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This is first part of eight parts of lecture notes on Real Analysis.  

This notes is well designed and useful to all Undergraduate, 

Graduate and postgraduate in their regular study. Apart from this, 

the problems discussed in exercise will increase the readability of 

readers and they love Number Theory as well as analysis without 

any doubts. Also, some problems presented in the exercises of this 

part as well as coming parts will create motivation towards 

research and development. 
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1. Introduction 

This chapter concerns what can be thought of as the rules of the game: the axioms of the real 

numbers. These axioms of the real numbers and, in sense, any set satisfying them is uniquely 

determined to be the real numbers. This is simple enough to do. However, some basic 

consequences of the axioms should also be presented so that you know how some rules you have 

been taught, which are not axioms, follow from the axioms. For instance, ‘a minus times a minus 

is a plus’, ‘zero times any number is zero itself’, ‘zero is the illegal divisor’, ‘1 > 0’ are not rules 

and formulas to be committed to memory for future use; they all follow from the axioms. 

 We assume that the reader is familiar with the real numbers. We shall select those 

properties as axioms concerning the real number system from which all the other properties of 

the real numbers can be verified. These axioms are divided into three categories:  

(1) Field axioms  (2) Order axioms and  (3) Completeness axiom  

2. Field axioms 

The real number system (reals) is first of all a set {a, b, c,…} on which the operations of addition 

and multiplication are defined so that each pair of real numbers producesa unique sum and 

product with the following algebraic properties. 

Axiom 2.1 (Closure): For any a, b R, 

   a + b R, 

   abR. 

Axiom 2.2 (Commutative): For any a, b R, 

   a + b = b + a R, 

   ab = ba R. 

Axiom 2.3 (Associative): For any a, b, c R, 

   (a + b) + c = a + (b + c) R, 

   (ab)c = a(bc)R. 
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Axiom 2.4 (Distributive): For any a, b, c R, 

   (a + b)c = ac + bc R. 

Axiom 2.5 (Identity): For any a R, there exists 0, 1 R such that 

   a + 0 = 0 + a = a  Additive Identity 

   a1 = 1a = a  Multiplicative Identity 

Axiom 2.6 (Inverse): For any a R, there exists b, c R such that 

   a + b = b + a = 0 Additive Inverse 

   ac = ca = 1  Multiplicative Inverse 

Axiom 2.7 (Nontrivial Field): 0 ≠ 1 

and for any a R, such that a ≠ 0, there exists a real number b such that ab = 1 = ba.  

 

Although these axioms seem to contain most properties of the real numbers we normally use, 

they don’ characterize the real numbers; they just give the rules for arithmetic. There are other 

fields besides the real numbers and can be found in abstract algebra courses. 

Example 2.8:As we know that set of rational numbers }:/{ NqZpqpQ  form a field, 

implies that Q  does not contain all the real numbers as .2 Q  

Example 2.9:Let the field }2,1,0{F with addition and multiplication can be done by modulo 3. 

It is easy to verify that the field axioms are satisfied, and it is denoted by .3Z  

Theorem 2.10 (Uniqueness of Identity): The additive and multiplicative identities of a field F 

are unique. 

Proof: Let 0 is another additive identity. Then, 0 = 0 + 0  

                                                                                = 0   by identity axiom on 0  

Similarly, 0 = 0 0  

                    = 0  by multiplicative identity on 0 . 

Theorem 2.11 (Uniqueness of Inverse): Let F be a field, if a, b F with b ≠ 0, then –a and b
-1

 

are unique.  

Or 

The additive and multiplicative inverses are unique. 

Proof:Let a and b are additive inverses of c. Then,  
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a = 0 + a    by identity axiom 

   = (b + c) + a    by inverse axiom 

   = b + (c + a)   by associative axiom 

   = b + 0    by inverse axiom 

   = b     by identity axiom 

This shows the additive inverse s unique. The proof is essentially the same for the multiplicative 

inverse. Because of the uniqueness of inverse, we will denote –a as the additive inverse of a, and 

a
-1

 as the multiplicative inverse of a. This notation allows us to define subtraction and division as 

followed. 

Definition 2.12 (Subtraction): The difference between two real numbers a and b is defined by

)( ba  , and it is denoted by a – b. 

Definition 2.13 (Division): The quotient of a real number a by b (≠0) is defined by a.b
-1

, and is 

denoted by 
b

a
 or ).( 1ba  

Remarks: (a) in general a – b ≠ b – a and 
a

b

b

a
  

       (b) Division by 0 is not allowed. 

                  (c) Though 
b

a
 has meaning, 

a

b
 may not be defined. 

Theorem 2.14: For all aR, a0 = 0a = 0. 

