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ABSTRACT 

The electrodynamics is usually considered as a phenomenological theory with respect to the masses and 

charges of the particles. In this paper we develop theoretical model of electrodynamics that does not 

contain any phenomenological constants associated with the particles, such as particles’ masses and 

charges. This model can be applied equally to various types of particles, such as photon, charged spin ½ 

fermions and neutrino, and allows for deriving the values of particles’ masses and charges. We avoid 

using any ad hoc particle structures (such as ad hoc charge and/or mass distributions) in our model, but 

only symmetry properties associated with distinctive features of the particles. 
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1 Summary 

The electrodynamics is usually considered as a phenomenological theory with respect to the masses and 

charges of the interacting particles. 

The quantum electrodynamics (QED) based on Dirac equations can be used to make extremely accurate 

predictions of quantities like the anomalous magnetic moment of the electron, and the Lamb shift of the 

energy levels of hydrogen. However, the values of the two phenomenological constants – particle’s 

charge 𝑒 and it’s mass 𝑚 – cannot be derived from Dirac theory and/or QED. 

In this paper we develop theoretical model of electrodynamics that does not contain any 

phenomenological constants associated with the particles, such as particles’ masses and charges. 

Instead, our model 

 allows for deriving the values of particles’ masses and charges 

 applies equally to various types of particles, such as photon, charged spin ½ fermions and 

neutrino 

At the same time we avoid using any ad hoc particle structures (such as ad hoc charge and/or mass 

distributions) in our model, but only symmetry properties associated with distinctive features of the 

particles. 

In particular, we assume that 

 photons are transverse plane electromagnetic waves 

 charged fermions’ fields are axially symmetric 

 neutrino field violates parity, and its spinor components satisfy Majorana condition. 

Hence, each particle type in our model is associated with some symmetry properties of the field 

configuration, but basic equations are the same for all types of particles. 

In this paper we use the spinor calculus developed by B. van der Waerden, G.E. Uhlenbeck and O. 

Laporte. This is because many spinorial equations are much simpler than the corresponding tensorial 

equations. This applies equally to Maxwell and Dirac equations. 

For instance, the free Dirac equation in spinorial form can be written as 

𝜕𝜇𝜈 𝜂𝜈  +  𝑖𝑚𝜉𝜇 =  0, 𝜕𝜇𝜈 𝜉
𝜇 +  𝑖𝑚𝜂𝜈 = 0 (1)  

All the expressions written in spinorial form are manifestly covariant. In Section 2 we briefly explain all 
the spinorial notations used in this paper. An excellent introduction to the spinor calculus can also be 
found in [2-4]. 

In our approach we consider evolutions of two interacting fields: 

 electromagnetic fields 𝑬, 𝑩, and 

 spinorial matter fields 𝜉, 𝜂 . 

The evolution of electromagnetic fields 𝑬, 𝑩 is determined by Maxwell equations. In Section 3 we 
rewrite Maxwell equations, as well as related expressions for the charge densities, stress-energy tensor 
and Lorentz force density, in spinorial form. In Section 3 we also represent in spinorial form the Maxwell 
equations for the special cases of transverse plane waves and axially symmetric field configurations. 
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The evolution of spinorial mater fields 𝜉, 𝜂  is determined by the matter field equations. These equations 
should be consistent with the following requirements: 

 they need to be Lorentz invariant 

 they should not contain phenomenological constants associated with the type of particle, such 
as mass and charge 

 they should not be based on any ad hoc particle structures (such as ad hoc charge and/or mass 
distributions or mass-to-charge density ratios) 

In Section 4 we introduce the simplest equations that meet all three requirements: 

𝜕𝜇𝜈 𝜂𝜈 =  +𝑓𝜈
𝜇
𝜉𝜈 , 𝜕𝜇𝜈 𝜉

𝜇 =  −𝑓 𝜈 
𝜇 
𝜂𝜇  (2)  

where 𝑓𝜈
𝜇

 and 𝑓 𝜈 
𝜇 

 are spinorial forms of electric and magnetic field strengths 𝑬, 𝑩 (see Section 2.5). 

In these equations spinorial matter fields 𝜉𝜇  and 𝜂𝜈  are coupled via electromagnetic field spinors. 

Matter field equations (2) replicate the structure of the free Dirac equation (1) if we require that  

𝑓𝜈
𝜇
𝜉𝜈 =  𝜆 𝜉𝜇

𝑓 𝜈 
𝜇 
𝜂𝜇 = 𝜆  𝜂𝜈 

 (3)  

i.e. spinorial fields 𝜉 and 𝜂  are eigenvectors of the second rank electromagnetic field spinors 𝑓𝜈
𝜇

 and 𝑓 𝜈 
𝜇 

 

correspondingly. Indeed, by applying (3) in (2) we obtain 

𝜕𝜇𝜈 𝜂𝜈 = + 𝜆 𝜉𝜇 , 𝜕𝜇𝜈 𝜉
𝜇 =  −𝜆  𝜂𝜈  (4)  

Eigenvalues 𝜆 and 𝜆  in (3) and (4) are shown to be well known invariants of the electromagnetic field 
(see Section 5): 

𝜆± =  ± 𝐸2 − 𝐵2 − 2𝑖𝑬𝑩

𝜆± =  ± 𝐸2 − 𝐵2 + 2𝑖𝑬𝑩

 (5)  

From the analogy with free Dirac equation (1) we can say that in our model electromagnetic field 

invariants 𝜆 and 𝜆  play the roles of mass densities, and the latter have purely electromagnetic origin. 
Unlike constant and real valued mass terms in Dirac equation, these mass densities are variable and 
complex valued. 

In Sections 5.1 and 5.2 we demonstrate that, in spite of the complex values of the “mass densities” 𝜆 

and 𝜆 , the momentum densities of the matter fields 𝑃𝜇  are real valued and satisfy the continuity 

equation: 

𝜕𝜇𝑃
𝜇 = 0 (6)  

We also demonstrate that condition (3) is equivalent to the requirement that momentum density of the 
matter field 𝑃𝜇  is an eigenvector of the stress-energy tensor of the electromagnetic field. 

