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Abstract—A reaction-diffusion system based on some

biological systems, arising in enzymatic reactions, has

been considered. The iterative method by means of a fixed

point theorem has been applied in order to solve this

system of coupled nonlinear partial differential equations.

The existence, uniqueness and positiveness of the solution

to system with Robin-type boundary condition have been

obtained. A biochemical system has been extended and

solved analytically. Quasi-steady states and linear stability

analysis have been proved.
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I. INTRODUCTION

A number of numerical studies have been devoted

to metabolic pathways, modelized using a system of

nonlinear ordinary differential equations. These initial

studies were concerned mainly with reactions occurring

in a homogeneous milieu (see, for instance, [5]). Sev-

eral authors have emphasized the dramatic importance

of the cell milieu heterogeneity for metabolic pathways

dynamics [3], [8]. Therefore, the systems are described

by nonlinear PDE’s taking into account enzyme reaction,

metabolite diffusion, and Robin-type boundary conditions,

but now augmented to include an electrical field or a derive

term due the possible presence of ions.

These subjects continue to be among the most popu-

lar for molecular biologists and students alike, with the

availability of a new generation of efficient algorithms

for reaction-diffusion problems providing numerical and

significant results.

The aim of this paper is: (i) to solve some reaction-

diffusion systems arising in enzymatic reactions; (ii) to

take the realistic boundary condition and the derive term

into account; (iii) to apply the mathematical machinery to

phosphofructokinase model.

The development of the iterative method by a means

of fixed point theorem makes possible not only the so-

lution of these systems but extensions to more general

models with wide classes of nonlinearities and of bound-

ary conditions. Its application to a biological problem may
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involve extension of the original second member. The

basic set up of the original model is discussed in details

in [5].

In Section 3, we prove the existence, uniqueness

and positiveness of the solution to the resulting reaction-

diffusion equations. The associated numerical resolution

is briefly recalled in Section 4. Solutions of the governing

equations of an extended phosphofructokinase model are

reported in Section 5.

II. STATEMENT OF THE PROBLEM

Let Ω = ]0, L[ be a one-dimensional spatial domain,

and I = ]0, T [ a time interval. The concentrations ui,

i = 1, . . . , n of the metabolites depend on space and time

such that ui(x, t) is the concentration of the i-th species

at point x and time t. If we set Γ = {O,L} the boundary

of Ω, Q = Ω × I, and Σ = Γ × I, the evolution of

the concentrations u = (u1, . . . , un) is governed by the

following nonlinear system :

∂tu− ∂x (a ∂xu) + b ∂xu+ c u = f(x, u) in Q

a∂ηu = µ (uex − u) on Σ

u = u0 if t = 0
(1)

where a = diag (a1, . . . , an), b, c, and µ are diagonal

matrices with coefficients defined from Ω into R or from

Γ into R
+

. The function f = (f1, . . . , fn) is such that

fi is defined from Ω × R
n

into R. The function uex is

defined from Σ into
(
R

+
)n

, and represents a Robin-type

boundary condition, and η designating the external normal

unit vector. The initial condition u0 is defined from Ω into(
R

+
)n

.

III. EXISTENCE, UNIQUENESS AND POSITIVENESS OF

THE SOLUTION

Let us introduce the following classical notations [4]:

(i) H =
(
L2(Ω)

)n
, where L2(Ω) is the Hilbert space of

square integrable functions over Ω; (ii) V =
(
H1(Ω)

)n
,

where H1(Ω) is the Hilbert space of square integrable

functions with first derivative belonging to L2(Ω); (iii)

L2(I, V ) is the space of functions v with norm ‖v‖V

belonging to L2(I); (iv) W (I, V, V ′) is the space of

functions v belonging to L2(I, V ) whose derivative dv/dt

belongs to L2(I, V ′), V ′ being the topological dual of V .



A. Existence and uniqueness of the solution

Theorem 1: If the following assumptions are satis-

fied:

(i) The function f is Lipschitz continuous in u indepen-

dently of x, i.e.:

∃C > 0, ∀u, v ∈ R
n

, |f(u) − f(v)| ≤ C |u− v|

and f verifies:

∀u ∈ L2(I, H), f(u) ∈ L2(I, H).

