PROR compaction scheme for larger circuits and
longer vectors with deterministic ATPG

Suresh k Devanathan

Abstract—Reverse order restoration ROR techniques have found
great use in sequential automatic test pattern generation ATPG,
esp. spectral and perturbation-based ATPG. This paper deals with
improving ROR for that purpose. We introduce parallel-fault multi-
pass 2-level polynomial reverse order restoration PROR algorithms
with constant complexity of the form H(n)G(n) + ¢ where H(n)
is the number of vectors to be released this iteration and G(n)
is the attenuation factor. In PROR H(n) = n* and G(n) here is
1 — H(n)/no_vectors with ¢ about 1 to 64, where n is the number
of iterations, the fault has been hanging around in the compactor and
k is the polynomial complexity of the algorithm, in each iteration. k
is variant and can take on any real value. We also divide the vector
length such that it has a maximum of 10000 units at best, so that if
the vector length is greater than 10000, it is still rounded to 10000 by
considering a bigger chunk size. We also added PODEM of backtrace
limit 30 on the last vector to get a faster and better quality test set.
On contrast to algorithms which do not have results reported on large
circuits and on longer vector lengths, we showcase our algorithm.
For example, on b22, we achieved a 94.36% FC in 1.31 days with
VL 146476.

I. INTRODUCTION

To understand the importance of compaction, we discuss

problems with sequential ATPG schemes. Sequential ATPG
has been traditionally seen as unreliable, slow, providing
poor quality test set, etc. This is mostly because sequential
ATPG is a hard problem. From days of deterministic test
generators such as HITEC [5] and SEST, and till GA-based
STRATEGATE, sequential ATPG has generally been seen as
bad. It is with the introduction of compaction-based ATPG
schemes, such as , till the more recent wavelet-based com-
paction ATPG [2] [3], it is showing some promise. Although,
not all problems, have been alleviated, at least some of the
problems have been fixed and a good compactor is crucial to
these schemes.
We introduce PROR, a new variant of ROR-type compactors.
They are noticeably very fast, and do have a lower quality
trade off with vector length. In general, in this paper, we also
present tricks that we used to tweak our tool. In the end, we
present results.

II. ROR

Out of the compaction algorithms, the most useful ones are
RORs because unlike omission based sequential compactors,
they take less time and unlike some schemes, they do not use
a lot of memory space. The algorithm for a typical ROR is as
follows.

« Drop all vectors
o Pick fault with highest detection time

Michael L Bushnell

o Restore vectors from that time instant

o If fault is detected, stop, else keep restoring vectors

e Move on to the fault of the next highest detection time
o Repeat the process until necessary

Different algorithms play on this scheme. An LROR, for exam-
ple, restores only one vector at a time and a radix reverse order
restoration RROR scheme restores an exponential number of
vectors each instant. For example, with radix-2, the scheme
would restore 1,2,4,8 vectors, etc. RRORs although fast, are
over ambitious, whereas LROR are too slow. The invention of
PROR exists to solve these problems.

Unlike fault simulators, which are exact, or have to be con-
sistent with each other, each compactor has its own flavor.
Compaction algorithms are inexact. The only exact thing about
them is that their results have to be verifiable by a fault
simulator and that they, in general, have to produce smaller
test sequences, than their initial test sequence.

III. PRIOR WORK

These schemes are also once again either too slow or over-
ambitious. LRORs are generally better at providing higher
compaction ratios, however, on a larger benchmark circuit,
with longer vector counts, they may never complete in time.
This has been our observations, esp. with developing com-
paction for sequential ATPG. RROR and other radix based
algorithms do provide a faster compaction rate, however, their
compaction ratios are lower and with sequential ATPG, the
vector lengths start exploding, after a few iterations of running
the algorithms. So, they are not completely practical.

A. Variants

Several variants of RORs have been proposed. Some of them
are multi-fault algorithms that take advantage of 32/64-bit
machine parallelisms. Most of the speed up from this scheme
only provides a constant order of magnitude difference. Our
PROR is rather an algorithmic modification. Other algorithms
such as Pomeranz et al. [4], do restoration, but also change
the order of fault detection between the compacted and initial
set. Although for STRATEGATE vector compaction, they may
save time, this becomes a problem, for ATPG, as the ATPG,
will spend a lot of its time rearranging vectors. So, preserving
detection times, may actually save time for compactor schemes
used in ATPG.