In Section 5.3 we obtain the following expression for the “mass density square” of the matter field 

𝑃𝜇𝑃𝜇 = 4 𝜆 2 (7)  
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This is another manifestation of the electromagnetic origin of our “mass terms”. In our model the 
momentum density vector 𝑃𝜇  is always time-like, and its time-like component 𝑃0 is always positive, 

hence no solutions with negative energies are allowed. 

In Sections 3, 4 and 5 the Maxwell equations and the matter field equations are considered separately. 

The concept of electromagnetic mass was developed based on matter field equations and property (3). 

In the Section 6 we consider both Maxwell and matter field equations simultaneously and require that 

both equations are equivalent, i.e. that matter field equations can be reduced to Maxwell equations, 

and vice versa. 

Physically that means that particle’s own electromagnetic field evolution is dynamically balanced with 

evolution of its source – particle’s spinorial field, so that the total field configuration remains stable in 

time. 

This enables us to develop the concept of electromagnetic charge, in a sense that the charge density can 

also be expressed via electromagnetic field strengths 𝑬, 𝑩. 

In the first place (Section 6.1) we consider the case of transverse plane waves and show that Maxwell 

and matter field equations become equivalent if the following relationship between the mass and 

charge densities is satisfied: 

𝐽𝜇 = 𝜆  𝑃𝜇  (8)  

From this we conclude that, in the case of the transverse plane waves, electromagnetic field invariant 𝜆  

plays the role of the charge density (while 𝜆 plays the same role for anti-particles). Generally 𝜆  is 
complex valued, hence allowing for both non-zero electric and magnetic charge densities. It does not, 
however, contradict the fact that the total magnetic charge of all known particle is zero. On the other 
hand, the non-zero magnetic charge density contributes to the total magnetic moment of the particle. 

We also demonstrate that in the case of the transverse plane waves the Lorentz force action on the 

matter field is zero when 𝐸 = 𝐵, i.e. when real parts of electromagnetic fields invariants 𝜆 and 𝜆  are 

zero. 

Particularly, this applies to electromagnetic waves “in vacuum” (𝑬 ⊥ 𝑩, 𝐸 = 𝐵), where we have 

𝜆 = 𝜆 = 0, and matter field equations coincide with Maxwell equations for “source-free” 

electromagnetic plane waves. In this case the momentum density 𝑃𝜇  of the matter field is non-zero, 

while the charge density 𝐽𝜇  is zero. In this sense the photons are not actually “source-free” 

electromagnetic waves. 

In Section 6.2 we consider stationary axially symmetric field configuration corresponding to charged 

fermions, such as electrons. We demonstrate that in this case consistency of the matter field equations 

and Maxwell equations require that the “velocity of charge” is not the same as “velocity of mass” 

anymore. In Section 6.2 we also derive the equation that enables to establish all possible field 

configurations of charged fermions, and hence deriving the values of their total masses and charges. 

Finally, in Section 7 we consider the field configuration that violates parity. For this reason we associate 

this field configuration with neutrino. 

We demonstrate that the spinorial neutrino fields satisfy the Majorana condition 
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𝜉1 = −𝜂2

𝜉2 = +𝜂1

 (9)  

One of the important consequences of the model is that, in spite of non-zero “mass density terms”, the 
neutrino field propagates at the speed of light. 

2 Spinor calculus 

2.1 Basic notations 

Below we describe the basic notations used in this paper. 

The metric of the Minkowski space-time is defined as following: 

𝑔𝛼𝛽 =  𝑔𝛼𝛽 = 𝑑𝑖𝑎𝑔  +, −,−, − , 𝛼, 𝛽 = 0,1,2,3 (10)  

We use the following representations for Pauli matrices 

𝜎0 =  
1 0
0 1

 𝜎1 =  
0 1
1 0

 𝜎2 =  
0 −𝑖
𝑖 0

 𝜎3 =  
1 0
0 −1

  (11)  

 

𝜎 0 =  
1 0
0 1

 𝜎 1 =  
0 −1
−1 0

 𝜎 2 =  
0 𝑖
−𝑖 0

 𝜎 3 =  
−1 0
0 1

  (12)  

and Dirac’s gamma matrices: 

𝛾0 =   

0 0
0 0

−𝑖 0
0 −𝑖

−𝑖 0
0 −𝑖

0 0
0 0

 𝛾1 =   

0 0
0 0

0 𝑖
𝑖 0

0 −𝑖
−𝑖 0

0 0
0 0

  

 

𝛾2 =   

0 0
0 0

0 1
−1 0

0 −1
1 0

0 0
0 0

 𝛾3 =   

0 0
0 0

𝑖 0
0 −𝑖

−𝑖 0
0 𝑖

0 0
0 0

  

(13)  

 

2.2 Spinors and co-spinors 

In spinor notation the (four-component) wave function of the fermion field 𝜓 is considered as a 

formal sum of first rank spinor and first rank co-spinor fields: 

 

𝜓(𝑥) =  𝜉, 𝜂  =   𝜉, 0 +  0,𝜂  =  

 

 
 

𝜉1(𝑥)

𝜉2(𝑥)
𝜂1 (𝑥)

𝜂2 (𝑥)
 

 
 

 (14)  

where 

𝜓 ∈  ℂ2 ⊕  ℂ 2;  𝜉 ∈  ℂ2;  𝜂  ∈  ℂ 2 (15)  

Under Lorentz transformation first rank spinors and co-spinors are transformed as follows: 
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𝜉′𝜇 =  𝑢𝜈
𝜇

 𝜉𝜈

𝜂′𝜇 =  ( 𝑢
−1

)𝜇 
𝜈  𝜂𝜈 

 (16)  

where matrix 𝑢 ∈ 𝑆𝐿 (2, ℂ) can be presented in the following form: 

𝑢 =   
𝑢1

1 𝑢2
1

𝑢1
2 𝑢2

2 = exp   −𝑏𝑘 +  𝑖 𝑟𝑘 𝜎𝑘 , 𝑟𝑘 ,𝑏𝑘 ∈ ℝ, 𝑘 = 1,2,3 (17)  

Any quantities transforming like the products 𝜉𝜇𝜉𝜈 , 𝜂𝜇 𝜂𝜈 , 𝜉
𝜇𝜂𝜈  are called second rank spinors and 

denoted by 𝑎𝜇𝜈 , 𝑏𝜇 𝜈 , 𝑐𝜈 
𝜇

 correspondingly. Analogously one can define the spinors of higher ranks. 