(ii) The functions ai, bi, ci, and µi, i = 1, . . . , n, are such

that:

0 < m ≤ ai(x) ≤M ∀x ∈ Ω ∪ Γ
0 ≤ |bi(x)| ≤M ∀x ∈ Ω
0 < m ≤ ci(x) ≤M ∀x ∈ Ω
0 ≤ µi(x) ≤M ∀x ∈ Γ

(iii) The function g = µuex belongs to L2
(
I, H−1/2(Γ)

)
;

(iv) The function u0 belongs to H ;

then system (1) admits a unique solution in W (I, V, V ′).

Proof: The main steps of the proof are as follows: (i)

consider a given function u(1) ∈ L2(I, H), and prove that

system (1) admits a unique solution u(2) when the second

member equals to f
(
u(1)

)
; (ii) define the application G by

u(2) = G
(
u(1)

)
, and prove that G admits a unique fixed

point in an adequate functional space.

The first step of the proof is obtained by introducing

a variational equation associated to system (1), say:

∀ v ∈ V ,

(∂tu, v)0 + (a ∂xu, ∂xv)0 + µL u(L)v(L)

+ µ0 u(0)v(0) + (b ∂xu, v)0 + (c u, v)0

= (f, v)0 + µL u
ex

Lv(L) + µ0 u
ex

0v(0)

u(., t = 0) = u0(.) ∈ H (2)

where the scalar products ( ·, · )0 are in H .

A bilinear continuous form w defined on V × V is

now introduced:

w(u, v) = (a ∂xu, ∂xv)0 + µL u(L)v(L)

+ µ0 u(0)v(0) + (b ∂xu, v)0 + (c u, v)0

Following [4], the coercivity of w can be deduced, i.e.:

∃λ, ∃α > 0 : w(u, u) + λ |u|2H ≥ α |u|2V

The classical assumptions [4] on parabolic system being

verified, the variational equation (2) admits a unique

solution in W (I, V, V ′).

The second step of the proof consists in proving that

G is a contraction mapping on L2(I, H).

Let us consider u(1) and u(1) in L2(I, H), and u(2) and

u(2) the related solutions. If we introduce the generic

notation δq = q − q, the proof consists in determining

the existence of a real number ν ∈ ]0, 1[ such that:
∣∣∣δG

(
u(1)

)∣∣∣
L2(I,H)

≤ ν
∣∣∣δu(1)

∣∣∣
L2(I,H)

.

The solutions u(2) and u(2) to system (1) satisfy the

following system:

∂t

(
δu(2)

)
− ∂x

(
a ∂x

(
δu(2)

))

+b∂x

(
δu(2)

)
+ cδu(2) = δf

(
u(1)

)
in Q,

a∂η

(
δu(2)

)
+ µδu(2) = 0 on Σ,

δu(2) = 0 if t = 0,

and the associated variational equation:

∀ v ∈ V ,
(
∂t

(
δu(2)

)
, v

)

0
+

(
a ∂x

(
δu(2)

)
, ∂xv

)

0

+µL δu
(2)(L)v(L) + µ0 δu

(2)(0)v(0)

+
(
b ∂x

(
δu(2)

)
, v

)
0

+
(
c δu(2), v

)
0

=
(
δf

(
u(1)

)
, v

)
0

(3)

By considering v = δu(2) in (3), and taking the

assumptions on functions a, b, c, and µ into account, we

get:

d

dt

∣∣∣δu(2)
∣∣∣
2

0
≤

∣∣∣δf
(
u(1)

)∣∣∣
2

0
+ (2λ + 1)

∣∣∣δu(2)
∣∣∣
2

0
(4)

Integrating both sides of (4) between 0 and s ∈ I, and

applying the Gronwall lemma [4], we obtain:

∣∣∣δu(2)
∣∣∣
2

0
(s) ≤ exp(s)

∫ s

0

∣∣∣δf
(
u(1)

)∣∣∣
2

0
(τ ) dτ

and
∣∣∣δu(2)

∣∣∣
2

0
(s) ≤ exp(T )

∣∣∣δf
(
u(1)

)∣∣∣
2

L2(0,s;H)
(5)

Since the function f is Lipschitz continuous, we have,

from inequality (5):

∀t ∈ ]0, T [,

∣∣∣δu(2)
∣∣∣
2

L2(0,t;H)
≤M exp(T )

∫ t

0

∣∣∣δu(1)
∣∣∣
2

L2(0,s;H)
ds

The proof can now be completed by a recursive

calculation, where the m-th iterated value G(m) of the

application G is contracting with a constant ν such that:

ν2 = (M exp(T ))mT m

(m−1)! < 1.