Proof:  a + 0a = 1a + 0a   by multiplicative identity 

  = (1 + 0) a   by distributive axiom 

  = 1a    by additive identity 

  = a     by multiplicative identity 

 sides)both on  a gsubtractinby )...(()(0

0

aaaaa

aaa




 

0.  0a  a0 i.e.,

axiom) commutativby ...(00

00







a

a

 

Theorem 2.15: For all aR, ).(1 aa   

Proof: aaaa )1()1()1(    by identity axiom 
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  = (1 – 1) a   by distributive axiom 

  = 0a    by additive inverse 

  = 0    by the previous theorem2.14 

a.-  (-1)a i.e.,

sides)both on  a gsubtractinby )...((0)()1(

0)1(







aaaa

aa

 

Theorem 2.16: If ab = 0, then a = 0 or b = 0. 

Proof:Let us prove  by considering the cases a ≠ 0, b ≠ 0, or a, b = 0. 

(a) Case a ≠ 0 

(a.b = 0) ^ (a ≠ 0)  (a.b = 0) ^ {(a
-1

)(a
-1

a = 1)} 

a
-1

ab = a
-1

0   (∵ab = 0) 

(a
-1

a)b = a
-1

0 

1b = a
-1

0 

b = 0. 

(b) Case b ≠ 0 

(b.a = 0) ^ (b ≠ 0)  (b.a = 0) ^ {(b
-1

)(b
-1

b = 1)} 

ab
-1

b = b
-1

0   (∵ab = 0) 

(b
-1

b)a = b
-1

0 

1a = b
-1

0 

a = 0. 

(c) Case a, b = 0 

  (a = 0)  (b = 0), independent of the fact that ab = 0. 

Proof by contradiction:Let a ≠ 0 and b ≠ 0. Then, ab = 0 

a
-1

ab = a
-1

0 

(a
-1

a)b = 0 

1b = 0 

b = 0 

Oops! We assume that b ≠ 0. Thus, our assumption is wrong. Therefore, we can realize that, both 

a and b cannot be non-zero or at least one of them is zero. 

Corollary 2.17: For any a1, a2, … , anR, a1a2a3…an = 0  (a1 = 0)  (a2 = 0) …(an = 0). 
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Proof:a1a2a3…an = 0 a1(a2a3…an) = 0 

 (a1 = 0)  (a2a3…an) = 0 

 (a1 = 0)  (a2 = 0)  (a3 a4…an = 0) 

┇ 

(a1 = 0)  (a2 = 0) … (an = 0) 

 

3. The Order Relation 

The axiom of this part gives the order and metric properties of the real numbers. There is a 

subset P of R, called the set of positive numbers, satisfying the following. 

(i) If a, b  P, the a + b and ab P 

(ii) For all a R, either a  P or a = 0 or –a  P (TRICHOTOMY) 

Any field R satisfying the axioms so far listed is generally called an ordered field. The axioms (i) 

and (ii) indicates that 1 is a positive number. Indeed, since 1 ≠ 0, the axiom (i) indicates that 

either 1 or -1 is positive. As 1 = 1. 1 = (-1) (-1), the axiom (i) implies that 1 is positive. Also, by 

(ii), we see that R is divided into three pairwise disjoint sets. Namely, P, {0} and {-a, a  P}. 

The notation a < b means that b – a  P.  More precisely, look the following odder properties of 

real numbers. 

(a) For any real number a, b, exactly one of the following holds: a = b, a < b or a > b. 

(b) For all real numbers a, b, c, if a < b and b < c  a < c. 

(c) For all real numbers a, b, c, if a < b  a + c<b + c. 

(d) For all real numbers a, b, c with c > 0, a < b  ac <bc. 

Theorem 3.1:If a  b and b  a, then a = b. 

Proof: If a  b  b – a  P or a = b. Also, for b a a – b  P or b = a. 

But, we know that a – b = -1 (b –a) and by the Trichotomy axiom (see 3(ii)) only b – a or

)(1 ab   can be in P. Thus, b – a  P  a – b  P. The only other situation a = b hold. 

Theorem 3.2:If R is an ordered field and a, b, c R, then the following hold: 

(1) a < b  a + c < b + c 

(2) (a < b) ^ (b < c)  a < c 

(3) (a < b) ^ (c > 0)  ac <bc 
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(4) (a < b) ^ (c < 0)  ac >bc. 

Proof: (1) if a < b  b – a  P  (b + c) – (a + c)  P  a + c < b + c 

(2) Let us consider b – a and c – b are in P. As P is closed under addition, we see that 

.)()( acPacbcab   

(3) As b – a  P and c  P with P is closed under multiplication, Pcacbabc  )(

bcac  . 

(4) By considering b – a and –c are in P, then from (3), we can see ac >bc. 

Theorem 3.3:If F be an ordered field and a F. If a > 0, then a
-1

> 0. 

Proof: We know that a = 0  a
2
 = 0 for a

2
 0. 

Therefore, a
-1

a
-1

> 0  aa
-1

a
-1

> 0 

(aa
-1

)a
-1

> 0  1a
-1

> 0  a
-1

> 0. 