Transition from subscript to superscript spinor indices is established by means of Lorentz-invariant 

spinors 𝜖𝜇𝜈  and 𝜖𝜇 𝜈 : 

𝜖𝜇𝜈 =  
0 +1
−1 0

 𝜖𝜇 𝜈 =  
0 −1

+1 0
  (18)  

 

𝜉𝜇 =  𝜖𝜇𝜈 𝜉
𝜈 , 𝜂𝜇 =  𝜖𝜇 𝜈 𝜂𝜈  (19)  

 

𝜉1 =  𝜉2 , 𝜉2 =  − 𝜉1

𝜂1 =  − 𝜂2 , 𝜂2 =  𝜂1 
 (20)  

One can show easily that complex conjugates of spinors transform as co-spinors, and vice versa, so that 
we can denote 

𝜉𝜇 = 𝜉𝜇   

𝜂𝜈 = 𝜂𝜈    
 (21)  

As in the usual tensor algebra, the only covariant operations are multiplication and contraction. For 

instance, from the spinors 𝑎𝜇 𝜈 
𝜌

 and 𝑏𝛼𝛽
𝜎  we can form the spinor of the 6th rank 

𝑐𝜇 𝜈 𝛼𝛽
𝜌𝜎 

= 𝑎𝜇 𝜈 
𝜌

𝑏𝛼𝛽
𝜎  (22)  

or the spinor of the 4th rank 

𝑐𝜇 𝛼𝛽
𝜌

= 𝑎𝜇 𝜈 
𝜌

𝑏𝛼𝛽
𝜈  (23)  

or the spinor of the 2nd rank 

𝑐𝜇 𝛽 = 𝑎𝜇 𝜈 
𝛼 𝑏𝛼𝛽

𝜈  (24)  

The following two rules are essential for calculations: 

𝑎𝜇𝑏
𝜇 = −𝑎𝜇𝑏𝜇  (25)  

and 

𝑎𝜇𝑏𝜇𝑐𝜈 + 𝑎𝜇𝑏𝜈𝑐
𝜇 + 𝑎𝜈𝑏

𝜇𝑐𝜇 = 0 (26)  

An immediate consequence of (16) is that any spinor of odd rank has absolute value zero: 

𝑎𝜇𝑎
𝜇 = 0 𝑎𝜆𝜇𝜈 𝑎𝜆𝜇𝜈 = 0 (27)  
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2.3 World vectors and tensors 

Any vector and/or tensor of the Minkowski space-time can be expressed in a spinor form: 

 𝑥𝛼 →  𝑆𝜇𝜈  :  𝑆𝜇𝜈  =  𝑥𝛼𝜎𝛼
𝑇 =  𝑥𝛼𝜎

𝛼  𝑇  (28)  

  

 𝑥𝛼 →  𝑆𝜇𝜈  :  𝑆𝜇𝜈  =  𝑥𝛼𝜎 𝛼 =  𝑥𝛼𝜎 
𝛼   (29)  

or, equivalently 

 𝑆𝜇𝜈  =   𝑆
11 𝑆12 

𝑆21 𝑆22 
  =   

𝑥0 + 𝑥3 𝑥1 − 𝑖𝑥2

𝑥1 + 𝑖𝑥2 𝑥0 − 𝑥3
  (30)  

 

 𝑆𝜇𝜈  =   
𝑆11 𝑆12 

𝑆21 𝑆22
 =   𝑥0 + 𝑥3 𝑥1 + 𝑖𝑥2

𝑥1 − 𝑖𝑥2 𝑥0 − 𝑥3  =   𝑆22 −𝑆21 

−𝑆12 𝑆11 
  (31)  

The determinants of the matrices 𝑆𝜇𝜈  and 𝑆𝜇𝜈  are equal to 𝑥𝜇𝑥𝜇  and remain invariant under 𝑆𝐿(2,𝐶) 

transformations. The following rule is also essential for calculations: 

𝑆𝜎𝜈 𝑆
𝜆𝜈 = 𝛿𝜎

𝜆 𝑥𝜇𝑥𝜇 𝑆𝜎𝜈 𝑆
𝜎𝜆 = 𝛿𝜈 

𝜆  𝑥𝜇𝑥𝜇   (32)  

In the spinor notation the gradient co-vector (𝜕𝜇 =  
𝜕

𝜕𝑥𝜇 )  is transformed into the following matrices: 

 𝜕𝜇𝜈  =   
𝜕0 + 𝜕3 𝜕1 − 𝑖𝜕2

𝜕1 + 𝑖𝜕2 𝜕0 − 𝜕3
 =  𝜕0 + 𝜕1𝜎1 + 𝜕2𝜎2 + 𝜕3𝜎3  (33)  

 

 𝜕𝜇𝜈  =   
𝜕0 − 𝜕3 −𝜕1 − 𝑖𝜕2

−𝜕1 + 𝑖𝜕2 𝜕0 + 𝜕3
 =  𝜕0 − 𝜕1𝜎1

𝑇 − 𝜕2𝜎2
𝑇 − 𝜕3𝜎3

𝑇  (34)  

From (23) we immediately conclude that 

𝜕𝜇𝜈 𝜕
𝜆𝜈 = 𝛿𝜇

𝜆 𝜕𝜇𝜕𝜇 𝜕𝜇𝜈 𝜕
𝜇𝜆 = 𝛿𝜈 

𝜆  𝜕𝜇𝜕𝜇   (35)  

and for any 4-vector 𝑉𝜇  represented (according to (30-31)) by second rank spinor 𝑆𝜇𝜈  the 4-divergence 
is written in the following form: 

𝜕𝜇𝜈 𝑆
𝜇𝜈 = 𝜕𝜇𝑉

𝜇  (36)  

 

2.4 Spinorial currents 

Alternatively, any spinor and co-spinor can be used to construct the world vector. We will call such 

vectors spinorial currents. 