We conclude that G(m) admits a unique fixed point, and

with a Banach fixed point theorem, that G admits also a

fixed point u in L2(I, H) such that : u = G(u). ut

B. Positiveness of the solution

Let us prove that under suitable conditions, from the

biological point of view, the solution to system (1) is

nonnegative, i.e. all components are nonnegative.

Theorem 2: If the assumptions of theorem 1 hold,

and if, moreover, the functions f , uex and u0 are non-

negative, then the solution to system (1) is nonnegative.

Proof: If we perform the following change of variable:

z = exp (−λt) u, the variational equation (2) may be



written as:

∀ v ∈ V ,

(∂tz, v)0 + (a ∂xz, ∂xv)0 + µL z(L)v(L)

+µ0 z(0)v(0) + (b ∂xz, v)0 + ((c+ λ) z, v)0

= exp (−λt) (f(x, exp (λt) z), v)0

+µL z
ex

Lv(L) + µ0 z
ex

0 v(0)

with z(., t = 0) = z0(.) ∈ H (6)

By writing z = z+ − z− and considering v = − z−,

Eq. (6) becomes:

1
2

d
dt

|z−(t)|
2
0 +w1 (z−, z−) + µL (z−(L))

2

+ µ0 (z−(0))
2

= − exp (−λt) (f, z−)0

− µL z
ex

Lz
−(L) − µ0 z

ex

0 z
−(0)

with a nonpositive second member and w1 defined by:

w1 (z−, z−) = (a ∂xz
−, ∂xz

−)0 + (b ∂xz
−, z−)0

+( (c+ λ)z−, z−)0

Let us now prove that w1 is nonnegative. By Young

inequality, we have:

∣∣(b ∂xz
−, z−

)
0

∣∣ ≤ ε

2

∣∣b ∂xz
−

∣∣2
0
+

1

2 ε

∣∣z−
∣∣2
0

ε > 0

so that: w1 (z−, z−) ≥
(
m− ε

2 M
2
)
|∂xz

−|
2
0 +(

m+ λ − 1
2 ε

)
|z−|

2
0.

It is always possible to choose ε > 0 so that : m− ε
2 M

2 ≥

0, and then λ so that : m + λ − 1
2 ε ≥ 0. It follows that

w1 is nonnegative, and we have: d
dt

|z−(t)|
2
0 ≤ 0. The

function |z−|
2
0 is then a decreasing function of time, and

since z−(x, 0) = 0, we obtain the theorem. ut

IV. NUMERICAL RESOLUTION

System(1) can be performed with adequate mathemat-

ical machinery. The main difficulty in the resolution is to

take into account the derive term b ∂xu. See, for details,

[3] where a variational formulation relevant to the given

problem leads to a rigourous discretization.

A. Variational formulation

The composite variational formulation consists in

performing scalar products of the terms of the partial

differential equation by some test functions belonging to

appropriate spaces. This formulation makes it possible to

take the boundary conditions into account, and thus leads

to an approximate solution of the initial model.

By introducing an intermediate function r(x, t), the

system may be written as:

r(x, t) = −a(x) ∂xu(x, t) (7)

∂tu(x, t) = −∂xr(x, t)− b(x) ∂xu(x, t)

−c(x)u(x, t) + f(x, u) (8)

By performing scalar products of Eqs (7) and (8) by

two test functions, respectively ψ belonging to H1(Ω) and

φ belonging to H(Ω), and by integrating by parts, we get

the two following equations:

∫

Ω

r(x, t)

a(x)
ψ(x) dx =

∫

Ω

u(x, t)∂xψ(x) dx

− u(L, t)ψ(L) + u(0, t)ψ(0)

(9)∫

Ω

∂tu(x, t)φ(x) dx +

∫

Ω

∂xr(x, t)φ(x) dx

+

∫

Ω

b(x)∂xu(x, t)φ(x) dx

+

∫

Ω

c(x)u(x, t)φ(x) dx

=

∫

Ω

f(x, u(x, t))φ(x) dx

(10)

B. Discretizations

Eqs (9) and (10) are now discretized, by projection

onto different sub-spaces of H1(Ω) and L2(Ω) respec-

tively. Discretization in space is performed by a classical

composite finite element method of order zero, which

brings forth an ordinary differential equations system

in time. The space domain Ω is divided into N space

intervals of the same length h.

We use the θ-method where θ ∈ [0, 1] is a parameter.