Corollary 3.4:If 0 < a < b, then .
11

ab
  

Proof: By the previous theorem, a
-1

> 0 and b
-1

> 0. For a < b: a(a
-1

b
-1

) < b(a
-1

b
-1

) 

(aa
-1

)b
-1

< a
-1

(bb
-1

)  1b
-1

< a
-1

1  .
11

ab
  

3.1 Metric Properties 

The order axiom on a field F allows us to introduce the idea of a distance between points in F. 

To study this, we begin with the following definition. 

Definition 3.1.1: Let F be an ordered field. The absolute value function on F is a function 

FF :. defined as 









 0  x if 

 0 x if 

x

x
x  

The definition of x  shows that: 0 xx for all x F.  

It is also useful to observe that x  is the larger of x and –x. When we think of ba as 

measuring the difference between a and b, the needy property of the .  is contained in the 

following theorem. 

Theorem 3.1.1(The Transitive Property):If a and b are any two real numbers then 

.baba   

Proof: To complete the proof, the following four properties are required. 
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(a) If a  0 and b  0 , then a+ b  0  .bababa   

(b) If a  0 and b  0, then a + b  0  .)( bababa   

(c) If a  0 and b  0, then a + b = |a| - |b|. 

(d) If a  0 and b  0, then a + b = -|a|+ |b|. 

Precisely, |a+ b|   |a| + |b| hold as: 

.
  || |b|  when || |b|

 || |a| when |b|-|a|










aa

b
ba  

We are used to thinking of |a – b| as the distance between the numbers a and b. This notation of a 

distance between two points of a set can be generalized.  

Definition 3.1.2: Let X be a set. A function ),0[:  XXd is called a metric if 

(a) 0),( yxd  and 0),( yxd if and only if x = y, 

(b) ),,(),( xydyxd   

(c) )inequalityr  triangula(the ),(),(),( zydyxdzxd   

We call ),( dX a metric space.  

A metric is a function, which defines the distance between any two points of a set. 

Example 3.1.3:(a) Take X = R and define ||),( yxyxd   

(b) Take X = R
2
 and define .||||)),(),,(( 22112211 xyxyyxyxd   

(c) Take X = R
2
 and define .||||)),(),,(( 2

22

2

112211 xyxyyxyxd   

(d) Any subset of R with the same metric. 

 

 

 

4. The Completeness Axiom 

All the axioms given so far are so common from pre-algebra, and, on the surface, it’s not obvious 

they haven’t captured all the properties of the real numbers. As Q satisfies all of them, the 

following theorem shows that we’re not yet discussed. 

Theorem 4.1: There is no Q such that 
2
 = 2.  
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Proof: let us assume that, the contrary, there is  in Q
2
 = 2. Obviously, there exist p, q in N 

such that, 
q

p
  with (p, q) = 1  ,22 22

2

qp
q

p









 which shows p

2
 is even. As the 

square of an odd number is odd, p should be even or p = 2k for some k  N.  

i.e., 4k
2
 = 2q

2
 2k

2
 = q

2
 (since p

2
 = 2q

2
 and p = 2k) 

The some argument as above establishes that q is also even. This contradicts our assumption that 

p and q are relatively primes or (p, q) = 1.  

Therefore, there is no such  exists.  

Since we suspect 2 is a perfectly fine number, there’s still something missing from our earlier 

discussion of axioms. The completeness axiom is somewhat more difficult than the previous 

axioms, and several definitions are required to complete it.  

4.2 Bounded Sets 

Definition 4.2.1: The subset RS  is said to be bounded above if there is a real number RM 

such that Mx  for all Sx and M is called an upper bound of S. Note that, if M is an upper 

bound for S then any bigger number is also an upper bound. Not all sets have an upper bounded. 

Example4.2.2: The set N is bounded below that it is not bounded above. Hence N is not 

bounded. 

The set Nn
n

S 




 |
1

is bounded because every element of S is less than 1 and greater than 0. 

 ]1,0[S . 

Definition 4.2.3: The supremum (least upper bound) of a set RS   which is bounded above is 

an upper bound. For Rb of S such that ub  for any upper bound u of S. We usually denoted 

by b = sup S for supremums. A number b is said to be the supremum (least upper bound) of the 

set S if: 

(a) b is an upper bound: x  S satisfies x  b, and  

(b) b is the smallest upper bound.in other words, any smallest number is not an upper bound. 

If u < b then there exist x  S with u < x. 

 i.e., 
Sx

xSUPSb

 sup , upper bounds of S may, or may not belong to S. 
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For example, (-2, 3) is bounded above by 100, 85, 5, 4, 3.55, 3. In fact 3 is its least upper bound. 

In the case of (-2, 3] also has 3 as its least upper bound. Note that, the supremum of S is a 

number that belongs to S then it is also called the maximum of S.  

For example, the interval (-2, 3) has supremum equal to 3 and no maximum; (-2, 3] has 

supremum, and maximum, equal to 3.  