IV. THEORY OF PROR

PROR is a constant complexity ROR scheme with polyno-

mial vector length restoration for each iteration. PROR restores
vectors based on two expectancies. One, faults that have not
been detected yet, but have been, on the compaction cycle
need more vectors restored for detection. Two, as restored
vector lengths approach the total vector length, lesser vectors
have to be restored. They are represented by H(n) and G(n)
functions respectively. And c is the default number of vectors
to be restored in case H(n)G(n) is 0. In our case, ¢ varies
between 1 and 64, depending on the number of maximum
faults the compactor is targeting in the current cycle.
Observe that H(n)/H(n—1) — 1 as n — oo. Unlike RRORs,
where H(n)/H(n — 1) is some number > 1, the percentage
of vectors released on each cycle, by PROR, starts staying the
same, for every cycle, as n — oo. This is similar to the LROR,
except that H(n)/no_vectors for the LROR is 0 for large n,
and whereas, it is a non-zero number for PROR.
This has many advantages. One, the algorithm always restores
a constant percentage of vectors, for larger n. Secondly, this
percentage is significant macroscopically, unlike an LROR
scheme. The PROR accounts for the majority of the time-
savings by this algorithm.

A. H(n) and G(n)

H(n) is given by nF. Practically, it is implemented as
n® + 1. This stops the number from going to 0. G(n) is
1 — H(n)/no_vectors. The number of vectors restored for
the current fault is H(n)G(n) + 1. A multi-fault compactor,
like ours, will invoke this calculator for all targets faults in the
machines. So, in actuality, for the current iteration, the number
of vectors restored is the sum of vectors restored individually.

B. Calculation of k

k, the complexity of our PROR, is dependent on the vector
length. Longer vector lengths will have a larger k. This brings
down compaction time. The theory is that when a compactor
has to perform for a longer vector set, faults detected by that
set, take longer restoration sequences before being detected.
That is to say, there is a correlation between no. of vectors
restored and the initial no. of vectors.

log(no_vectors + 1)
log 61518

k=11 ey
The constants 61518 and 1.1 are empirical values that gave
us generally good results for large circuits. Basically, what it
means is that for vector lengths about 61518, £ is about 1.1 .
We make a modification to the above formula

min(log(no_vectors + 1), 10000)
log 61518

k=11 2)
such that at worst the algorithm behaves as if only 10000
vectors are present. This is the called the resolution of the
algorithm. This is related to the percentage-based complexity
of constant time 10000.

V. SPEED-UP TIPS AND TRICKS

In the next few sections, we will discuss several speed-up
tips and tricks. Some of them are modifications of schemes
already in use. However we found this configuration to work,
better and faster.

VI. INITIALIZATION SEQUENCE RESTORATION

Pomeranz et. al [4] have already proposed restoring

initialization sequence restoration. Basically, in this process,
the first few vectors are restored. This has been known to
reduce compaction time. We will discuss specific numbers
that have worked for us. From our experience, we found that
restoring first 5% of the vectors, on average, does a good job.
Secondly, all faults restored by the initialization sequence
may be dropped simply because it will always be detected,
as we are not throwing away vectors that detect them.
This has another implication. Do not restore a fault (further)
when its detection time falls, within the contiguous block of
vectors, from the initial vectors that have been restored. This
only saves time on a minority of faults. Other modifications,
discussed in this paper, will take over the majority of the
savings.

VII. MULTI-FAULT COMPACTION ALGORITHM

Pomeranz et. al [4] have discussed several multi-fault
algorithms. Their latest RROR algorithms, handle multi-
faults. These algorithms start from a fault with the highest
detection time and proceed to include faults, which are part
of vectors that are needed for detection of faults in the current
cycle. Pomeranz et. al [4] also discuss multi-fault LROR
schemes, which tries to restore 64 targets faults at a time.
Our implementation is similar yet, different. Similar to
Pomeranz et. al [4] method 2, we restore a batch of 64
faults, in parallel. However, unlike their method, we keep the
list always populated. In our scheme, there are always 64
faults being restored in parallel. The attempt is always made.
When a fault is detected, it is replaced by an undetected
fault of a lower detection time. It must be noted that just
because there are 64 faults in parallel, will not mean, that
the PROR speed up is 64 times higher than a PROR without
it, because different faults need different restoration vector
lengths. Instead, however, it definitely means that the 32-bit
parallelism of the machine will always be exploited.

Method 1 scheme also rearrange the order of vectors. As
we discussed earlier, this is not good for ATPG, as this
process will be repeated more than often. In case of ATPG,
what happens is that vectors for faults with lower detections
are constantly being dropped. ATPG also benefits from our
implementations, as it produces schemes with better spectral
properties, by compacting them.

To improve quality of multi-fault compaction, when a target
fault is introduced, do not restore any vectors, for the first
cycle. Normally, a weaker fault will be a detected by vectors
for a harder-to-test fault with a higher detection time. This

saves vector length.

VIII. 2-LEVEL COMPACTION

One more scheme that have not been previously discussed in
the literature, by others, is use of 2-level compaction schemes.
Basically, the idea is as follows:

« Restore vectors

e Once all faults have been restored, fault simulate for all

faults

o For undetected faults, do restoration. Note that restoration

from the previous step does not guarantee all faults to be
detected. This is because the algorithm restores a select
number of faults at a time. The result will not carry over
to all faults.