This method consists in replacing the equation by a

scheme with finite differences in time, either explicit or

implicit according to the value of θ. The interval I is

divided into NT equal sub-intervals Ik =
]
tk, tk+1

[
of

length τ . Taking θ = 0.5, we obtain the classical Crank-

Nicolson method which is unconditionally stable.

System (1) of n coupled partial differential equations

is then solved by computing successively the solution of

each equation where the source term f is calculated in

the i-th equation by considering the values of u1, . . . ,

ui−1 obtained from the previous equations. It has been

verified [9] in a similar problem that this method of

resolution remains precise in comparison with a global

and cumbersome resolution, if the time step τ is chosen

to be not too large.

V. APPLICATION TO AN ENZYME MODEL

The biologically important properties of a biochemi-

cal system are the existence of steady states or stationary

solutions and the dynamic properties such as oscillations.

The reactions considered by [5], [6], [8] as a model

applied to phosphofructokinase (PFK) which is an enzyme

activited by the end-product lead to the reaction-diffusion

system (1) with the following specific form taking the



derive terms and the components into account:

in Q
∂tα− ∂x (a1 ∂xα) + b1∂xα+ c1α = f1 (x, α, β)

∂tβ − ∂x (a2 ∂xβ) + b2∂xβ + c2β = f2 (x, α, β)

on Σ
a1∂ηα = µ1 (αex − α)

a2∂ηβ = µ2 (βex − β)

if t = 0
α = α

0
, β = β

0

(11)

where α and β denote the normalized concentrations of

the substrate and the product respectively, the exterior

concentrations αex, βex, and the initial conditionsα
0
, β

0
are

nonnegative. The coefficients c1 and c2 are nonnegative;

more precisely, in [8], c1 ≡ 0 and c2 = k σ2 where k > 0

is a real parameter and σ2 ≡ σ2(x) is a function defined

on Ω. On the right-hand side, f1 and f2 are bounded

continuous real functions defined on Ω × R
+
×R

+
(see

below). The boundary coefficients a1, µ1, a2, µ2 are

nonnegative and verify:

(a1, µ1) 6= (0, 0) and (a2, µ2) 6= (0, 0).

The nonlinear mappings

f1 and f2: Ω ×
(
R

+
)2

−→ R

are defined by the following expressions:

f1(x, α, β) = k σ1(x) − k g(x, α, β)

f2(x, α, β) = k g(x, α, β) (12)

with the function g defined on Ω ×
(
R

+
)2

by:

g (x, α, β) =
[2 E

0
ε/(1+ ε)]α(1+α/(1+ ε))(1+β)2

Lν(1+c α)2+(1+β)2(1+α/(1+ε))2
(13)

where k, σ1, E0
, ε, Lν, c are the nonnegative model pa-

rameters which may depend on x. For more information

on the biological aspects, we refer the interested reader to

[5] and references therein.

Goldbeter [6] imposes Dirichlet boundary conditions:

α(0, t) = α(L, t) = α and β(0, t) = β(L, t) = β ,

where α and β are the steady-states concentrations. Gold-

beter [6] analyzed numerically the behaviour of this model

in the presence of diffusion along a single dimension

without derive term. This situation is extended to a linear

set of cells in the two-dimensional case by Marmillot

et al. [8]: two phases are associated via permeable cell

membrane and computer simulations are discussed.

The rest of this section is divided as follows. In

Section V-A, the functions g, f1 and f2 are extended

and defined on Ω ×R
2
. In Section V-B we present some

algebraic results which introduce the explicit expressions

of steady-states concentrations and their stability analysis.

A. Extension of the second member

Instead of the original notation (α, β) in [5], we

denote here u = (u1, u2) for the sake of simplicity. The

value of ui can be a priori negative or positive; this leads

us to extend the function fi overall on Ω×R
2
. In partic-

ular, for technical reason, we extend the second member

so that f is Lipschitz continuous in u independently of x.

For this reason, it is necessary to extend appropriately the

function g.

The second member f can be written, for all u with

u1, u2 ≥ 0, in the form:

f
(
u
)

= k

(
σ1 − g

(
u
)

g
(
u
)

)

= k σ1

(
1
0

)
+ k g

(
u
) (

−1
1

)
(14)

with the following hypotheses:

k > 0 is a constant parameter, (15)

σ1 is a bounded nonnegative function

defined on Ω, (16)

and where the function g is defined by (13) with the

following hypotheses:

E0, ε, Lν, c are bounded nonnegative functions

defined on Ω. (17)

Let us note that the function g possesses a denominator

which may be equal to zero for some nonpositive values

of ui, in particular when Lν is equal to zero in a nonempty

subset of Ω.