4.2.4 Bounded sets do have a least upper bound. 

This is a fundamental property of real numbers, as it allows us to discuss about limits. Before 

that, let us have a look at some following needy theorems on supremums. 

Theorem 4.2.5: The set S has unique least upper bound (l.u.b). 

Proof:let RS   is bounded above and that a, b R are supremums of S. Note that, both a and b 

are upper bounds of S. As a is a least upper bound of S and b is an upper bound of S, a  b. 

Similarly, b is a least upper bound and a is a upper bound of S, b  a. Thus a = b, sowing that the 

supremum of a set S is unique.  

Intuitively, we can state the definition of supremum is in another way that, no number smaller 

than the supremum can be upper-bound of the given set. For better understanding, look at the 

following: 

Theorem 4.2.6:An upper bound b of a set RS  is the supremum of S if and only if for any 

0  there exists s S such that .Sb   

Proof:Let us take the small piece of the theorem that, ‘there exists s  S such that sb   says 

that b is not an upper bound of S. Or there is some other upper bound u in R of S. For s  S, 

s  u. clearly, b  varies over all real numbers smaller than b as  varies. Therefore, an upper 

bound b of S, b = sup S if and only if no number smaller than b is an upper bound of S. 

Theorem 4.2.7:Any nonempty set of real numbers which is bounded above has a supremum. 

Proof:The proof of existence of supremums that I saw relied on the completeness of the real 

numbers, and not much else. Basically, we constructed a Cauchy (and thus convergent) sequence 

of real numbers that was always an upper bound of the set, and got infinitely close to the set. 

Here's an outline: 

Let RU  be a bounded set of real numbers. Then there exists Rs  such that for all ,, usUu 

and for any   s,0 is not an upper bound of .U  
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Let 0M be the upper bound for U  (for example, if ),1,0(U we could sa ,1000000000M

and it would be fine). Take ,:1 MT  and 1B  to be some number that is not an upper bound for .U  

Now, we given iT  and ,iB  we will define 1iT  and 1iB  as follows: 

We take the midpoint of iT and ,iB to be called ,im  and see if im is an upper bound for .U  If it 

is, then we'll take ii mT  :1  and .1 : ii BB   Let us define ia to be .im If im is not an upper bound 

for ,U  then we define ,1:  ii aa and ,:1 ii TT  and .:1 ii BB   

The distance between iT and iB  halves for each iteration, so since ,ia  is contained in the 

interval, it is squeezed into convergence. Its limit a must be an upper bound, and the claim (I will 

leave for you to play with) is that a  is the least upper bound of the set .U  

Definition 4.2.8: The subset S  R is said to be bounded below if there is a real number m  R 

such that m  x for all x  S, and m is called a lower bound of S. Note that, if the set S is 

bounded above  as well as below, then S is said to be bounded. i.e. S is bounded if and only if 

 ].,[| MmMxmxS   

Definition 4.2.9: The infimum (the greatest lower bound) of the set if (a) b is a lower bound: any 

x  S satisfies x  b, and (b) b is the greatest lower bound. In other words, any greater number is 

not a lower bound.   

If b < u then there is x  S with x < u. 

 ,infinf
Sx
xSb


 Greatest lower bounds of S may not belong to S.  

For example, (-2, 3) is bounded below by -100, -15,-4, -2. In fact, -2 is its infimum. In the 

interval [-2,3) also has -2 as its infimum. i.e., if the infimum of S belongs to S then it is said to be 

minimum of S. 

Theorem 4.2.10: Every non-empty bounded subset of the real numbers has an infimum. 

Proof: Let E is a non-empty set bounded below. Construct E1 = -E = {-x | x  E}. We expect 

that  = inf E = - sup E1 = - . Now we should establish the existence of.  

To do so we show E1 is bounded above. As E is bounded from below, there exists a k such that x 

 k for all x  E. Or –x  -k, and every element of E1 are bounded by –k. Clearly, E1 is non-

empty set and bounded above. By the Completeness axiom it has a supremum,  (say). Now we 

expect  = - is an infimum for E. Let us verify that  is lower bound and it is the greatest lower 

bound. To do so, we see  
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(a) As  is an upper bound of E1 -x  for all x in E. i.e., x  - =  for all x in E, and  

is a lower bound for E. 

(b) In case < y  -< y or –y <. By infimum statement, there exists a t  E1 with –y < t 

or y > -t. As -t in E y cannot be a lower bound. Thus  is the greatest lower bound.  

Example 4.2.11: Show that S is bounded and find sup S and inf S, where .,
2

Nn
n

n
S 



 

  

We know that for any n N, ,11
22




nn

n
 and .3121

2


n  

i.e., Max S = 3 as 3 = (2/1) + 1  A for a least value of n = 1, as n  N. 

Now we show that inf S = 1. We have from above, 1 is a lower bound for S. Let > 0 and 

consider 1 + .  