¢ Once all faults have been restored, fault simulate for only

the undetected set from the previous pass.

o For undetected faults, do restoration.

o Worry only about the undetected fault list.

¢ Once undetected faults is empty, do fault simulation for

all faults

o Repeat until all faults are detected.

This is 2-level compaction scheme. Notice the difference. It
only tries to concentrate on the undetected fault list. This
scheme saves a lot of time, by reducing the number of
calls to the fault simulator with the fully-populated fault list.
A populated fault list can consume a lot of time, in the
compactor, if we keep making repeated calls to it.

IX. FLIP FLOP SIGNATURE BASED RESTORATION

One of our observations, with running compactors, is that
compactors spend a lot of their time, simulating the good
machine. In fact, unlike fault simulators FS, good machine
simulation is on par with, if not higher than bad-machine
simulation, on compaction. So, we tried to devise a method
that would minimize the number of good machine event
counts.

Here’s the mini algorithm:

e Sy = initial FF state

o For each good machine simulation

e S, = current FF state

e Let FFchanges, = count (S, ; ==S,—1 ;)) where j is

the flip flop index

o Save FFchanges,

« end loop

o Use F'Fchanges, for vector restoration, which is ex-

plained in further in future sections. This has been known
to contribute to speed.

X. MULTI-PASS ALGORITHM

Our algorithm, like Pomeranz et al. [4] does multiple passes
on the compacted set to reduce it further. However, unlike
theirs, it stops after 4 iterations. This is mostly because the
compacted set is not of the highest quality since we are making
trade-offs with time and the algorithm can most likely find a
way to improve the quality further. Stopping multiple passes

over a limit, keeps the initial goal of devising an algorithm
for speed.

XI. STRUCTURE OF THE PROGRAM

For each pass, until no more improvement or terminating
condition, do the multi-level algorithm:

e In each level, do PROR:

— Target multiple faults

— Pick faults with high detection time

— calculate K = max(1, no.vectors/10000)

— For each target, calculate P(n) = (H(n)G(n) +
1) % K where n is number of iterations the fault has
stayed in the compactor

— For undetected faults, restore P(n) vectors.

— Replenish target fault list as more faults are detected

— Repeat process until target fault list is empty

A. Restoration Procedure Details

Unlike Pomeranz et al. [4] methods, in our implementation,
(H(n)G(n) + 1) * K is the number of newer vectors to
restored from the higher detection time. That would mean if
there are vectors, in between, those vectors are not included
in the count, and the algorithm will start scouting towards the
beginning to restore more vectors to meet the requirement.
Let’s call this absolute location L(n).In general, the method
is efficient and offers a lower trade-off with quality.

B. Improving Quality

We added another trick to improve the quality, in vec-
tor restoration procedure. To improve quality, the algorithm
considers 10 part restoration space by restoring vectors at
P(n)/10 vectors at location L(n), at 9L(n)/10,8L(n)/10,etc.
This improves quality significantly. We call this multi-space
restoration.

C. Deterministic ATPG

PODEM is used on the last vector of restoration for a
fault to promise early detection times with less vectors. The
algorithm changes the last vector, if the fault can be detected
within a backtrack limit of 30. It marks removed[i]=2 meaning
the vector at i has been changed. Algorithms must be careful
while restoring vectors since it may conflict with other fault
requirement and would have to restore the vector to its original
in case that fault is not detectable.

XII. FLAKY COMPACTION FOR ATPG

We discuss flaky compaction technique that provides defini-
tive speed for compaction-based ATPG tools. Flaky com-
paction works by breaking the 2-level compaction algorithm.
Basically, when the undetected list becomes empty, it does
not check to see, if all faults are indeed detected. Instead, it
terminates and goes into another pass. This increases speed of
ATPG. There is little to worry about loss of detection of those
faults, as they will be detected in subsequent iteration by even
more stable sequences.

XIII. COMPLEXITY ANALYSIS

PROR have a worst case complexity of O(Nc). That is

to say, the amortized cost, of PROR is O(1). This may seem
counter-intuitive. We will provide an informal proof as to why
this is the case.
Suppose we would like to calculate the number of iterations,
the PROR will go through, in the worst case for fault. First
thing to notice is that suppose N is maximum no. of vectors,
number of vectors restored cannot be greater than N.

k
okt y< N 3
1712(N)_ ()

Because X1 i* is m 1 /(k + 1) approximately, the expres-
sion simplifies to,

k+1 2k+1

m 1m
- = <N
k+1 N2k+1—

Now, we would to know m, when the equality is met, because
that’s the maximum, it can reach. This equation cannot be
solved exactly. So, we assume the following: m ~ cN 1k
where ¢ is some constant and check to see if it does solve
the equation, we find, the that the m ~ cN 1/k is one of the
solution to the above equation. We leave it to the reader to
verify this. Notice that

“4)

NYE = exp log N1/k 5)
= expl/klog N (6)
(7

Using that k ~ 1.152580) . We will get NV/* = 615181/1:1,
So, the amortized cost is O(1). The complexity of the com-
pactor is O(Nc¢) or O(N) is the complexity of fault simulation,

in terms of vector length.

