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1. Introduce 

The P vs. NP problem is a major unsolved problem in computer 

science. Informally, it asks whether a computer can quickly solve every 

problem whose solution can be quickly verified by a computer also. It 

was introduced in 1971 by Stephen Cook in his seminal paper "The 

complexity of theorem proving procedures" and is considered by many to 

be the most important open problem in computer science. 

The informal term used above means the existence of an algorithm for 

the task that runs in polynomial time quickly. The general class of 

questions for which some algorithm can provide an answer in polynomial 

time is called "class P" or just "P". For some questions, there is no known 



way to quickly find an answer, but if one is provided with information 

showing what the answer is, it may be possible to quickly verify the 

answer. The class of questions for which an answer can be verified in 

polynomial time is called NP. 

NP-complete problems are a set of problems to each of which any 

other NP-problem can be reduced in polynomial time, and whose solution 

may be verified in polynomial time still. That is, any NP problem can be 

transformed into any of the NP-complete problems. Informally, 

an NP-complete problem is at least as "tough" as any other problem 

in NP. 

NP-hard problems are those at least as hard as NP-complete problems, 

i.e., all NP-problems can be reduced to them in polynomial time. NP-hard 

problems need not be in NP, i.e., they need not have solutions verifiable 

in polynomial time. 

In information theory, entropy is a measure of the uncertainty in 

a random variable. In this context, the term usually refers to the Shannon 

entropy, which quantifies the expected value of the information contained 

in a message. Entropy is measured in bits, nats, or bans typically. 

Shannon entropy is the average unpredictability in a random variable, 

which is equivalent to its information content.  



Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an 

American mathematician, electronic engineer, and cryptographer known 

as "The father of information theory". 

Shannon is famous for having founded information theory with a 

landmark paper that he published in 1948. 

The Shannon entropy, a measure of uncertainty (see further below) 

and denoted by H(x), is defined by Shannon as 

H(x)=E[I( ix )]=E[ log(2,1/p( ix )) ]= -
1
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Where p( ix ) is the probability mass function of outcome ix . 

Specially, if there are N outcomes, and p( 1x )=p( 2x )=…=p( nx )=1/N. 
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2. Strategy 

 Any NP problem can reduce to logic circuit, we can prove the entropy 

of P problem, H(P) = 0, while the entropy of NP problem, H(NP) > 0. 

 Moreover, when input from n increase to n+1, the delta entropy of P 

problem, DH(P) = H(n+1) – H(n) = 0, while the delta entropy of NP 

problem, DH(NP) = H(n+1) – H(n) = 1. 

 If NP problem can resolve into P problem in polynomial time, we can 

prove DH(NP) = H(n+1) – H(n) ¹  1. It’s contradictory with DH(NP) = 

H(n+1) – H(n) = 1.  



 

3. Preliminary theorem 

(2.1) Polynomial identical theorem: 

f(x) = 1
1 1 0... , 0k k

k k ka x a x a x a a-
-+ + + + ¹ ; 

g(x) = 1
1 1 0... , 0k k

k k kb x b x b x b b-
-+ + + + ¹ ; 

f(x) = g(x) Û 1 1 1 1 0 0, ,..., , , 0k k k k ka b a b a b a b a- -= = = = ¹  

(2.2) Binomial theorem: 

Binomial theorem calls also Newton binomial theorem. Newton brought 

forth it in 1664-1665 year. 

( )na b+  = 0 n
nC a + 1 1n
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nC b ,i>0,i<n 

i
nC  expresses combinational number of taking freely i elements from n 

elements, !/ (( )! !)i
nC n n i i= -  

(2.3) The entropy of P problem is zero, i.e. H(P) = 0. 

Because every step of P class problem is deterministic, its happen 

probability is always 1. Base on the definition of P problem, P problem 

can via polynomial steps to get 1 deterministic outcome. Define T(n) = 

O( kn ), we can express the happen probability as p = 
( )

1
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= 1 Þ  there is only 1 outcome for P problem Þ  entropy of P problem 

H(P) = -1´ log(2,1) = 0. 