 For a  S: a < 1 + .  

But a should be in nn

n 2
1

2



 for some n  N. So we have .

22
1

2
1 n

qnn
   

Now such existence, define ,1
2











q
n  where [x] is the greatest integer of x.  

Thus, we proved that 1 +  cannot be a lower bound for any > 0, inf S = 1.  

4.2.12 Some Consequences of Completeness:  

The property of completeness is what divides analytic from geometry and algebra. It required the 

use if approximation, infinity and more dynamic visualizations.  

Theorem 4.2.13 (The Archimedean Property): Let a be any real number and b any positive 

real. Then there exist a positive integer n such that nb > a. 

Proof: Let us consider the theorem is false and a is an upper bound of the set 

Sintger}an  is ,|{  nnbxxS has a supremum (say), by Completeness property. Therefore, 

nb for any integer n (*). As n + 1 is an integer, when n is (*) 

 (n + 1) b  

 nb  - b for some integer n. 

Thus,  - b is an upper bound of S. Since,  - b <, our assumption is wrong. 

Therefore, the above theorem is true. 

Theorem 4.2.14: For any real number a, there exists an integer n such that a < n. 
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Proof: Let us consider the theorem is false and a > n for all integers n. i.e., the set of integers N 

is bounded above, and by the Completeness axiom it has a least upper bound M (say). As M is 

the least upper bound, M – 1 cannot be upper bound. Obviously, there exists an integer n such 

that M – 1 < n. i.e., M < n + 1 where n + 1 is an integer and greater than the upper bound, which 

is not possible. Thus, the theorem is true. 

Theorem 4.2.15: For any real number b > 0, there exists an integer n such that .
1

0 b
n
  

Proof: By theorem 4.2.14, there is an integer n such that .
1

0 n
b
  Also by corollary 3.4, we 

have .
1

0 b
n
  

Density of the Rational and Irrationals. 

Definition 4.2.16: A set D is dense in the real’s if every open interval (a, b) contains a member 

of D.  

Theorem 4.2.17: The set of rational numbers are dense in the intervals OR if a and b are real’s 

numbers with a < b, there is a rational number q

p
 such that ).,( ba

q

p
  

Proof:Let a and b are any two distinct real numbers and let a < b  b – a > 0. By the 

Archimedean Property of real’s, there exist a positive integer q such that 

q(b – a) > 1 or qb > qa + 1….(*) 

Also there exist a unique integer p such that 

p – 1  qa < p 

qa + 1  p > qa….(**) 

By combining (*) and (**), we get; 

qb > qa + 1  p > qa 

 qa < p < qb 

 a < b
q

p
  

Clearly, p, q are integers with q ≠ 0  q

p
is a rational. Let us consider k

q

p
  a < k < b. 
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Thus, there exist a rational number k, in between a and b. Also, by repeating the above process 

for a and k, and k and b, we get new rationales k1 and k2 such that; 

a < k1< k and k <k2< b  

 a < k1< k <k2< b 

Again by continuing the same process, we find infinitely many rationales between any two 

distinct reals. 

Remark: The rational number system is not complete (see theorem 4.1).  

Theorem 4.2.18: The set of irrational numbers is dense in the reals. 

Proof: By theorem 4.2.17, there are rational numbers k1 and k2 such that a < k1< k2< b. 

Let p = k1 + )(
2

1
12 kk   

p is irrational and k1<  q < k2 

 a < p < b as a < k1<k2< b. 

Theorem 4.2.19: Between any two distinct real numbers, there exist an infinite number of reals. 

Proof: The above theorems 4.2.17 and 4.2.18 will complete the proof.  

4.4.20 The extended real number system 

It is often convenient to extend the system of the real numbers by the addition of two elements  

and - . The arithmetic relationships among, -, and the real numbers are defined as follows: 

R
*
= R { -,} 

Where  and - are largest and smallest element of the real line R. We extend the order relation 

to R by -< x < for all x R. 

Also we define addition on R
*
as 

x +  =  =  + x for all x R
*
with x > - 

y + (-) = - = (-) + y for all y R
*
with y <. 

Also for x > 0, x = x = , 

x(-) = (-)x = -. 

for x < 0, x = x = -, 

x(-) = (-)x = . 

We also define  +  =  = (-)(-) =  

- - = (-) = (-) = - 
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|-| = || =  

Note that,  + (-), 0.,.0, 


 and 0

0
are not defined.  