Proposition 3: Under the hypotheses (15)–(16) for

the coefficients k, σ1, and (13)–(17) for the function g

and its parameters, the function f , given in (14), admits

an extension defined on Ω × R
2
, again denoted f , such

that :

|f(u) − f(v)| ≤M |u− v| , ∀u, v ∈ R
2
, (18)

where M > 0 is a constant value independent of x, and

| · | is the euclidean norm in R
2
.

Proof: The function f is defined by (14) where the

coefficients k, σ1 satisfy hypotheses (15)–(16) and the

function g is defined by (13) for all u1, u2 ≥ 0 with the

coefficients E0, ε, Lν , c which verify hypotheses (17).

Let us denote g in the form:

g(u) =
d0 g1(u1) g

2
2(u2)

d5 g2
3(u1) + g2

4(u1) g2
2(u2)

where the functions gi are defined from R to R by:

∀ z ∈ R, g1(z) = z (1 + d1 z),

gi(z) = 1 + di z , i = 2, 3, 4 (19)

with the functions di defined from Ω with values in R

by: d0(x) =
2E0(x) ε(x)

1 + ε(x)
, d1(x) = 1

1 + ε(x)
, d2 ≡ 1,

d3(x) = c(x), d4(x) = 1
1 + ε(x)

, d5(x) = Lν(x).



Let us extend g on Ω × R
2
. The functions gi are

firstly extended on R so that the denominator of g cannot

be equal to zero and the extension ĝ is bounded.

If the extension ĝi of gi admits a positive lower bound

independently of x, then the denominator of g is always

positive independently of x.

Let us introduce the real-valued function θ of a real

variable z such that θ is of class C∞ and verifies:





θ(z) = 1 if − η ≤ z ≤ R ,

θ(z) = 0 if z ≤ −2 η or z ≥ 2R ,

0 ≤ θ(z) ≤ 1 if − 2 η ≤ z ≤ −η or
R ≤ z ≤ 2R ,

where R > 0 is a constant sufficiently large versus the

physically acceptable value, and η is a positive constant

defined by: η = 1

3 sup
Ω
d3

. This constant η is independent

of x and exists by means of hypothesis (17).

Let us denote ĝ3 an extension of g3, defined for all

(x, z) ∈ Ω ×R by:

ĝ3(z) = g3(0) +

∫ z

0

θ(y) g′3(y) dy (20)

where the dependance of x is implicit for the sake of

simplicity.

For the completeness of the proof of proposition 3,

we need the following technical lemma:

Lemma 4: Under hypothesis (17) about the coeffi-

cient c, the function ĝ3, given by (20), admits the follow-

ing properties: (i) ĝ3 verifies: ĝ3(z) ≥ m > 0, ∀ z ∈ R,

where m is a constant independent of x; (ii) ĝ3 is constant

outside of a compact of R; (iii) ĝ3 admits the derivative:

ĝ3
′(z) = θ(z) g′3(z), ∀ z ∈ R. (21)

Proof: The function ĝ3 is defined by (20) by means

of θ and g3 whereas g3 is given by (19) and admits the

derivative g′3(z) = d3 ≥ 0, ∀ z ∈ R. This leads us to the

sign of integral in (20).

Three cases then are possible: (i) if z < −2η,

then ĝ3(z) = g3(0) +
∫
−2η

0
θ(y)g′3(y) dy since θ

equals zero outside of [−2 η, 2R ] ; the integral then

verifies:
∫ −2η

0
θ(y)g′3(y) dy = −

∫ 0

−2η
θ(y)g′3(y) dy =

−d3

∫ 0

−2η
θ(y) dy ≥ −2ηd3, and by means of η, we ob-

tain:
∫ −2η

0 θ(y)g′3(y) dy ≥ −2
3 , then ĝ3 admits a constant

value such that:

ĝ3(z) ≥ g3(0) − 2 η d3 ≥
1

3
, ∀ z < −2 η ;

(ii) if −2 η ≤ z ≤ 2R, then the integral in (20)

verifies:
∫ z

0
θ(y)g′3(y) dy ≥

∫
−2η

0
θ(y)g′3(y) dy, this leads

to: ĝ3(z) ≥
1
3 , ∀ z, − 2 η ≤ z ≤ 2R ;

(iii) if 2R < z, then ĝ3(z) = g3(0) +
∫ 2R

0
θ(y)g′3(y) dy,

where the integral is a positive constant; ĝ3 is constant

and verifies: ĝ3(z) > g3(0) , ∀ z > 2R.

