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ABSTRACT 

 

We discovery some formulas for the divisor function, derived from a Vinogradov’s 

formula and definitions these function, including the Ramanujan’s sum. As well, we have 

developed a formula asymptotic, using the Euler-Maclaurin summation formula. 

 

1. INTRODUCTION 

 

 Our main goal is the development of the following elementary formulas  
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and asymptotic formula 
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2. DEFINITIONS, LEMMAS AND THEOREMS 

 

DEFINITION 1 [1, page 310]: 
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DEFINITION 2 [1, page 310]: 
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DEFINITION 3 [1, page 310]: 
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LEMMA 1 [2, page 23]. Let   be an integer, let   be an integer, and let 
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THEOREM 1. For        
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Proof. From Definition 1 and Lemma 1, it follows that 
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THEOREM 2. For        
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Proof. From Definition 2 and Lemma 1, it follows that 
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THEOREM 3. For       and        then 
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Proof. From Definition 3 and Lemma 1, it follows that 
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LEMMA 2. Let   be an integer, let   be an integer, and let 
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Proof. In the Lemma 1, observe that the  (  ( ))  ∑    (
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and we complete the proof.   

THEOREM 4. For      , then 
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Proof. From Definition 1 and Lemma 2, it follows that 
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THEOREM 5. For        then 
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Proof. From Definition 2 and Lemma 2, it follows that 
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THEOREM 6. For       and        then 
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Proof. From Definition 3 and Lemma 2, it follows that 
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THEOREM 7. For       and        then 
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Proof. In [3, p.7], we encounter 
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 From (1) and definition 3, we find  
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THEOREM 8. For       and        then 
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where   ( ) is the Ramanujan’s sum. 

Proof. In [4, p. 180], Ramanujan define 
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and he relates to the Ramanujan’s sum 
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which is defined by 
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 Substituting (2) in Theorem 6, we complete the proof.    

 

3. ASYMPTOTIC FORMULAE 

 

LEMMA 9. For       and    (  )[   ]  we have 
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where     are the Bernoulli numbers. 

Proof. See [5, p. 1].   

THEOREM 10. For       and        then 
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Proof. We evaluate the sum ∑    (
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     using the Lemma 9 and      clear that 
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 Substituting (3) in Theorem 6, we find 
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