Remark: In general, one may get doubt on  (number/ quantity or not).  (#) 

Infinity can be a number if you want it to be, as Mathematicians can define any sort of number 

system. What is important is if it's useful and interesting. We see that infinity is not considered a 

number in the set of real numbers(R). However, in Calculus and other subjects, it helps to 

informally (sometimes formally) consider infinity a number with a special properties in order to 

evaluate limits. This number system is called the extendedreal number system. To say yes or no 

of our (#),and it is not. The answer depends entirely on what we are working with. In some 

number systems, infinity is defined. In other number systems, infinity is not defined. Regarding, 

modulus symbol, usually, when we are working with the extended real number system, we take 

continues that are defined on the reals (or some subset) and extended them continuity to have 

+ or - whenever possible. In the case of absolute values, we define |+∞|=+∞ and |−∞|=+∞ for 

this reason:i.e. because 

 




|| xLt
x

and 


|| xLt
x

 

 

Whether you want to call + and - numbers or not is not really relevant to this situation. I 

believe that it is very useful to consider them numbers... but maybe that should only be done 

once you are comfortable doing arithmetic with them. 
  

----------------------------------------------------------------------------------------------------------------- 

Exercise 1.1 

--------------------------------------------------------------------------------------------------------------------- 

1. Show that the set S = {x: x
2
< 1 – x} is bounded above. Also find the least upper bound of 

S. 

2. Show that .1|
1

1sup 








 Nn
n

 

3. Justify: ).:0(   baba  

4. Find the least upper bound of 









 ,...

1
,...,

4

3
,

3

2
,

2

1

n

n
S   and justify your answer. 

5. Find lower and upper bounds of y = f(x), where f(x) = -x
4 

+ 2x
2
 + x and x  [-1, 1.5]. 

6. Prove that Z is unbound both above and below. 
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7. Estimate the size of f(x) = x
2
 – 1 in x  (0, 2). 

8. Prove that p is irrational, where p is prime. 

9. For RS   be a bounded set with },:{ SxxS  prove that inf S = - sup (-S). 

10. For   TSRTRS ,,,  with ,TS  then prove that inf T infS sup S  sup T. 

11. Prove that Q is not complete. 

12. Given x R, prove that there is a unique (!) n Z such that x  [n -1, n) 

13. Find the max, min, sup and inf, and justify your answer by proof for












 Nn

n

n
S

1

12
. 

14. Find the bound of 
1

13
)(

2

3






x

xx
xf for ].2,2[x  

15. Find the max, min, sup and inf of .
)1(1

1











 Nn
n

S
n

 

16. Establish formulas for sup K and inf K in terms of Sup S and inf S for  NlbalK  , 

where a and b are fixed real numbers with S is bounded non-empty set. 

17. Prove that, the infimum of a set, if it exits, is unique. 

18. If M and N are non-empty subsets of R, then prove that Sup (M – N) =Sup (M) – Inf (N). 

19. Let S be an ordered field and x, y  S. Then prove the following: 

a) |x|  0 and |x| = 0  x = 0. 

b) |x| = |-x| 

c) -|x|  x  |x| 

d) |x|  y  -y  x  y 

20. Prove that for any x R, x < x + 1 and for x ≠ 0, x.x> 0. 

21. Prove that for any real numbers a and b, .
2

2








 


ba
ab  

22. Let a Q with a ≠ 0, and b is some irrational. Prove that ab also an irrational. 

23. Let S = {.1, .12, .123, .1234, … , .12345678910, …}, then find g.l.b.(S) and how would 

you write l.u.b.(S)? 
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24. Prove that .bcad
d

c

b

a
  

25. Prove that a
-1

 is positive, when a is positive. 

26. If a1, a2, … ,an are real numbers, then prove that 

(i) |a1 + a2 + …+ an|  |a1| + |a2| +…+ |an|. 

(ii) |a1.a2 … an| = |a1|. |a2| … |an|. 

27. Let f, g be real-valued functions defined on non-empty set D, and such that Rf= f(D) and 

Rg = g(D) are bounded subsets of R. Then, Prove that  

sup{ ( ) ( ) : } sup{ ( ) : } sup{ ( ) : }f x g x x D f x x D g x x D      , 

 sup( )( ) sup ( ) sup ( )f g D f D g D   . Note that, Rf means Range of f. 

28. Prove that the set of negative real numbers is not bounded below. 

29. Show that, for a and b are fixed real number, ||1

||

||1

||

||1

||

b

b

a

a

ba

ba










is true. 

30. Justify the statement “ a > b  (> 0: a  b + )” 

31. If S R has maximum with a supremum. Prove that, Sup S = Max S. 

32. Find the least and greatest upper bound of .
3

2
cos

1

1













 Nn

n

n

n
S


 

33. If x and y are real numbers, then show that max(x, y) 2

|| yxyx 
  and min(x, y) 

2

|| yxyx 
 . 

 

 

 

5. Mathematical Induction 

Aresemblance of the principal of mathematical induction is the game of dominoes. Let the 

dominoes are lined up properly, so that when one falls, the next one will also fall and so on.  

Therefore, the basic principal of mathematical induction is as follows. To prove that a statement 
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holds for all positive integers n, we first verify that it holds for n = 1, and then we prove that if it 

holds for k (a certain natural number), and then it holds for k + 1.  