TABLE I
WAVELET ATPG [2] RESULTS FOR PROR WITHOUT FAULT SAMPLING

[Ckt. [Det. Flts. | Vec. Length |

$38584.1 29281 113849
b01 128 81
b02 65 77
b03 391 305
b04 1431 315
b08 621 419
b10 448 1417
bll 1261 598
b20 32450 46755
b21 33482 52094
b22 48743 161403

XIV. EXPERIMENTAL RESULTS

We ran our experiments on a PC. Our PROR compactor
used the HOPE fault simulator and was written in C. We
used wavelet ATPG [2] for test pattern generation to test the
dexterity of our compaction schemes. The ATPG was modified
to include a combinational ATPG initial sequence generator
using a PODEM like technique. We also added some of the
heuristics used in wavelet BIST [3], such as correlation. We

TABLE II
WAVELET ATPG [2] RESULTS FOR PROR WITH FAULT SAMPLING

[Ckt.][Det. Flts. | Vec. Length [Time |
b01 128 86 20.1(sec)
b02 65 64 16.2 (sec)
b03 391 329 21.3 (sec)
b04 1431 519 40.7 (sec)
b08 419 522 30.0 (sec)
bl0 448 1155 97.2 (sec)
b1l 1261 1257 65.8 (sec)
bl2 1622 6389 5.93 (min)
b13 256 97 25.1(sec)
bl4 14479 5445 20.8 (min)
b5 || 15140 9605 47.5 (min)
b20 32422 50389 4.71(hr)
b21 33232 67205 7.73(hr)
b22 49118 146476 1.31 (day)

TABLE III

COMPACTION RESULTS FOR PROR IN WAVELET ATPG [2] ITERATION

[Cke. | VFDF | TDF | IVL | FVL | Time |
522 [1122/1140 | 49118 | 1593477 | 148837 | 108 (hn) |

I/F DF: Initial/Final Detected Faults
TDF: Total Detected Faults

IVL: Initial Vector Length
FVL:Final Vector Length

report results on larger circuits and circuits where no one has
previously reported like bXX series of ITC test benches with
reset. Results indeed show that PROR may be suitable for
large scale sequential ATPG. It is really fast and we ran the
ATPG with and without using fault sampling option. Results
are shown in tables I and II. This is good news since the ATPG
ran for no more than 6 iterations on the larger circuits. Results
may be better if it ran for more iterations. Sometimes PROR
takes sequences > 1 million in size and compacts them to
10% of their original size, as seen in table III.

XV. CONCLUSION

In general, our PROR compaction scheme did pretty good
and may be suitable for industrial level benchmarks. This
PROR set of compactors may be the first step in producing
commercial grade sequential non-deterministic ATPG. Our
results indicate that spectral wavelet ATPG combined with
PROR may be the best solution in terms of speed and
efficiency. In the future, we plan to make the algorithm a
little bit deterministic and use better techniques for analysis.
PODEM part can be improved. And so can plenty of other
things, such as quality of the test sequences. Quality of test
sequences will be a better topic in future installments of this
series of papers. In conclusion, we built a good compactor and
had better ATPG results.

ACKNOWLEDGMENT

The authors would like to thank...

(1]
(2]

(3]

(4]

(5]
(6]
(71
(8]

REFERENCES

H. Kopka and P. W. Daly, A Guide to BIEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

Suresh Kumar Devanathan and Michael L. Bushnell, Sequential Spectral
ATPG Using the Wavelet Transform and Compaction, VLSI Design, 2006,
pp. 407-412

Suresh Kumar Devanathan and Michael L. Bushnell, Test Pattern Gener-
ation Using Modulation by Haar Wavelets and Correlation for Sequential
BIST, VLSI Design, 2007 pp. 485-491

Irith Pomeranz, Procedures for Static Compaction of Test Sequences for
Synchronous Sequential Circuits Based on Vector Restoration, DATE,
1998

T M Niermann, HITEC: A test generation package for sequential circuits,
EDA, 1991

H. Fujiwara , Fan: a fanout-oriented test pattern generation algorithm
ISCAS, 1985

Hyung Ki Lee, Dong Sam Ha , HOPE: an efficient parallel fault
simulator DAC, 1992, pp. 336-340

H. K. Lee, D. S. Ha , Atalanta: An Efficient ATPG for Combinational
Circuits ,1993