(2.4) The entropy of NP problem is above zero, i.e. H(NP) > 0. 

Because every step of NP class problem is non-deterministic, its happen 



probability is always < 1. Base on the definition of NP problem, NP 

problem can only via polynomial steps to verify 1 outcome is answer or 

not. Every step has more than 1 choice to calculate. Define T’(n) = 

O( nk ),we can express the happen probability of one outcome as p( ix ) = 

'( )

1
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Base on the definition of NP problem, NP problem is easy to verify 

in polynomial time. Every outcome provided is deterministic, but why 

H(NP) > 0? Because every outcome provided is deterministic. Every step 

is deterministic. But the final outcome is non-deterministic to be the 

correct answer. It’s only one of many outcomes. Denote the happen 

probability of one outcome as p( ix ), the we can express the happen 

probability as p = p( ix )´
( )

1

T n

i
i

p
=
Õ =p( ix )´1= p( ix )<1. 

Specially, when the happen probability of every outcome is identical. 

If there are N outcomes, p( ix ) = 1/N. It’s is deterministic to verify one 

outcome via polynomial steps, but happen probability of the outcome 

being correct answer is 1/N.  

(2.5) If a NP problem can reduce to P problems, every P problem must be 

one of many outcomes. 

If there is only one outcome for NP problem, the happen probability 

of one outcome is p( ix )=1, the happen probability is p = 



p( ix )´
( )
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p
=
Õ =p( ix )´1= p( ix )=1. Then H(NP) = 0, it’s contradictory with 

(2.4) H(NP) > 0 Þ  There are many outcome for NP problem. Otherwise, 

it’s a P problem. 

To explain (2.5) clearly, I draw a chart in below. 

A NP problem can reduce to many parallel P problems. 

 

Because every step of P problem is deterministic and (2.4) H(NP) > 0 

Þ the only non-deterministic step is the outcome, Þ  NP problem must 

have many outcomes and every P problem’s outcome is only one of all 

outcomes. Þ  A NP problem can reduce to many parallel P problems. 

From (2.5.1) and (2.5.2) Þ  A NP problem can reduce to many parallel P 

problems, every P problem must be one of many outcomes. 

 



 

4. Proof 

 Any NP problem can be transformed into any of the NP-complete 

problems. The first NP-complete problem is the logic circuit. That is, if 

the logic circuit equal to P problem, NP = P is proven; if not equal to, 

NP ≠ P is proven. 

 Let’s considerate a logic circuit like below. 

 

n inputs via k gates, then output. 

Every input can be value 0 or 1, suppose n inputs can generate N 

outcomes. Express as G(n) = N. 

 

 



Input increase to n+1, because input is value 0 or 1, new out can be 

express as G(n+1) = ( 1 0|nN + = ) + ( 1 1|nN + = ) = 2N. It means that inputs from 1 

to n generate N outcomes, and input (n+1) is value 0; inputs from 1 to n 

generate N outcomes, and input n+1 is value 1. The total outcomes are 

2N. 

 The logic circuit’s entropy is log(2,N) when n inputs; the logic 

circuit’s entropy is log(2,2N) when n+1 inputs. The delta entropy HV = 

H(n+1) – H(N) = log(2,2N) – log(2,N )= 1       (3.1). 

 

(3.2) Suppose NP = P, it means that 

(3.2.1) Any NP problem can reduce to one P problem in polynomial time. 

I.e. NP = 1P ; 

(3.2.2) Any NP problem can reduce to polynomial parallel P problem in 

polynomial time. I.e. 
( )
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(3.2.3) Any NP problem can reduce to exponential parallel P problem in 

polynomial time. I.e. 
( )

1
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= å , T(n) = O( ( )p nk ); 

(3.2.4) Any NP problem can reduce to more than exponential parallel P 

problem in polynomial time. I.e. 
( )

1
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i
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NP n P n
=

= å , T(n) > O( ( )p nk ). 

