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Abstract

In this article, we will discuss the smooth (X s ++/—1Y)s)-invariant forms on M and
to establish a localization formulas. As an application, we get a localization formulas
for characteristic numbers.

The localization theorem for equivariant differential forms was obtained by Berline and
Vergne(see [2]). They discuss on the zero points of a Killing vector field. Now, We will discuss
on the points about two Killing vector fields and to establish a localization formulas.

Let M be a smooth closed oriented manifold. Let G be a compact Lie group acting
smoothly on M, and let g be its Lie algebra. Let ¢ be a G-invariant metric on TM. If
X, Y € g, let Xy, Yy be the corresponding smooth vector field on M. If XY € g, then
X, Yy are Killing vector field. Here we will introduce the equlvariant cohomology by two
Killing vector fields.

1 Equlvariant cohomology by two Killing vector fields

First, let us review the definition of equlvariant cohomology by a Killing vector field. Let
Q*(M) be the space of smooth differetial forms on M, the de Rham complex is (2*(M), d).
Let Lx,, be the Lie derivative of X, on Q*(M), ix,, be the interior multiplication induced
by the contraction of Xj,.

Set

dy =d+ix,,

then d3% = Lx,, by the following Cartan formula

LXM = [d> iXM]'

Let
QO (M) ={w e V(M) : Lx,,w =0}

be the space of smooth Xj-invariant forms on M. Then d%w = 0, when w € Q% (M). Tt is
a complex (% (M), dx). The corresponding cohomology group

o KerdX Q;{(M)

Hiy (M)

B Imdx Q% (M)

is called the equivariant cohomology associated with X. If a form w has dxw = 0, then w
called dx-closed form.
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Then we will to definite a new complex by two Killing vector field. If X|Y € g, let
X, Yar be the corresponding smooth vector field on M.
We know

Lx,, +v—1Ly,,

be the operator on 2*(M) @ C.
Set

X py+v=ivy = "Xu v _1ZY1\4

be the interior multiplication induced by the contraction of X, + +/—1Y,,. It is also a
operator on Q*(M) ®g C.
Set

Ay y=Ty = A+ ix, =Ty,
Lemma 1. If X, Y € g, let Xy, Yar be the corresponding smooth vector field on M ; then

A%y 1y = Lxy +V =1Ly,

Proof.

(d + iXN1+¢j1YA1)2 = (d + iX]M v _MYM)(d + iX]W + v _MYM)
=d* +dix,, +ix,,d+ V—1diy,, + V—1iy, d + (ix,, +V—liy,,)?
= LXM + v _1LYM

Let
}M+\/jlYM(M) ={we P (M)®rC: (Lx, +V—1Ly,)w = 0}

be the space of smooth (X,; + /—1Y))-invariant forms on M. Then we get a complex

(Q}M+\EYM(M)>dX+ﬁY)‘ We call a form w is dx, /y-closed if dx, /5yw = 0 (this is
first discussed by Bimsut, see [3]).The corresponding cohomology group

Kel"dX_,_\/jlY |Q;{+\/jly(M)

N IdeJr\/fly’Q;HﬁY(M)

H;(+\/T1Y(M)

is called the equivariant cohomology associated with K.

2 The set of zero points

Lemma 2. If X,Y € g, let Xas, Yar be the corresponding smooth vector field on M, X'|Y"
be the 1-form on M which is dual to Xy, Y by the metric g™, then

Lx,,Y + Ly, X =0
Proof. Because
(Lxyw)(2) = Xu(w(Z)) = w([Xu, Z])
here Z € T'(T'M), So we get

!

(LXMY )(Z) =Xy < YM,Z > — < [XM,Z],YM >



(Ly, X)W (Z) =Yu < Xo, Z > — < Yo, Z), Xor >

Because Xy, Yy, are Killing vector fields, so (see [6])

Xy <Yy, Z>=< LXMYM,Z >+ < YM,LXMZ >
=< [Xa, Yul, Z > 4+ < Yur, [ X, Z] >

Yu <XM,Z> =< LYMXM7Z >+ < XM,LYMZ>
=< [YMaXMLZ> + <XM7[YM7Z] >

then we get
(Lx,,Y + Ly, X' )(Z) =< [Xa, Y], Z > + < [Yar, Xut], Z >=0
O

Lemma 3. If X,Y € g, let Xy, Y be the corresponding smooth vector field on M, X', Y’
be the 1-form on M which is dual to Xy, Yy by the metric g™, then

dXJrﬁY(XI + Vv _1Y/)
is the dy , /=1y -closed form.
Proof.