The integral expression (20) gives us the derivative

ĝ3
′

in the form: ĝ3
′(z) = θ(z)g′3(z), ∀ z ∈ R, which is

equal to zero outside of supp θ. ut

Let us finish the proof of proposition 3. For each x,

an extension ĝ3 of g3 exists. Let us define on Ω × R the

extended functions ĝi of gi by means of a scheme similar

to (20).

The extension ĝ of g is then defined for all (x, u) ∈

Ω × R
2

by:

ĝ(x, u) =
d0 ĝ1(u1) ĝ2

2(u2)

d5 ĝ3
2(u1) + ĝ4

2(u1) ĝ2
2(u2)

. (22)

According to lemma 4 generalized for the functions ĝi,

i = 2, 3, 4, the denominator of ĝ admits a strictly positive

lower bound independently of x.

Let us consider the extension f̂ of f , defined for all

(x, u) ∈ Ω × R
2
, by:

f̂
(
x, u

)
= k σ1(x)

(
1
0

)
+ k ĝ

(
x, u

)(
−1

1

)
(23)

This extension f̂ is defined by means of the coefficients

k and σ1 bounded on Ω (see hypothesis (16)), and the

function ĝ defined by (22). In order that the function

f̂ is Lipschitz continuous in u, independently of x, it

is sufficient to prove that ĝ admits the same property.

In particular, if ĝ admits bounded continuous partial

derivatives, then ĝ is lipschitzian.

According to formula (21) of lemma 4, and defining

D by: D = d5 ĝ3
2(u1) + ĝ4

2(u1) ĝ2
2(u2), we can obtain

the partial derivatives of ĝ versus u1 and u2.

Since the continuous extended functions ĝi, i =

2, 3, 4, are in the form (20) and their derivatives ĝi
′

in

the form (21), the denominators possess a strictly positive

lower bound, and the partial derivatives are defined and

continuous in R
2
.

Moreover, since the coefficients d0 and d5 are non-

negative and bounded in Ω, and since the functions ĝi

and their derivatives are bounded in R independently of

x, then the partial derivatives
∂ĝ
∂ui

are bounded in R
2

independently of x.

We then deduce that ĝ is globally lipschitzian in u,

independently of x, and we can conclude that f̂ , defined

by (23), verifies the Lipschitz property (18) uniformly in

G. ut

To solve system (11) with the extended second mem-

ber f by means of a Picard-type fixed point theorem

(see Theorem 1), it is necessary to establish the following

proposition:

Proposition 5: The function f introduced by (14) and

extended by (23), verifies:

u ∈ L2 ( I, H ) =⇒ f (u) ∈ L2 ( I, H ) . (24)

Proof: From (18), it is sufficient to take v = 0.

We then have: |f(u) − f(0)| ≤ M |u|, ∀u ∈ R
n

, and



|f(u)| ≤ M |u| + |f(0)|, ∀u ∈ R
n

. By integrating in Q,

we obtain (24). ut

Lastly, we do precise, for instance:

(i) The extension f is Lipschitz continuous, and f verifies:

u ∈ L2 ( I, H ) =⇒ f (u) ∈ L2 ( I, H ) (see Proposi-

tions 3–5);

(ii) We assume that the functions a, b verify:

∀ i = 1, . . . , n, 0 < m ≤ ai(x) ≤ M , ∀x ∈ Ω ∪ Γ, and

0 ≤ |bi(x)| ≤ M , ∀x ∈ Ω. We suppose c1 sufficiently

small positive constant and c2 ≡ k σ2 such that: ∀ i =

1, . . . , n, ∀x ∈ Ω, 0 < m ≤ di(x) ≤ M (k > 0 is a

constant parameter and σ2 is assumed to be a bounded

positive function defined in Ω).

The function µ is such that: ∀ i = 1, . . . , n, ∀x ∈ Γ,

0 ≤ µi(x) ≤ M . If µ1 > 0 (respectively µ2 > 0), then

we take c1 ≡ 0 (respectively c2 ≥ 0).

(iii) We assume that g = µuex is defined by means of

fixed nonnegative constants uex

1 and uex

2 .

(iv) u0 = (α0, β0) where α0 and β0 are assumed nonneg-

ative real constants.