Consider arbitrary spinor 𝜉 that can be expressed as a matrix with one column and two rows. We denote 

Hermitian conjugate matrix as 𝜉+. Then we can construct the following world vector: 

𝑝𝜇 =  
1

2
  𝜉+𝜎𝜇𝜉  (37)  
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𝑝0 =  
1

2
 𝜉+𝜉 =  

1

2
 𝜉1𝜉1 + 𝜉2𝜉2 𝑝1 =  

1

2
 𝜉+𝜎1𝜉 =  

1

2
 𝜉2𝜉1 +  𝜉1𝜉2 

𝑝2 =  
1

2
 𝜉+𝜎2𝜉 =  

𝑖

2
(𝜉2𝜉1 −  𝜉1𝜉2) 𝑝3 =  

1

2
 𝜉+𝜎3𝜉 =  

1

2
 𝜉1𝜉1 −  𝜉2𝜉2 

 (38)  

One can easily check that 𝑝𝜇𝑝
𝜇 ≡ 0, and using (16-17) we can see that vector 𝑝𝜇 =  

1

2
 𝜉+𝜎𝜇𝜉  

transforms as covariant vector. 

Following the general rule (30) the spinor current 𝑝𝜇  can be expressed as 

𝑝𝜇𝜈 =   
𝑝0 +  𝑝3 𝑝1 −  𝑖𝑝2

𝑝1 +  𝑖𝑝2 𝑝0 −  𝑝3
 =  

𝜉1𝜉1 𝜉1𝜉2

𝜉2𝜉1 𝜉2𝜉2
 =  

𝜉1𝜉1 𝜉1𝜉2 

𝜉2𝜉1 𝜉2𝜉2 
  (39)  

 

Similarly, we can construct contravariant vector from co-spinor 𝜂 : 

𝑝 𝜇 =  
1

2
 𝜂 +𝜎 𝜇𝜂   (40)  

 

𝑝 0 =  
1

2
 𝜂 +𝜂  =  

1

2
 𝜂1 𝜂1 +  𝜂2 𝜂2  𝑝 1 =  

1

2
 𝜂 +𝜎 1𝜂  =  

1

2
 𝜂2 𝜂1 + 𝜂1 𝜂2  

𝑝 2 =  
1

2
 𝜂 +𝜎 2𝜂  =  

𝑖

2
(𝜂2 𝜂1 −  𝜂1 𝜂2 ) 𝑝 3 =  

1

2
 𝜂 +𝜎 3𝜂  =  

1

2
 𝜂1 𝜂1 −  𝜂2 𝜂2  

 (41)  

Vector 𝑝 𝜇  is also isotropic: 𝑝 𝜇𝑝 𝜇 ≡ 0. Using (30) it can be expressed in spinor form: 

𝑝 𝜇𝜈 =   
𝑝 0 −  𝑝 3 −𝑝 1 +  𝑖𝑝 2

−𝑝 1 −  𝑖𝑝 2 𝑝 0 + 𝑝 3
 =  

𝜂2 𝜂2 −𝜂2 𝜂1 

−𝜂1 𝜂2 𝜂1 𝜂1 
 =  

𝜂1𝜂1 𝜂1𝜂2 

𝜂2𝜂1 𝜂2𝜂2 
  (42)  

Using vectors constructed from spinor and co-spinor, one can form a new vector that will not be 
isotropic. Such vector is usually defined as a bilinear form of the four-component wave function of the 
fermion field 𝜓 (Dirac current): 

𝑃𝜇 =  −
1

2
 𝜓+𝛾0𝛾𝜇𝜓  (43)  

where field 𝜓+ is a Hermitian conjugate of 𝜓: 

𝜓 =   

𝜉1

𝜉2

𝜂1 

𝜂2 

 , 𝜓+ =   𝜉
1

𝜉
2 𝜂1 𝜂2   (44)  

Using (25) and (4) one can easily check that 

𝑃0 =
1

2
 𝜉1𝜉1 + 𝜉2𝜉2 +  

1

2
 𝜂1 𝜂1 +  𝜂2 𝜂2  =  𝑝0 + 𝑝 0 

𝑃1 =
1

2
 𝜉2𝜉1 +  𝜉1𝜉2 −  

1

2
 𝜂2 𝜂1 + 𝜂1 𝜂2  =  𝑝1 − 𝑝 1

𝑃2 =
 𝑖

2
 𝜉2𝜉1 −  𝜉1𝜉2 −

𝑖

2
 𝜂2 𝜂1 −  𝜂1 𝜂2  =  𝑝2 − 𝑝 2 

𝑃3 =
1

2
 𝜉1𝜉1 −  𝜉2𝜉2 −  

1

2
 𝜂1 𝜂1 −  𝜂2 𝜂2  =  𝑝3 − 𝑝 3

 (45)  

or 
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𝑃𝜇 =  𝑝𝜇 +  𝑔𝜇𝜈 𝑝 
𝜈  (46)  

According to (30), world vector 𝑃𝜇  can be expressed as second rank spinor 𝑃𝜇𝜈 : 

 𝑃𝜇  → 𝑃𝜇𝜈 =  𝑝𝜇𝜈 + 𝑝 𝜇𝜈  (47)  

 