Theorem 5.1: Let S1, S2,…,Sn, … be propositions, one of for each positive integer, such that; 

(i) S1 is true  

(ii) Sn Sn+1, for each positive integer n, then Snis true for all positive integers of n. 

Proof: Let K = {n|nN and Sn is true} 

From (i), 1  K and from (ii), n + 1  K whenever n  K  K = N  

In general, we use to hear the weak and strong induction. What is the real meaning of the weak 

and strong? Where can we apply?... 

The answer is simply that we use one that works. we don’t choose ahead of time which form 

to use; we use the one that gives you the strength of hypothesis needed to make our proof 

work. 

In general, the hypothesis P(n) simply isn’t strong enough to let us derive P(n+1), but we can 

derive P(n+1) if we assume P(n) and P(n−1). Sometimes we have to assume P(k) for all ksuch 

that n0≤k≤n in order to be able to infer P(n+1). (Here n0 is the initial value for the induction.) In 

practice you might as well simply assume that P(k) holds for k=n0,…,n when trying to 

prove P(n+1); if it turns out that you don’t actually need that strong a hypothesis, no harm has 

been done. In other words, when attacking a new proof, always remember that you can use the 

full strength of strong induction, though in many cases you won’t need to do so. 

 

It’s unfortunate that so-called strong and weak induction are so often taught as different things, 

when in fact they are just very slightly different special cases of a considerably more general 

concept that covers transfinite induction and structural induction as well. Roughly speaking, it’s 

a method that applies whenever the setting is such that it’s meaningful to talk about a minimal 

counterexample to the theorem that you’re trying to prove. In the case of induction over the 

integers, a minimal counterexample is simply the smallest n for which P(n) is false. You can 

think of a proof by induction as a proof that no such minimal counterexample can exist. You 

suppose that n is a minimal counter example and you getting a contradiction. Sometimes the 

contradiction can be obtained just from the hypothesis that P(n−1) is true; sometimes you find 

that you need a bit more − the truth of both P(n−1) and P(n−2), for instance, or even of 

all P(k) for n0≤k<n. Since you’re assuming that n is a minimal counterexample, however, 
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you are assuming that P(k)is true for n0≤k<n, so you can use as much of that assumption as you 

need in order to get your contradiction. 

Example 5.2: Prove that 1 + 2 + 3 +…+ n = ...(*)
2

)1( nn
 for any integer n  1. 

For n = 1 (*) is true, since 1 =  .
2

)11(1 
 

Let us assume that, * is true for n = k  1, that is 1 + 2 + 3 +…+ k = 
2

)1( kk
…(**) 

Prove that * is true for n = k +1, that is  

1 + 2 + 3 +…+ k + (k + 1) 
?

 )1(
2

)1(



k

kk
 

As we have, 1 + 2 + 3 +…+ k + (k +1) 
**

 )1(
2

)1(



k

kk
 

 .
2

)2)(1(
1

2
)1(













kkk
k  

Example 5.2: Prove that 1 + 3 + 5 +…+ (2n - 1) = ...(*)2n  for any integer n  1. 

For n = 1 (*) is true, since 1 =  .12  

Let us assume that, * is true for n = k  1, that is 1 + 3 + 5 +…+ (2k - 1) = k
2
…(**)  

Prove that * is true for n = k +1, that is  

1 + 3 + 5 +…+ (2k -1) + (2k + 1) 
?

 .)1( 2k  

As we have, 1 + 3 + 5 +…+ (2k – 1) + (2k +1) 
**

 .)1()12( 22  kkk  

The following examples deal with problems for which induction is a natural and efficient method 

of solution.  

Example 5.3: Let 









   where2,nfor 

 2 & 1n for  1

12 nn

n
aa

a  

na is the formula for n
th 

term of the Fibonacci sequence. Prove that by mathematical induction,  

.
2.5

)51()51(
n

nn

na


  

For n = 1, a1 = 1 = 
2.5

)51()51( 
is true. 
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For n = 2, a2 = 1 = 
2

22

2.5

)51()51( 
is also true. 

Let us assume the truth of the statement for some n – 1 and n, that is 

...(*)
2.5

)51()51(
1

11

1 








n

nn

na  

and, ...(**)
2.5

)51()51(
n

nn

na


  

By adding (*) and (**), we get; 

 1. n for   t rueis w,
2.5

)51()51(

2.5

]51[)51(]51[)51(

2.5

]526[)51(]526[)51(

2.5

)]51((24[)51()]51((24[)51(

25

)51(2)51(2)51(4)51(4

2.5

)51()51(

2.5

)51()51(

1

11

1

2121

1

11

1

11

1

11

1

11

11




















































hich

aaa

n

nn

n

nn

n

nn

n

nn

n

nnnn

n

nn

n

nn

nnn

 

i.e., the statement is true for n = 1 and n = 2 and its truth for n – 1 and n implies its truth for  

n + 1. 