Since the hypotheses of Theorem 1 are satisfied, there

exists a unique solution u to system (11). ut

B. Steady states and stability in the first approximation

1) Solution of algebraic equations: Let us establish

two lemmas on the existence and the analytical solution

of steady-states of the biological reaction-diffusion system

(11). For biological reasons, only nonnegative real-valued

solutions are considered.

Lemma 6: Let c1 = 0, c2 = k σ2 with positive real

parameters k and σ2. Assume f1 and f2 defined above

(12). The nonlinear system :

{f1(x, α, β) = 0; f2(x, α, β) − k σ2 β = 0}

admits the following real-valued solutions with the

intermediate notations (since the algebraic calculus is

hard): E = εE0, ε1 = 1 + ε, c1 = 1 − cε1, σ = σ1σ
2
2 ,

and σ12 = σ1 + σ2,

α± =
{
ε1(σcLνε1 − (E − σ1)σ

2
12 ± σ12

[
E2σ2

12

+σLνc1 (2E − σ1c1)]
1/2

)
}

/
{
(2E − σ1)σ

2
12 − σc2Lνε

2
1

}
;

β± = σ1/σ2.

if and only if: E2σ2
12 + σLνc1 (2E − σ1c1) > 0.

Proof: Considering this problem where: f1 ≡ k σ1 −

k g and f2 ≡ k g, we get the following equations:

σ1

{
Lν(1 + αc)2 + (1 + β)2 [1 + α/(1 + ε)]2

}

= [2E/ε1]α [1 + α/ε1] (1 + β)2 ,

[2E/ε1]α [1 + α/ε1] (1 + β)2

= σ2β
{
Lν(1 + αc)2 + (1 + β)2 [1 + α/ε1]

2
}

and we easily find β = σ1/σ2. It follows from either of

these equations that α verifies the following second order

polynomial equation: pα2 + qα+ r = 0 with

p = σc2Lνε
2
1 − (2E − σ1)σ

2
12,

q = 2ε1
[
σcLνε1 − (E − σ1)σ

2
12

]
, and

r = σ1ε
2
1

[
σ2

12 + σ2
2Lν

]
.

Hence, an elementary calculation yields:

q2 − 4pr = σ2
12

[
E2σ2

12 + σLνc1 (2E − σ1c1)
]

and, if

q2 − 4pr ≥ 0, the expressions α± and β± mentioned

above are obtained. ut

Remark 7: If all parameters are nonnegative and ver-

ify: cε1 ≤ 1 and (2E − σ1)(1 + σ1/σ2)
2 − c2σ1Lν > 0,

then nonnegative solution α± exists. For instance [8] and

parameters therein, a steady state exists.

In absence of diffusion a = b ≡ 0, system (11)

admits two steady states. For a large class of parameters,

the numerical study of the model [5] shows that these

solutions exist in R
+

, but the only steady state physically

acceptable is
(
α+, β+

)
. These latter expressions verify

precisely Goldbeter-Lefever numerical results [5].

Lemma 8: Let Lν ≡ 0. Then there exist steady-state

solutions: α+ = (1 + ε)σ1/(2εE0
− σ1), α− = −(1 + ε).

Moreover, in this case, exists a positive solution α+ if and

only if : 2εE
0
− σ1 > 0.

The proof is immediate.

2) Stability analysis: The dynamical evolution of the

chemical reactions of system (11) without diffusion nor

transport is described by the following ODE:

dα
dt

= kσ1 − kg(x, α, β),

dβ
dt

= kg(x, α, β) − kσ2β,

(25)

with same nonnegative initial conditions α
0

and β
0
.

The temporal dynamics in a spacially uniform system

are governed by solution of the system (25), where: (i) the

vecteur (α, β) is the vector of chemical concentrations,

and is therefore an element of the nonnegative cone C+ of

a two-dimensional real euclidean vector space; (ii) the net

rate of production of the ith product depends on g which is

a rational function in the α, β’s, having no poles in C+;

(iii) the real parameters include the kinetic constants but

do not change significantly on the time scale of interest.

To be well-posed from the biological standpoint, the

solution of (25) should exist and be nonnegative and

bounded for t ∈ [0,+∞[. Nonnegativity is guaranteed by

the fact that:
{
f1(x, 0, β) = kσ1 ≥ 0 for β ≥ 0
f2(x, α, 0) = kg(x, α, 0) ≥ 0 for α ≥ 0

The solution through any initial point in C+ is unique

because the functions f1 and f2 are locally Lipschitz

continuous in (α, β) throughout C+.