2.5 Electromagnetic fields 

Electromagnetic field strengths are expressed in the form of symmetric second rank spinors that realize 

irreducible representation of the 𝑆𝐿(2, 𝐶) group: 

 𝑓𝜇𝜈 =  𝑓𝜈𝜇
𝑓𝜇 𝜈 =  𝑓𝜈 𝜇 

  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 𝑓 𝜈 
𝜇 

=  𝑓𝜈
𝜇
  𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 (48)  

In the expression above we used (19) to transform symmetric spinors 𝑓𝜇𝜈  and 𝑓𝜇 𝜈  to traceless spinors 𝑓𝜈
𝜇

 

and 𝑓 𝜈 
𝜇 

: 

𝑓𝜈
𝜇

=  𝜖𝜇𝜌 𝑓𝜌𝜈 , 𝑓𝜇
𝜇

= 0 (49)  

Due to symmetry of the spinors the field has only 3 complex components 

𝑓11 , 𝑓12 =  𝑓21 , 𝑓22  (50)  

This property enables us to introduce the structure of 3-dimentional complex space for electromagnetic 
field spinors 

𝑓𝜈
𝜇

=   
𝑓1

1 𝑓2
1

𝑓1
2 𝑓2

2 =   𝐹3 𝐹1 − 𝑖𝐹2

𝐹1 + 𝑖𝐹2 −𝐹3  = 𝐹𝑘𝜎𝑘 , 𝑘 = 1,2,3 (51)  

where “coordinates” 𝐹𝑘  can be decomposed into real and imaginary parts 

𝑭 = 𝑬 − 𝒊𝑩 (52)  

From (51) one can see that matrices 𝑓𝜈
𝜇

 belong to the Lie algebra of the group 𝑆𝐿(2,𝐶). 

3 Maxwell equations in spinor form 

Many spinorial equations are much simpler than the corresponding tensorial equations. This applies 

equally to Maxwell Dirac equations, as we will demonstrate in the further sections. 

Maxwell equations have the following spinor form: 

𝜕𝜈𝜌 𝑓𝜈
𝜇

=  𝑆𝜇𝜌 , 𝜕𝜇𝜌 𝑓 𝜌 
𝜆 =  𝑆 𝜇𝜆  (53)  

Here we use two spinorial forms of the electromagnetic current density: 𝑆𝜇𝜌  and 𝑆 𝜇𝜆  
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𝑆𝜇𝜈 =  
𝑆11 𝑆12 

𝑆21 𝑆22 
 =  

𝐽0 + 𝐽3 𝐽1 + 𝑖𝐽2

𝐽1 − 𝑖𝐽2 𝐽0 − 𝐽3  

𝑆 𝜇𝜈 =  
𝑆 11 𝑆 12 

𝑆 21 𝑆 22 
 =  

𝐽 0 + 𝐽 3 𝐽 1 + 𝑖𝐽 2

𝐽 1 − 𝑖𝐽 2 𝐽 0 − 𝐽 3
 

 (54)  

These two spinors are Hermitian conjugates of each other 

 
𝑆 11 𝑆 12 

𝑆 21 𝑆 22 
 =  

𝑆11 
    𝑆21 

    

𝑆12 
    𝑆22 

    
  (55)  

Complex vectors 𝐽𝑘  and 𝐽 𝑘  corresponding to spinors  𝑆𝜇𝜌  and 𝑆 𝜇𝜆  are complex conjugated to each other 
and can be decomposed into electric and magnetic current densities 

𝐽𝑘 = 𝐽𝑒
𝑘 − 𝑖𝐽𝑚

𝑘

𝐽 𝑘 = 𝐽 𝑒
𝑘
− 𝑖𝐽 𝑚

𝑘
= 𝐽𝑘 

𝑘 = 0, 1, 2, 3 (56)  

To be convinced that any of the complex conjugated spinorial equations (53) explicitly correspond to 
Maxwell equations, we can rewrite, e.g. the first equation (using (19) and (25)) in the form 

𝑆𝜇𝜈 = −𝜕𝜌𝜈 𝑓𝜇
𝜌

 (57)  

represent it in matrix form 

 
𝜕11 𝜕21 

𝜕12 𝜕22 
  

𝑓1
1 𝑓2

1

𝑓1
2 𝑓2

2 = −   
𝑆11 𝑆21 

𝑆12 𝑆22 
  (58)  

and then expand this expression using (34), (51), (52), (54) and (56): 

 𝜕0 − 𝜕3  𝐸
3 − 𝑖𝐵3 +  −𝜕1 + 𝑖𝜕2  𝐸

1 − 𝑖𝐵1 + 𝑖𝐸2 + 𝐵2 = − 𝐽𝑒
0 − 𝑖𝐽𝑚

0 + 𝐽𝑒
3 − 𝑖𝐽𝑚

3 

 𝜕0 − 𝜕3  𝐸
1 − 𝑖𝐵1 − 𝑖𝐸2 − 𝐵2 −  −𝜕1 + 𝑖𝜕2  𝐸

3 − 𝑖𝐵3 = − 𝐽𝑒
1 − 𝑖𝐽𝑚

1 − 𝑖𝐽𝑒
2 − 𝐽𝑚

2 

 −𝜕1 − 𝑖𝜕2  𝐸
3 − 𝑖𝐵3 +  𝜕0 + 𝜕3  𝐸

1 − 𝑖𝐵1 + 𝑖𝐸2 + 𝐵2 = − 𝐽𝑒
1 − 𝑖𝐽𝑚

1 + 𝑖𝐽𝑒
2 + 𝐽𝑚

2 

 −𝜕1 − 𝑖𝜕2  𝐸
1 − 𝑖𝐵1 − 𝑖𝐸2 − 𝐵2 −  𝜕0 + 𝜕3  𝐸

3 − 𝑖𝐵3 = − 𝐽𝑒
0 − 𝑖𝐽𝑚

0 − 𝐽𝑒
3 + 𝑖𝐽𝑚

3 

 (59)  