Ayt oy (X +V=1Y) =dy, oy (d(X + V=1Y") +ix, 4 oy, (X +V=1Y))
=dix, =1y, (X + V1Y) +iy, /1y, dX +V-1Y")

’

= Ly, X — Ly,,)Y +vV—=1(Lx, Y + Ly, X)
=0
So dy, =1y (X +v/—=1Y") is the dy, —1,-closed form. O

Lemma 4. For any n € H

vty (M) and s > 0, we have

/M n= /M exp{—s(dys 1y (X' + V=TIV D}y

Proof. Because

5 [ eplestix ey (¥ + VEIY D

=~ [ e X+ VY expl sl (X 4 VATV D
and by assumption we have
dXJr\EY?? =0
dxsy=y ep{—s(dx =1y (X +V=1Y))} = 0

So we get
(e (X + V1Y) exp{=s(dyyymmy (X + V=TV Dy

= dX+ﬁY[(X/ +V-1Y") eXp{_S(dX+\/T1Y(X/ + \/__1Y/))}77]
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and by Stokes formula we have

5 | eplestix ey (X VETY Y =0

Then we get

/M n= /M exp{—s(dy o1y (X' + V=1V )}y

We have
dyy1y(X + V1Y) =d(X +V=1Y") + (Xar + V=1V, Xos + V1Y)

and

(X +V=1Ya, Xor +V=1Yay) = | X = [Yarl? + 2V =1(Xas, Yar)
Set
My = {x € M | (Xp(z) + V=1V (x), Xpr(x) + vV —1Y(2)) = 0}.

For simplicity, we assume that M, is the connected submanifold of M, and N is the normal
bundle of My about M. The set M, is first discussed by H.Jacobowitz (see [4]).

3 Localization formula on dy, ,7y-closed form

Set F is a G-equivariant vector bundle, if V¥ is a connection on F which commutes with
the action of G on Q(M, E), we see that

[VF, L] =0
for all X € g. Then we can get a moment map by
pH(X) = Ly — [V*,ix] = L% - V¥

We known that if y be the tautological section of the bundle 7*E over E, then the vertical
component of Xz may be identified with —uZ(X)y(see [1] proposition 7.6).
If E is the tangent bundle TM and VT is Levi-Civita connection, then we have

pMX)Y = Lyy —ViMYy = viMx

We known that for any Killing vector field X, u?™(X) as linear endomorphisms of T'M
is skew-symmetric, —u”™(X) annihilates the tangent bundle T'M, and induces a skew-
symmetric automorphism of the normal bundle N (see [5] chapter II, proposition 2.2 and
theorem 5.3). The restriction of ™ (X) to N coincides with the moment endomorphism
PN (X).

Let Gy be the Lie subgroup of G which preserves the submanifold M, e.g. Let p € My,
Z € go, we have exp(—tZ)p = q € My, here g, is the Lie algebra of Gy. We assume that
the local 1-parameter transformations exp(—tX),exp(—tY) € Gy. We have that Gy acts on
the normal bundle A/. The vector field X" and Y# are vertical and are given at the point
(z,y) € My x N by the vectors —pN (X)y, —pN (Y)y € N.

We construct a one-form o on N:

Z eT(TN) = a(Z) =< —pN(X)y, VYy > +V=1 < —pN (V)y, Viy >
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Let Zl; ZQ € F(TN), we known dOé(Zl, ZQ) = Zloé(Zg) — ZQO((Zl) — Oé([Zl, ZQ]), SO

do(Zy, Zy) =< =V N (X)y, Viy > — < =V N (X)y, Vyy >
+ V=1 < =V N (Y)Y, Viy > —V=1 < =V N (V)y, Viy >
+ < —pN(X)y, RN(Z0, Za)y > +V—1 < —pu (Y>?/a RN(Zy, Zo)y >