Around some quasi-steady state
(
α, β

)
of the above

biological model, stability analysis leads to consider the

following derivatives:

∂g

∂α
≡
∂g

∂α

(
α, β

)
and

∂g

∂β
≡
∂g

∂β

(
α, β

)
.



Since the calculus is cumbersome, we give only the

explicit results by means of intermediate notation

α1 = 1 + α+ ε:

∂g

∂α
= σ1

α1 + α

αα1

− σ2
1

Lν(1 + αc)cε21 + (1 + σ1/σ2)
2α1

αE(1 + σ1/σ2)2α1

;

∂g

∂β
=

σ1σ2

σ12
·
2αE − α1σ1

αE
.

Lemma 9: Some steady-state solution
(
α, β

)
is lo-

cally asymptotically stable if and only if:

∂g

∂α
−
∂g

∂β
+ σ2 > 0 .

Proof: In absence of diffusion nor transport, let us

linearize the system (25) in the neighborhood of steady

state
(
α, β

)
and obtain the first approximation system.

Hence, the stability of the linearized system is analytically

studied by the means of the eigenvalues of the Jacobian

matrix, i.e.:

λ± = −k
2

[
∂g
∂α − ∂g

∂β + σ2

∓

( (
∂g
∂α − ∂g

∂β + σ2

)2

− 4σ2
∂g
∂α

)1/2
]
.

The eigenvalues λ± have negative real parts if and only

if: ∂g
∂α

− ∂g
∂β

+ σ2 > 0. The steady state is locally

asymptotically stable if and only if this latter condition

is true. ut

Remark 10: The eigenvalues λ± belong to R
∗−

if

and only if the following condition:(
∂g

∂α
−
∂g

∂β
+ σ2

)2

≥ 4σ2
∂g

∂α
is satisfied.

Around some steady state
(
α, β

)
, stability analysis

gives us an unstable focus if we obtain:
∂g

∂α
−
∂g

∂β
+ σ2 < 0 and

∂g

∂α
> 0.

Lemma 11: Let us assume Lν ≡ 0. Then the feasible

steady state is always locally asymptotically stable.

Proof: In this case, from Lemma 8, we obtain :

α+ = (1 + ε)σ1/ (2εE
0
− σ1) > 0,

then it follows:
∂g

∂α
= 1 − σ1/2 εE0

> 0, and
∂g

∂β
= 0.

The stability condition is always satisfied. ut

Remark 12: In a bound-phase (Lν ≡ 0), the steady

state is exponentially stable and the α-stability [1] of

the linearized system possesses the degree d ≡ −< (λ+)

verifying d = k (1 − σ1/2 εE0
) or d = k σ2.

With some parameters values, the system evolves

towards a limit cycle in the phase plane as a negative

feedback cellular control system, but if we consider bound

phase [8] when Lν = 0, then no sustained oscillations

occur in the concentrations as functions of time.

The linearized system in a neighborhood of any

steady state has a stable critical point
(
α, β

)
= (0, 0)

when σ1 = 0 (no rate entrance of the substrate) and

σ2 6= 0 (with outputflow of the product) in one phase

since the Linard and Chipart criterion is always satisfied.

For this purpose, we get:
∂g

∂α
=

2 εE
0

(1 + ε)(1 + Lν)
> 0 and

∂g

∂β
= 0.

So numerical simulations [5], [8] are confirmed. Note

that an important feature of living systems is the stability

of their dynamics, in particular their steady states.

VI. CONCLUSION

Many reaction-diffusion system based on some bio-

logical systems, arising in enzymatic reactions, has been

studied numerically by means of finite difference method

or even finite elements method. Mostly, the existence,

uniqueness and positiveness of the solution are implicitly

supposed, and steady states and linear stability analysis

are studied apart.

Results on the linear stability analysis of the system

at the neighborhood of the unique steady state can be

derived by both analytical and numerical studies for some

values of the parameters of the model (see [9], [10], [3]);

these numerical examples used the adequate algorithm

presented herein. These analytical and numerical results

confirm that the presence of cellular microenvironments

can result in a diversity of metabolic dynamics, either

homeostatic (asymptotically stable steady state) or oscil-

latory, depending on the exchanges between the microen-

vironment and the exterior. There is a constant interest in

phosphofructokinase and glycolytic oscillations, see for

instance : [2], [11], [12].
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