By separating real and imaginary parts of the equations (59), we obtain Maxwell equations in vector 
form 

𝑑𝑖𝑣 𝑬 = 𝐽𝑒
0 𝑐𝑢𝑟𝑙 𝑩 − 𝑬 = 𝑱𝒆

𝑑𝑖𝑣 𝑩 = 𝐽𝑚
0 −𝑐𝑢𝑟𝑙 𝑬 − 𝑩 = 𝑱𝒎

 (60)  

The conservation of charge is a consequence of the Maxwell equations. The continuity equation for the 
current density reads (see (36) and (35)) 

𝜕𝑘  𝐽𝑘 = 𝜕𝜇𝜈 𝑆
𝜇𝜈 = 𝜕𝜇𝜈 𝜕

𝜆𝜈 𝑓𝜆
𝜇

= 𝛿𝜇
𝜆 𝜕𝜌𝜕𝜌 𝑓𝜆

𝜇
=  𝜕𝜌𝜕𝜌 𝑓𝜇

𝜇
= 0 (61)  

since 𝑓𝜈
𝜇

 is a traceless matrix: 𝑓𝜇
𝜇

= 0. 

3.1 Lorentz force density 

Now we can use Maxwell equations (53) to derive the expression for the Lorentz force spinor. We first 
introduce the stress-energy density spinor of the electromagnetic field 

𝑇𝜇𝜈 
𝛿𝜌 

= 𝑓𝜇
𝛿𝑓 𝜈 

𝜌 
 (62)  
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and then consider the expression 

𝜕𝛿𝜌 𝑇𝜇𝜈 
𝛿𝜌 

= 𝜕𝛿𝜌  𝑓𝜇
𝛿𝑓 𝜈 

𝜌 
 = 𝑓 𝜈 

𝜌 
 𝜕𝛿𝜌 𝑓𝜇

𝛿  + 𝑓𝜇
𝛿  𝜕𝛿𝜌 𝑓 𝜈 

𝜌 
 = Λ𝜇𝜈  (63)  

where the force density spinor 

Λ𝜇𝜈 = − 𝑓 𝜈 
𝜌 
𝑆𝜇𝜌 + 𝑓𝜇

𝛿𝑆 𝛿𝜈   (64)  

Of course, the force density spinor Λ𝜇𝜈  corresponds to the Lorentz force density 4-vector ℱ𝜇  

Λ𝜇𝜈 =  
Λ11 Λ12 

Λ21 Λ22 
 =  ℱ

0 + ℱ3 ℱ1 + 𝑖ℱ2

ℱ1 − 𝑖ℱ2 ℱ0 − ℱ3   (65)  

 

3.2 Electromagnetic fields with special symmetries 

In further sections we will need the expressions for Maxwell equations for the systems with special 
symmetries. Particularly we will need such expressions for: 

 Transverse plane electromagnetic waves, and 

 Stationary fields with axial symmetry 

3.2.1 Transverse plane waves 

By definition, in transverse plane waves the directions of vectors 𝑬, 𝑩 are orthogonal to the direction of 
wave propagation. For simplicity we can choose axis 𝒆3 parallel to the direction of the wave 
propagation. In this case we will have: 

𝐹3 ≡ 0
𝐽1 = 𝐽2 ≡ 0

 (66)  

at all times and all points in space. 

The Maxwell equations will be reduced to the following expressions: 

 𝜕1 − 𝑖𝜕2  𝐹
1 + 𝑖𝐹2 = 𝐽0 + 𝐽3

 𝜕0 − 𝜕3  𝐹
1 − 𝑖𝐹2 = 0

 𝜕0 + 𝜕3  𝐹
1 + 𝑖𝐹2 = 0

 𝜕1 + 𝑖𝜕2  𝐹
1 − 𝑖𝐹2 = 𝐽0 − 𝐽3

 (67)  

In absence of charged currents the right hand sides of all the equations vanish, and we obtain 

 𝜕1 − 𝑖𝜕2  𝐹
1 + 𝑖𝐹2 = 0

 𝜕0 − 𝜕3  𝐹
1 − 𝑖𝐹2 = 0

 𝜕0 + 𝜕3  𝐹
1 + 𝑖𝐹2 = 0

 𝜕1 + 𝑖𝜕2  𝐹
1 − 𝑖𝐹2 = 0

 (68)  

3.2.2 Stationary field configurations with axial symmetry 

Now we consider the stationary field configurations with axial symmetry. We introduce the polar 

cylindrical coordinate system  𝑒1 , 𝑒2 , 𝑒3 →  𝑒1 , 𝑒𝜌 , 𝑒𝜑    (see Figure 1): 
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𝑥2 = 𝜌 cos 𝜑

𝑥3 = 𝜌 sin 𝜑

𝑥1 = 𝑥1
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Figure 1. Axially symmetric field configuration 

and require that 

𝜕0 ≡ 0 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦
𝜕𝜑 ≡ 0 𝑎𝑥𝑖𝑎𝑙 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

 (69)  

This ensures that field configuration is symmetric w.r.t. rotations around axis 𝒆1 and is not changing 
over time. 

Due to axial symmetry, electric and magnetic fields 𝑬, 𝑩 in each point belong to the plane 𝜑 = 𝑐𝑜𝑛𝑠𝑡 
(i.e. 𝐹𝜑 ≡ 0), and charge density current is parallel to direction of 𝒆𝜑  (i.e. 𝐽𝜌 = 𝐽1 ≡ 0). 

Then Maxwell equations in cylindrical coordinates can be written as follows: 

1

𝜌
𝐹𝜌 +  𝜕1 − 𝑖𝜕𝜌  𝐹

1 + 𝑖𝐹𝜌 = 𝐽0 + 𝐽𝜑

 𝜕0 −
1

𝜌
𝜕𝜑  𝐹1 − 𝑖𝐹𝜌 = 0

 𝜕0 +
1

𝜌
𝜕𝜑  𝐹1 + 𝑖𝐹𝜌 = 0

1

𝜌
𝐹𝜌 +  𝜕1 + 𝑖𝜕𝜌  𝐹

1 − 𝑖𝐹𝜌 = 𝐽0 − 𝐽𝜑

 (70)  

4 Matter field equation 

The Dirac equations were first written in spinor form by G.E. Uhlenbeck and O. Laporte in 1931 [2]. 

