
ON THE PARTICULAR DISTRIBUTION OF PRIME NUMBERS 
 
 
 
On the particular distribution of prime numbers is a case to be treated in several parts. In the 
first place, I will treat the prime identity ∆, which is the method that allows one to discern 
with certainty prime numbers γ, of strong non-prime numbers ω, and non-prime numbers µ, 
amongst the series of natural wholes A, as in : 
 
   ω, µ, ϒ ⊂ A 
 
The prime identity ∆, indicates the characteristics of prime numbers γ, of strong non-prime 
numbers ω, and non-prime numbers µ, in the following way : 
 

1) A prime number γ, is a number which is divisible only by 1 and by itself Z, so that : 
ϒ=Z 

2) A strong non-prime number ω, is a even multiple β, so that :  ω = β  
3) A no-prime number µ, is an odd multiple ξ. 

 
 
The second step consists of analysing the natural wholes A, to have a standard idea of prime 
numbers ϒ , and their distribution. 
 
All numbers N containing any even unit Φ, no matter its size I will always be an even number 
II, as well as all numbers N, containing any odd unit M, whatever its size I, will always be an 
odd number π, because of the fact that the unit η contributes to determining the even nature 
Φ´, or the odd nature M´ of a number N, so that : N ⊂ Φ = n ∧  N ⊂ M = π. 
 
The unit  η, being a finite size serving as a base to measure other sizes I of same sort Γ. One 
can then spread all n numbers greater than 10, having as their unit η one of the following 
numbers : 0,2,4,6,or 8, as strong non-prime numbers ω, and all numbers greater than 10 
having for their unit η one of the following numbers : 1,3,7 or 9 will be either non-prime 
numbers µ or prime numbers ϒ. Because prime numbers ϒ obey a precise rule of distribution 
which I am going to demonstrate. 
 
First of all I begin by defining a test which will allow to know if a number N´ superior to 1 is 
prime or not, it is the identification test of prime numbers that take place in two stades : 
 

- the first stade consist in dividing a number N´ by 3 and by 7, if the number N´ is 
divisible by 3, by 7 or by the two numerals, it is not prime, otherwise at this stade of 
the test it’s possibly chances for numbers N´ to be prime. 

- the second stade consist in confirming or invalidating the number the number N´ is 
prime or not, for that I need to define explicity the characteristics of numbers N´. 

 
[ Definitions of numbers N´ ] in accordance with convention, only the numbers N´ could to be 
submitted to the identification test of prime numbers. There are two types of numbers N´ 
(these are numbers N´, unequal to 10, they are all odd numbers π  which are not multiple of 2, 
and the numbers N´ superior to 10, they are odd numbers π except multiples of 5). (we’ll 
consider that the identification test of prime numbers “guarantee” that numbers N´ 3 and 7 are 
prime). 



3 and 7 moreover being the smallest common dividers (SCS) of non-prime numbers µ, 
(indeed, the non-prime numbers µ, are odd multiples Mi, in that sense they are divisible). 
They does’nt always allow to “find” all non-prime numbers µ, (some numbers, are not 
divisible by 3 or 7, they are pseudo-prime numbers γ´ - see the first stade of the identification 
test of prime numbers.) 
 
The consequence, rules determining the identification test of prime numbers, just as the 
definition of numbers N´, is that all strong non-prime numbers ω  and all the multiples of 5 
not being able to be prime number γ on no account, they are useless because they cannot be 
submitted to identification test of prime numbers 
Because among others : 
   ω = αp x bp  ∨  αp x bi 
and : 
   M5 = αp x 5  ∨   bi x 5 
(or αp, is an even number superior or equal to 2, bp an other some even number superior or 
equal to 2, bi an ODD number superior or equal to 3, M5, a multiple of 5). 
 
 
In this same way : 
          (where 3 and 7 

P3/3=F1      P3>F1    are SCD)* 
P9/3=F3      P9>F3 
P1/3=F7  knowing   P1<F7  (note that 3  
P7/3=F9  that :    P7>F9    and 7 are also 
           prime dividers) 
Or : 
 
P7/7=F1      P7>F1 
P1/7=F3  knowing   P1>F3 
P9/7=F7  what :    P9>F7 
P3/7=F9      P3>F9 

 
But also : 
 
3 x F1=P3      7 x F1=P7   (where 3 and 7  
3 x F3=P9   or :   7 x F3=P1    are SCM)** 
3 x F3=P1      7 x F9=P3 
3 x F9=P7      7 x F7=P9 

 
 
(Among the common dividers at two or several non-prime numbers ω, there are two among 
all which smaller than all the others, they are the smallest common dividers (SCS)* 
 
(Among the common odd multipliers at two or several non-prime numbers ω, there are two 
which among all are smallest than all the others, they are smallest common multipliers 
(SCM)** 
 