Recall that V* is invariant under L for all X € g, so that [V, uV(X)] = 0, [V, !V (V)] =
0. And by X, Y are Killing vector field, we have da equals

2 < —(N(X)+ VLN (Y)) >+ < =N (X)y — V=1V (V)Y RV y >
And by [Xx[? =< 1N (X)y, pM (X)y >, [Ya|? =< 1V (V)y, ¥ (Y)y >. So We can get
dx i ymrvy (Xn +V=1Yy) = =2 < (M (X) + V=1,M (V) - >
+ < —N(X)y — V=N (Y)y, N (X)y = V1N (V)y + RNy >

Theorem 1. Let M be a smooth closed oriented manifold, G be a compact Lie group act-
ing smoothly on M. For any n € Hy — (M), [Xu,Yu] = 0, let Go be the Lie sub-
group of G which preserves the submanifold My and the local 1-parameter transformations
exp(—tX),exp(—tY) € Gy, the following identity hold:

n
0= /
/M o PRI 0+ RYy

so by Lemma 4. we get

Proof. Set s =

2t’

= | expl=gde. (X VY Dy

Let V is a neighborhood of M, in A. We identify a tubular neighborhood of M, in M with
V. Set V' C V. When t — 0, because (X (z) + v/ —1Yy (), Xps(2) + v/ =1Yy(2)) # 0 out
of My, so we have

/M exp{ g (dy 1y (X + VIV )y ~ /V exp{— 5 (s ymry (X + VIV )

Because
[ el gy (X4 VY N = [ el ymmy (X + VTV
then

/V exp{— (s ymry (X + VIV )y =

/V iy < (N0 VTN > b < iV (X + VTN (V) By )

2t

+ /V exp{—Qlt < =N (X)y = V=1 (V)y, =N (X)y — V=1 (V)y >



By making the change of variables y = v/ty, we find that the above formula is equal to

t" /v eXp{% < (W (X) + VI YY) > s < iV (X)y + VTN (V) Ry >

2

+ /V eXp{—% < —N(X)y = V=1V (Y )y, =N (X)y = V=1V (V)y >1ng,

we known that

(<(ﬂN(X)+\/j1NN(Y))'7'> )n
t

= (P (X) + V=1pM(Y))dy

n!

here dy is the volume form of the submanifold M, let 2n be the dimension of Mj, then we
get

1 1
= /, exp{§ < 1N (X)y + V=1 (V)y, RNy > ndet(pN (X)) + V=1 (V) 2dyy A ... A dy,
v

+ [ expieg < = 0y = VI )= (X = VT 0 >

Because by [Xas, Yar] = 0 we have [u"™ (X), p™ (V)] = 0. And by —pN(X) — =1V (Y),
RN are skew-symmetric, so we get

1
= / exp{—5 < =" (X)y = V=1 (V)y, =" (X)y = V=1 (V )y + BVy >}y A Ady,
,

et (N (X) + V=N (V)2
- / (2m)" det (i (X) + v/ =1V ()= det(—p (X) = V=T (V) + BY) 2
et (i (X) + V=N (V)
:/ (2m)" det(— ' (X) — V=N (V) + RY) 3

o Ui
_/M Pf[= —N (X) \/;uN(YHRN]

]

By theorem 1.,we can get the localization formulas of Berline and Vergne(see [2] or [3]).

Corollery 1 (N.Berline and M.Vergne). Let M be a smooth closed oriented manifold, G be
a compact Lie group acting smoothly on M. For anyn € H (M), let Gy be the Lie subgroup
of G which preserves the submanifold My = {x € M | Xy (z) = 0}, the following identity

h‘)ld.’
7’] = /

Proof. Because My = {z € M | Xy(x) = O}, we have exp(—tX)p = p for p € My, so
exp(—tX) € Gy. By theorem 1., we set Y = 0, then we get the result. O




4 Localization formulas for characteristic numbers

Let M be an even dimensional compact oriented manifold without boundary, G be a
compact Lie group acting smoothly on M and g be its Lie algebra. Let g”™ be a G-invariant
Riemannian metric on TM, V™™ is the Levi-Civita connection associated to g?. Here V7™
is a G-invariant connection, we see that [VIM Ly, ] =0 for all X € g.

