can be expressed in terms of

the photon temperature T :

totT,Df  T4Ďfi1

N Ti
T

4Ďf


g
2

0

 E,mi/T2Ďf

expE,mi/T  i/T  1
d,

ptotT,Df  T4Ďfi1

N Ti
T

4Ďf


g
32 0

 4Ďf

E,miexpE,mi/T  i/T  1
d,

1.16

where N is a total number of all species, and we have taken into account the
possibility that the species i may have a thermal distribution,but with a different
temperature than that of the photons.
Since the energy density and pressure of a non-relativistic species i.e.,one with
mass mi  T, is exponentially smaller than that a relativistic species i.e.,one with
mass mi  T, it is a very good approximation to include only the relativistic species
in the sums for totT,Df and ptotT,Df. In this case the expressions given by
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Eq.(1.16) greatly simplify:

totT,Df  cDfggT,DfT4Ďf  cDfgT,DfT1Df ,

ptotT,Df  1
3 cpDfggT,DfT

4Ďf 1
3 cpDfgT,DfT

1Df ,
1.17

where gT counts the total number of effectively massless degrees of freedom
(those species with mass mi  T ), and

gT i1

NB gi Ti
T

4Ďf
 78 i1

NF gi Ti
T

4Ďf



i1

NB gi Ti
T

1Df
 78 i1

NF gi Ti
T

1Df
,

1.18

where NB is the total number of bosons and NF is the total number of fermions.
Hence the entropy density sT,Df is dominated by the contribution of the
relativistic particles and a very good approximation is

sT,Df  cDfgST,DfTDf , 1.19

where

gST,Df i1

NB gi Ti
T

1Df
 78 i1

NF gi Ti
T

1Df
. 1.20

Conservation of SDf implies that sT,Df  RDft,and therefore the quantity

gST,DfTDfRDf 1.21

remains constant as the Universe expands.
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