According to (14) the four wave functions of Dirac correspond to spinor of the first rank 𝜉𝜇  and co-

spinor of the first rank 𝜂𝜈 , and Dirac equations become 

 𝜕𝜇𝜈 + 𝑖𝑒Φ𝜇𝜈  𝜂𝜈  +  𝑖𝑚𝜉𝜇 =  0, (𝜕𝜇𝜈 + 𝑖𝑒Φ𝜇𝜈 )𝜉
𝜇 +  𝑖𝑚𝜂𝜈 = 0,    𝑚 ∈ ℝ (71)  

where Φ𝜇𝜈  is a spinor obtained from electromagnetic potential four-vector 𝐴𝜇  using general rule (30). 

The quantum electrodynamics (QED) based on Dirac equations can be used to make extremely accurate 
predictions of quantities like the anomalous magnetic moment of the electron, and the Lamb shift of the 
energy levels of hydrogen. However, the values of the two phenomenological constants – particle’s 
charge 𝑒 and it’s mass 𝑚 – cannot be derived from Dirac theory and/or QED. 
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If one considers electrodynamics as a phenomenological theory with respect to the mass and charge of 
the interacting particles, and if one consequently condones the necessity of infinite mass and charge 
renormalizations, one is tempted to consider quantum electrodynamics as a pretty satisfactory theory 
(quoted from [1]). 

However, the purpose of this paper is to develop the model that allows for deriving the values of 
particles’ masses and charges from the model. 

Such model cannot be based on the Dirac equation, because the mass and charge parameters in the 
Dirac theory need to be identified from experiment for each particle type. Hence we need to assume 
some other form of matter filed equation. This new equation should be consistent with the following 
requirements: 

 It has to be Lorentz invariant 

 It should not contain phenomenological constants associated with the type of particle, such as 
mass and charge 

 It should not be based on any ad hoc particle structures (such as ad hoc charge and/or mass 
distributions or mass-to-charge density ratios) 

The simplest equation that meets all three requirements is as follows: 

𝜕𝜇𝜈 𝜂𝜈 =  +𝑓𝜈
𝜇
𝜉𝜈 , 𝜕𝜇𝜈 𝜉

𝜇 =  −𝑓 𝜈 
𝜇 
𝜂𝜇  (72)  

In this equation the spinor and co-spinor fields are coupled via electromagnetic field. The conjugate 
equations can be written as follows: 

𝜕𝜇𝜈 𝜂𝜇 =  +𝑓 𝜇 
𝜈 𝜉𝜇 , 𝜕𝜇𝜈 𝜉

𝜈 =  −𝑓𝜇
𝜈𝜂𝜈  (73)  

In this paper we consider equations (72-73) as fundamental matter field equations that determine the 
dynamics of the spinorial matter fields. 

In further sections we will demonstrate that, with “supersymmetry” condition (74), these equations can 
be reduced to Maxwell equations, so that mass and charge densities can be expressed via 
electromagnetic field strengths. The particle type can then be associated with the type of stable field 
configuration, and the total masses and charges of the particles will only depend on the corresponding 
stable configurations of the fields. 

5 Electromagnetic mass 

In our approach we consider evolutions of two interacting fields: 

 electromagnetic fields 𝑬, 𝑩, and 

 spinorial fields 𝜉, 𝜂 . 

The evolution of electromagnetic fields is determined by Maxwell equations (53), while the evolution of 
spinorial fields is determined by matter field equations (72-73). 

We anticipate that there exist stable configurations of the fields 𝑬, 𝑩 and 𝜉, 𝜂  that correspond to 
elementary particles, and the type of elementary particle depends on the field configuration and its 
properties. 
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Physically that means that particle’s own electromagnetic field evolution is dynamically balanced with 
evolution of its source – particle’s spinorial field, so that the total field configuration remains stable in 
time. 

Mathematically that means that: 

 spinorial fields can be expressed via electromagnetic fields, i.e. as functions 𝜉 = 𝜉(𝑬, 𝑩)  and 
𝜂 = 𝜂 (𝑬, 𝑩), and as a consequence 

 matter field equations become equivalent (or reduced) to Maxwell equations. 

We will see that equivalence of Maxwell equations and matter field equations can be achieved if the 
following Lorentz invariant relationship is satisfied: 

𝑓𝜈
𝜇
𝜉𝜈 =  𝜆 𝜉𝜇

𝑓 𝜈 
𝜇 
𝜂𝜇 = 𝜆  𝜂𝜈 

 (74)  

The meaning of expressions (74) is that spinorial fields 𝜉 and 𝜂  are eigenvectors of the second rank 

electromagnetic field spinors 𝑓𝜈
𝜇

 and 𝑓 𝜈 
𝜇 

 correspondingly. In this section we will also show that direct 

consequence of the relationship (74) is that the 4-momentum 𝑃𝜇  of the spinorial matter field is an 

eigenvector of the stress-energy tensor of the electromagnetic field (corresponding to 4-th rank spinor 
(62)). 

With the condition (74) our matter field equations (72) become very simple 

𝜕𝜇𝜈 𝜂𝜈 = + 𝜆 𝜉𝜇 , 𝜕𝜇𝜈 𝜉
𝜇 =  −𝜆  𝜂𝜈  (75)  

and replicate the structure of the free Dirac equation (see (1)) where constant mass term 𝑚 is replaced 

by the variable “mass density” terms 𝜆 and 𝜆 . 