The equivariant connection VM s the operator on Q*(M,TM) corresponding to a G-
invariant connection V7 is defined by the formula

—TM _ —TM .
\Y =V + X a4+ =1Yu

here Xy, Ya; be the smooth vector field on M corresponded to X,Y € g.

Lemma 5. The operator V'™ preserves the space Q;(M"F\/j]-YJVI(M’ TM) which is the space
of smooth (Xyr + /—1Y)-invariant forms with values in T M.

Proof. Let w € 0y ﬁYM(M ), then we have

(LXM +v _1LYM)VTMW = (LXM + v _1LYM)(VTM + iXM+\/jlYA1)w
= (VTM + Z-XM+\/771YM)(LXM + v _1LY1\4)OJ
=0

So we get ﬁTMwEQ} (M, TM). O

MAV=1Yy
: f ot oM * T M
We will also denote the restriction of V2™ to 5 \/jlYM(M ,TM) by VM.

The equivariant curvature RT™ of the equivariant connection V7™ is defined by the
formula(see [1])
R™ = (VTM)2 — Lx, —Vv—I1Ly,

It is the element of 27 (M, End(TM)). We see that

Xp+v—=1Yn
ETM = (VTM + iXAI+ﬁYA{)2 - LXM — V _1LY1\1
= RTM + [VTMaiXM+Jj1YM] - LXM Y _1LYM
_ RTM _ [},TM(X) _ /—IMTM(Y)
Lemma 6. The equivariant curvature RTM satisfies the equuvariant Bianchi formula
6TM§TM -0
Proof. Because
[6TM7 fiTM] = [6TM’ (6TM)2 - LX]VI -V _1LYM]
= [VTM’ (VTM)Q] _|_ [VTM + iX]u-‘r\/—ilYA{? _LXM —V _]'LY]\/I]
=0

]

Now we to construct the equivariant characteristic forms by RTM 1f f(x) is a polynomial
in the indeterminate z, then f(RT™) is an element of Q% o1y, (M, End(TM)). We use

the trace map

Tr: Qo ey, (M End(TM)) = Q5 oy (M)

to obtain an element of Q}M T/ STYy (M), which we call an equivariant characteristic form.
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Lemma 7. The equivariant differential form Tr(f(ETM)) i8 dx,, 1/ Ty, -closed, and its e-
quivariant cohomology class is independent of the choice of the G-invariant connection V1M,

Proof. If o € Q* (M, End(TM)), because in local V™ = d + w, we have

Xp+V—-1Yy

dXM+\/j1YA4Tr(a) = Tr(dXM-i-\/—ilYMa)
= Tr([dXM+J?1YM7 Oé]) + TI'([(,L}, Oé])
= Tr([V"™, a])

then by the equivariant Bianchi identity VI™ RTM = 0, we get

dX]M+\/j1Y]uTr(f(§TM)) = 0

Let VIM is a one-parameter family of G-invariant connections with equivariant curvature
RI'™ _ We have

d ~ dRTM ,

ZTr(f(RIM) = Tr(——f (R(™))

d(VIM)?
dt

I (B{M)
dviM
dt
avIv
dt

= Tr(

= Tr([V{™, £ (REM))

F (R

dVTM NTM
—dXM+FYMT1"( dt f(Rt ))

= Tr([V{™,

from which we get

dVTM

L f (R

T(F(BMM) — Te(f(RIM) = dy,, o 1y, / (Vi

so we get the result. O]

As an application of Theorem 1., we can get the following localization formulas for char-
acteristic numbers

Theorem 2. Let M be an 2l-dim compact oriented manifold without boundary, G be a com-
pact Lie group acting smoothly on M and g be its Lie algebra. Let XY € g, and Xy, Yy be
the corresponding smooth vector field on M. My is the submanifold descriped in section 2. If
f(z) is a polynomial, then we have

=M Tr(f(ﬁTM))
/MTr(f(R ) :/MO NEAlSENSTRNTET,

Proof. By Lemma 7., we have Tr(f(RT™)) is d Xas+v—Tvy,-closed. And by Theorem 1., we get
the result. O

We can use this formula to compute these characteristic numbers of M, especially we can
use it to Euler characteristic of M. Here we didn’t to give the details.
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