(The smallest common multipliers (SCM) non-prime numbers ω, can allow to find new non-
prime numbers ω) 
 



(Either F1, is a number superior to 10 having like unit numeral 1, or F3 is a number superior to 
10 having like unit numeral 3, or F7 is a number to 10 having like unit numeral 7, or F9 is a 
number superior to 10 having like unit numeral 9, P1 is a product having numeral 1 like unit, 
P3 is a product having numeral 3 like unit, P7 is a product having numeral 7 like unit, P9 is a 
product having numeral 9 like unit) 
 

- To know if a number N´, having get the 1st stade of the identification test of prime 
numbers is prime or not require use of the “magical key” which I call like this because 
it is at the root of the opening of  a way between on the one hand a prime numbers γ 
“landscape” appearing so as uncertain, and on the other hand a another “landscape” 
where it seems that a concealed order is ruling as for their distribution among the 
natural wholes A. 

 
 

FORMULA OF THE “MAGICAL KEY” 
 
 α ) It is important to find the two multiplicative operations O1 and O3 wich by their respective 
products P must have the most weak gap possible with the number N´ having passed the first 
stade that is to say those being in front of and following e possible third multiplicative 
operation O2, whose product P is supposed to be the number N´ having passed the first stade 
of the identification test of prime numbers, it can exist only if the number N´ in question is a 
non-prime numbers ω, otherwise there can only be two multiplicative operations O1 and O3, 
this imply that the number N´ having passed the first stade of the identification test of prime 
numbers, is really prime number ϒ. 
 

- Equations bell, I make explicit the required conditions to know if  number N´ having 
passed the first stade of the identification test of prime numbers is prime or not. 

 
Case where the number N´ having passed the first stade of the identification 
test of prime numbers is a non-prime number ω. 

 
Then : 
 

O1 =>MA x M1 = P1    (let’s note that for multiplicative) 
O2 =>MA x M2 = P2    operations O1, O2 and O3, MA is 
O3 =>MA x M2 = P3    identical. 

 
As : 
 

M1<M2<M3 
P1<P2<P3 
P1 ∧ P3= Np 
P2 = ω 
∆ ∝ MA 

 
In the case where the number N´ having passed the first stade of the identification test of 
prime numbers, is a prime number ϒ. 
 
Then : 
 



O1 => MA x M1 = P1     (Let’s note that for multiplicative 
O3 =>MA x M3 = P3       O1 and O3, MA is identical) 

 
As : 
 

M1<M3 
P1<P3 
P1 ∧ P3 = NP 
∆ ∝ MA 

 
: 

 
N´<=> ϒ 
P1<ϒ  
O3>ϒ  

 
: 

 
ϒ-P1=1 
P3-ϒ=1 

 
(Either O1, first multiplicative operation, or O2 second multiplicative operation, or O3 third 
multiplicative operation, or MA multiplicande, or M1 first multiplier, or M2 second multiplier, 
or M3 third multiplier, or P1 first product, or P2 second product, or P3 third product, or Λ gap 
between products of multiplicative operation, or Λ gap between the number N´ which passed 
the first stade of the identification test of prime numbers and the products) 
 
 

Λ 



 
 
For better understand this work, I will add the following sieves : 
 
 
 
1) from 1 to 100  6)   from 500 to 600  (By convention so sieve will start 
2) from 100 to 200  7)   from 600 to 700    with its original number) 
3) form 200 to 300  8)   from 700 to 800 
4) form 300 to 400  9)   from 800 to 900  (In general, all sieves contain 100 
5) from 400 to 500  10) from 900 to 1000    numbers N arranged according to 
          the natural wholes) 
         
        (The circled numbers are prime ) 
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To be able to study and analyse a sieve, we will class its numbers N (knowing it contains 100) 
in ten decimal series ε, arranged in ten columns Fx and ten series of n natural wholes A, 
arranged in ten lines Fy. 
 
A decimal series ε, is a group E, composed of n numbers (where n numbers-where n = 10- 
each being greater than 10, having the same common unit χ (in exception with decimal series 
ε from 1 to 10 of sieve from 1 to 100. 
 
And all being lined up in order from least to greatest, as in : 
 
   ε = (αx, bx, cx,…, nx) 
 
(where α,b,c,…, n, are the numbers in the decimal series χ, X, the common unit of the 
numbers in the decimal serie). 
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A series of  n natural wholes W, is a group E, composed of n numbers (where n = 10), which 
contain the same number N of even numbers n and the same numbers N of odd numbers π, 
such that : W = n < = > π. As well, the n number of a series of n natural wholes W, are 
arranges in increasing order. 
 