For (3.2.1), if NP = 1P , from preliminary theorem (2.3) H(P) = 0 

Þ HV =H( 1P (n+1)) – H( 1P (n))= 0 – 0 = 0. It’s contradictory with (3.1); 



For (3.2.2), 
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= å , T(n) = O( kn ), because preliminary theorem 

(2.3) H(P) = 0 and (2.4) H(NP) > 0 Þevery iP (n) is one of many 

outcomes, which include information quantity and reduce 

indeterminacy. And because (3.1)Þ  HV =H( 1P (n+1)) – H( 1P (n)) = 

log(2, T(n+1) - log(2, T(n)=1 Þ  log(2, T(n+1) - log(2, T(n) = log(2, 

T(n+1)/T(n)) = 1 Þ  T(n+1)/T(n) = 2, denote T(n) 

= ' ' 1
' ' 1 1 0 '... , 0k k

k k ka x a x a x a a-
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contradictory with ' 0ka ¹ , T(n) = ' ( ' 1)
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For (3.2.3), 
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NP n P n
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= å , T(n) = O( ( )p nk ), because preliminary 

theorem (2.3) H(P) = 0 and (2.4) H(NP) > 0 Þevery iP (n) is one of 

many outcomes, which include information quantity and reduce 

indeterminacy Þ  NP(n)’s complexity >= T(n).n = O( ( )p nk )).n >= 

O( ( )p nk ) Þ  NP(n)’s complexity is exponential, it’s contradictory with 

NP = P.  

For (3.2.4), 
( )

1
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=

= å , T(n) > O( ( )p nk ), because preliminary 

theorem (2.3) H(P) = 0 and (2.4) H(NP) > 0 Þevery iP (n) is one of 

many outcomes, which include information quantity and reduce 

indeterminacy Þ  NP(n)’s complexity >= T(n).n > O( ( )p nk ).n >= O( ( )p nk ) 



Þ  NP(n)’s complexity is more than exponential, it’s contradictory with 

NP = P. 

5. Explain 

 To explain my proof clearly, I draw a flow chart to denote that 

computer handles NP problem process. å denotes parallel relationship 

and Õ denotes serial relationship in below figures. 

 

More detailed flow chart is below.  

 

Any NP problem must reduce to P problem and every P problem is 

one of many outcomes. Any P problem must reduce to basic instruction. 

 But if NP=P, it violates entropy theorem. Any NP problem can’t 

reduce to polynomial P problem.  

 When NP reduces to 1 P problem, the delta entropy is always zero. 

 When NP reduces to polynomial P problem, the delta entropy does 

not equal to 1. 

When NP reduces to exponential P problem or more complex, the 



complexity has become contradictory with definition of P problem. 

All scenarios are contradictory, so NP = P is wrong,   

6. Conclusion 

 In essence, P problem is a deterministic problem, which can reduce to 

basic instructions in polynomial time. 

NP problem is a non-deterministic problem, which can’t reduce to P 

problem in polynomial time. 

If NP = P, it means that deterministic problem equals to 

non-deterministic problem, which violates information entropy principle. 

So any non-deterministic problem is not easy to calculate. 



References 

[1] Ihara, Shunsuke (1993). Information theory for continuous systems. 

World Scientific. p. 2. ISBN 978-981-02-0985-8. 

[2] In this context, a 'message' means a specific realization of the random 

variable. 

[3] Brillouin, Léon (2004). Science & Information Theory. Dover 

Publications. p. 293. ISBN 978-0-486-43918-1. 

[4] Shannon, Claude E. (July/October 1948). "A Mathematical Theory of 

Communication". Bell System Technical Journal27 (3): 379–423.  

[5] Goise, Francois & Olla, Stefano (2008). Entropy methods for the 

Boltzmann equation: lectures from a special semester at the Centre Émile 

Borel, Institut H. Poincaré, Paris, 2001. Springer. 

p. 14. ISBN 978-3-540-73704-9. 

[6] A b Schneier, B: Applied Cryptography, Second edition, page 234. 

John Wiley and Sons. 

[7] A b Shannon, Claude E.: Prediction and entropy of printed 

English, The Bell System Technical Journal, 30:50–64, January 1951. 


