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ABSTRACT 

We prove the Oppermann’s conjecture: given an integer,    , there is, at least, 

one prime between      and   , and, at least, another prime between    and 

    , using the prime-counting function and the Bertrand’s Postulate. 

1. INTRODUCTION 

 The Oppermann’s conjecture, named after Ludvig Oppermann, in  882, relates to 

distribution of the prime numbers. It states that, for any integer,    , there is, at least, 

one prime between      and   , and, at least, another prime between    and     . We 

use the alternative statement: 

 Let  ( ) be the prime-counting function, that is, the number of prime numbers less 

than or equal to  . Then, 

( )                                                      (    )   (  )   (    ), 

for    . This means that between the square of a number   and the square of the same 

number plus (or minus) that number, there is a prime number. Or, equivalently, 
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and  

( )                                                           (    )   (  )   . 

2. LEMMAS AND THEOREMS 

LEMMA 1. (Bertrand’s Postulate, actually a Theorem) For any integer    , there always 

exists, at least, one prime number,  , with     2  2.  

A weaker, but more elegant formulation is:  

LEMMA 2. (Weak Bertrand’s Postulate) For every     there is always, at least, one 

prime number,  , such that     2 . 
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Proof. Part 1. In [Dickson, pp. 427], H. Laurent noted that 
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 Using the identity 
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we find the following real part 
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 The imaginary part is the following 
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              It follows from (9) and (11) that 
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Part 2. The prime-counting function is the function counting the number of prime 

numbers less than or equal to some real number  . It is denoted by  ( ). From above 

definition, we have 

 ( )  ∑ 

   

. 

With the restriction for the positive integers and greater than or equal to five, it 

follows that 
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COROLLARY 1. For      , then 
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Proof. Is obvious by the definition of floor function: ⌊ ⌋   ma *         +  and 

previous Theorem. ⧠    

THEOREM 2. (Oppermann’s Theorem) For any integer,    , there is, at least, one prime 

number between      and   , and, at least, another prime number between    and 

    . 

Proof. Step 1. By use from (4), we find 
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Step 2.Subtracting (18) from (17), we have 
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By (8) we have the inequality 
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From (20) and (21), it follows that 
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Step 4. Subtracting (19) from (18), we have 
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From (21) and (22), it follows that 
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