Example 5.4: Prove that n! n
n
… (*) for any integer n  1 

For n = 1 (*) is true as 1! = 1
1
 

Let (*) is true for some n = k   1, that is k! k
k
 …(**) 

Prove that (*) is true for n = k + 1, that is (k + 1)! .)1( 1
?

 kk  

We have (k + 1)! = k! (k + 1) 
1

**

)1()1()1()1(  kkk kkkkk . 

Example 5.5: Prove that 7|n
7 

– n … (*) for any integer n  1. 

For n = 1 (*) is true, since 7|1
7
 – 1 

Let (*) is true for some n = k  1, which is 7|k
7
 – k… (**) 
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Prove that (*) is true for n = k + 1, that is 7|(k +1)
7
 – (k + 1). 

We have (k + 1)
7
 – (k + 1) = k

7
 + 7k

6
 + 21k

5
 + 35k

4
 + 35k

3
 + 21k

2
 + 7k + 1 – k -1 

= (k
7
 – k) + (7k

6
 + 21k

5
 + 35k

4
 + 35k

3
 + 21k

2
 + 7k) 

= (k
7
 – k) + 7(k

6
 + 3k

5
 + 5k

4
 + 5k

3
 + 3k

2
 + k) 

= divisibly by 7.   ( (**))by  

Example 5.6:Prove that n
3
 – n … (*) is divisible by 3 nN. 

For n = 1 (*) is true, since 3|1
3
 – 1 

Let (*) is true for some n, that is 3|n
3
 – n…(**) 

 (n +1)
3
 – (n + 1) = n

3
 + 3n

2
 + 3n + 1- n - 1 = (n

3
 – n) + 3(n

2
 + n) (#) 

By (**), (#) is divisible by 3. 

----------------------------------------------------------------------------------------------------------------- 

Exercise 1.2 

--------------------------------------------------------------------------------------------------------------------- 

Prove the following by induction: 

1. The sum of square of first n natural numbers is .
6

)12)(1(  nnn
 

2. 1
2
 + 3

2
 + … + (2n – 1)

2
 = .

3

)14( 2 nn
 

3. Show that if a is a real number with a > -1, then .1)1( Nnnaa n   

4. 1
5
 + 2

5
 + 3

5
 + … + n

5
 = .

12

)122()1( 222  nnnn
 

5. .
)2)(1(4

)3(

)2)(1(

1
...

4.3.2

1

3.2.1

1









nn

nn

nnn  

6. ).12...(5.3.1.2)2)(12)...(2)(1(  nnnnn n

 

7. .
2

cos222...22
1




n

radicalsn


 

8. }{),(121 nnn aNnaa  is a sequence, show that ).1(2 1

1

1  

 aa n

n  

9. .
2

1

12

1
...

4

1

3

1

2

1
1

2

1
...

2

1

1

1

nnnnn








  

10. Given a sequence a1, a2,…,an,… such that a1 = 1 and an = an-1 + 3, (n  2). Show that an = 

3n – 2 nN. 
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11. 6|n(n
2
 + 5) 

12. 21|5
n
 -2

n
 for all positive even integers of n. 

13. 30|5
n
 – 3

n
 – 2

n
 for all positive odd integers of n. 

14. If ,  are the roots of x
2
 – 14x + 36 = 0. Show that 

n
 + 

n
 | 2

n
,  nN. 

15. If n  Z and n  0 then .1)!1(!.
0




nii
n

i
 

16. 2n
 n

2
n  5 and nN. 

17. For all n  N, there exists distinct integers x, y, z for which x
2
 + y

2
 + z

2
 = 14

n
. 

18.    n

kn

n

k   

19. For all integers n and k with 1  k  n;        .2 2

11



  n

k

n

kn

n

k

n

n  

20. Prove that every positive integer greater than 1 can be written as a product of primes.  

21. ,
sin2

2sin
)12cos(

1





n

n x

nx
xk

for x  R with sinx ≠ 0. 

22. n! > 3
n
 for n  7. 

23. A set of n elements has 2
n
 subsets. 

24. ‘Everything is the same color’. Explain the fallacy by induction. 

25. nth
 derivative of x

n
 is n!. 

26. 3....151413121:resultRamanujan 
, show that  

.,1...1)3(1)2(1)1(11 Nnnnnnn 
 

27. 9|5
2n

 + 3n -1. 

28. .212
1

...
2

1

1

1
 n

n
 

29. integer. positive fixed isr  where,1,11   nxxrxx nnnn  

30. .1,
sin2

2cos1
)12sin(...3sinsin 


 n

x

nx
xnxx  
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31. integers. posit ive are a,…,a ,a where,...
...

n2121

21 n
n

n aaa
n

aaa



 

32. Ever integer = 
.)53()53( nn   

33. parts).by  integrate :(HINT 2. n for   trueis ;sin
1

sin
0

2

0




 




xdx
n

n
xdx nn
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