One can notice that the presence of prime numbers ϒ, is greater than in decimal series ε in 
relation to series of  n natural wholes W, so that : ϒ ⊂ ε > ϒ ⊂ W  
(see the sieves) 
 

π1 ⊂ ϒ1       π2  ⊂ ϒ2  
(π x 10) 
   in relation to    (π x 5) 
T = N1   note that N1 < = > ϒ   T´ = N1 
      √ N2               √ N2  

 
(Where π1, some ODD numbers of a decimal serie, ϒ1 some numbers of a decimal series π2, 
some ODD numbers of a series of n natural wholes, N1 are non-multiple odd numbers, N2 are 
ODD multiples, T the number of prime numbers contained in a decimal series, T´ the number 
of prime numbers contained in a series of n natural wholes. 
 
It is in this way, possible, by the sieves method and by identification test of prime numbers to 
know the distribution of prime numbers no matter what their size. 
 
On can then from a number N, establish a sieve if the sieve contains only one hundred 
numbers N, composed in ten decimal series ε and in ten n natural wholes series W. 
 
To understand the distribution of prime numbers ϒ, it is necessary to analyse a decimal series 
ε, grasp the place prime numbers ϒ occupy in this series, thanks to the introduction of a new 
concept which is the decimal difference B, this only reveals non-prime numbers µ of a 
decimal series ε, obtained thanks to the identification test of prime numbers which allows the 
evaluation of prime numbers ϒ (number and distribution in a decimal series ε) respecting the 
decimal difference B between each non-prime numbers µ  of a decimal series ε, (that is to say, 
calculating the number of numbers N separating non-prime numbers µ from one another, as 
in : µ-µ => µ ≠ µ 
 
 
(Were µ is a non-prime number, µ’ a another non-prime number, D the difference) 
 
In other words, the n numbers which separate a non-prime number µ from another gives a 
difference D and are counted in a decimal form L (where L=10), which permits the attribution 
for each difference D A n number of decimal L equal to A n number R, so that : L < = > R 
(see the sieves). 
 
The decimal differences B are represented by the traces (of the braces) represented in each 
sieve. They permit one two distinguish the non-prime numbers µ from prime numbers ϒ from 
a decimal series ε,  recognising them and indicating their position. 
 



An index of prime numbers ϒ, is a group E composed of n numbers R corresponding to n 
decimal differences B of a decimal series ε, in other words, an index of prime numbers ϒ and 
the decimal differences of a decimal series K are of the same sort of order, such that : 
ƒ (Y) ≤ ƒ (K) 
 
We also note the existence of prime codes Ω, a prime code Ω, is a group E composed of n 
prime dividers Ξ (in this case 3 and 7) corresponding to n non-prime numbers µ of a decimal 
series ε* is equiotent to the prime code Ω which  corresponds. 
 
* (a group of non-prime numbers of a decimal series H, is an under-group SE, composed of 
non-prime numbers µ of a decimal series ε, such that : H ⊆ ε). 



 
EXAMPLE OF CONFIGURATIONS F SIEVE 100 TO 200 

 
 
     

Group of non-prime   119   
          
numbers of   129   
      
a decimal   159   
      
series H   189 
 
 
 
 
     Index of prime      Prime  
     prime numbers      code 
                   Y          Ω 
 
 
 
   Decimal difference of 
   a decimal series K 
      
 

 
SIEVE 900 TO 1000 

 
 
     

Group of non-prime   917   
          
numbers of   927   
      
a decimal   957   
      
series H   987 
 
 
 
 
     Index of prime      Prime  
     prime numbers      code 
                   Y          Ω 
 
 
 
   Decimal difference of 
    a decimal series K 
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3 
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When two or more decimal series ε have the same index of prime numbers Y (there fore the 
same prime codes Ω) it is said they have the same configuration F. One may notice that there 
exists several types of index of prime numbers Y, (see the sieve) because the diversity of 
index of prime numbers , depend on the distribution of prime numbers ϒ and non-prime 
numbers µ in each decimal series ε. 
 
One can then says that : ∑= 0 
 
(where ∑, is the diversity of index of prime numbers of a sieve, 0 the diversity of distribution 
of prime numbers and non-prime numbers in each decimal series of the same sieve). 
 
Each time that we will have recourse to second stade of the identification test of prime 
numbers, and only when we will find non-prime numbers µ which are not divisible by 3 or by 
7, we will note by the greek letter in the prime code Ω, for symbolizing this action (instead of 
numerals). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



THE LAW ON TNE INVARIABILITY OF THE RULES USED TO RECOGNIZE A 
PRIME NUMBER OF WHATEVER SIZE. 

 
 
 
 
A prime number, on any n size always obey the same rule to satisfy identification test of 
prime numbers wheter it is n times smaller or n times larger than another know prime 
number. 
 