Taking account the explicit form of electromagnetic field spinors 𝑓𝜈
𝜇

 and 𝑓 𝜈 
𝜇 

 (see (51-52)) one can see 

that eigenvalues of these spinors 𝜆 and 𝜆  are well known electromagnetic field invariants: 

𝜆± =  ±  𝐹1 2 +  𝐹2 2 +  𝐹3 2 𝜆±
2 =  𝐸2 − 𝐵2 − 2𝑖𝑬𝑩

𝜆± =  ±   𝐹1 
2

+   𝐹2 
2

+   𝐹3 
2

𝜆±

2
=  𝐸2 − 𝐵2 + 2𝑖𝑬𝑩

 (76)  

Hence, from the analogy with free Dirac equation we can say that in our model electromagnetic field 
invariants play the roles of mass densities, and the latter have purely electromagnetic origin. 

5.1 Momentum density of the matter field 

Following the procedure explained in the Section 2.4, the momentum density vector of the spinorial 

matter field can be defined as a sum of spinorial currents 

 𝑃𝜇 = 𝑝𝜇 + 𝑝 𝜇  → 𝑃𝜇𝜈 =  𝑝𝜇𝜈 + 𝑝 𝜇𝜈  (77)  

where  

𝑝𝜇𝜈 =  𝜉𝜇𝜉𝜈 , 𝑝 𝜇𝜈 =  𝜂𝜇𝜂𝜈  (78)  

When condition (74) is satisfied, the momentum 4-vector 𝑃𝜇  becomes an eigenvector of the stress-

energy tensor of the electromagnetic field (62): 
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𝑡𝜈𝜎 
𝜇𝜌 

𝑝𝜈𝜎 =  𝑓 𝜎 
𝜌 
𝜉𝜎   𝑓𝜈

𝜇
𝜉𝜈 =  𝜆 2𝑝𝜇𝜌 

𝑡𝜈𝜎 
𝜇𝜌 

𝑝 𝜈𝜎 =  𝑓 𝜎 
𝜌 
𝜂𝜎   𝑓𝜈

𝜇
𝜂𝜈 =  𝜆 2𝑝 𝜇𝜌 

 (79)  

 

𝑡𝜈𝜎 
𝜇𝜌 

𝑃𝜈𝜎 =  𝜆 2𝑃𝜇𝜌  (80)  

The eigenvalue of the stress-energy tensor is, of course, expressed via electromagnetic field invariants 
(76). 

 

5.2 Conservation of the total momentum 

According to (36) the divergence of the momentum density vector 𝑃𝜇  

𝜕𝜇𝑃
𝜇 = 𝜕𝜇𝜈 𝑃

𝜇𝜈 = 𝜕𝜇𝜈 𝑝
𝜇𝜈 + 𝜕𝜇𝜈 𝑝 

𝜇𝜈  (81)  

Using matter field equations (72-73) we can find that 

𝜕𝜇𝜈 𝑝
𝜇𝜈 =  𝜕𝜇𝜈  𝜉

𝜇𝜉𝜈  =   𝜕𝜇𝜈 𝜉
𝜇  𝜉𝜈 + 𝜉𝜇  𝜕𝜇𝜈 𝜉

𝜈   = − 𝑓 𝜈 
𝜇 
𝜂𝜇 𝜉

𝜈 + 𝜉𝜇𝑓𝜇
𝜈𝜂𝜈 

𝜕𝜇𝜈 𝑝 
𝜇𝜈 =  𝜕𝜇𝜈  𝜂𝜇𝜂𝜈  =   𝜕𝜇𝜈 𝜂𝜇  𝜂𝜈 + 𝜂𝜇  𝜕

𝜇𝜈 𝜂𝜈   = + 𝑓 𝜇 
𝜈 𝜉𝜇 𝜂𝜈 + 𝜂𝜇𝑓𝜈

𝜇
𝜉𝜈 

 (82)  

from what we conclude that momentum of the spinorial field is conserved due to matter field equations: 

𝜕𝜇𝑃
𝜇 = 0 (83)  

5.3 Eigenvectors 

Let us now derive the expressions for the eigenvectors of the electromagnetic field spinors 𝑓𝜈
𝜇

 and 𝑓 𝜈 
𝜇 

. 

Consider arbitrary point 𝑄 at the space-time. For the sake of convenience we can choose the reference 

frame (denoted as 𝑀⊥) in such a way that the fields 𝑬, 𝑩 at the point 𝑄 will be orthogonal to the axis 𝒆3. 

There is, of course, infinite number of such frames, but all the considerations presented in this section 

are valid for any of these frames. 

In the reference frame 𝑀⊥ the expression for spinor 𝑓𝜈
𝜇

 at the point 𝑄 will be 

𝑓𝜈
𝜇

=   0 𝐹1 − 𝑖𝐹2

𝐹1 + 𝑖𝐹2 0
  (84)  

because 𝐹3 = 0 at the point 𝑄. 

One can easily check now that two spinors  𝜉+ и 𝜉− defined as 

𝜉± =   
𝜉±

1

𝜉±
2 =   

± 𝐹1 − 𝑖𝐹2

 𝐹1 + 𝑖𝐹2
  (85)  

will be eigenvectors of the matrix (84) at the point 𝑄 

𝑓𝜈
𝜇
𝜉±
𝜈 =  𝜆±𝜉±

𝜇
 (86)  
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Hence, with the special choice of the reference frame we can write an explicit expression for the 
components of the spinorial field 𝜉 satisfying condition (74). The expressions for the field components in 
all other frames can be obtained by the appropriate Lorentz transformations. 

Similarly one can show that at the reference frame 𝑀⊥ two co-spinors 𝜂 + and 𝜂 − defined as 

𝜂 ± =   
𝜂±1 
𝜂±2 

 =  

 
 
 
 ± 𝐹1 − 𝑖𝐹2

 𝐹1 + 𝑖𝐹2
 
 
 
 

 (87)  

will satisfy the condition 

𝑓 𝜈 
𝜇 
𝜂±𝜇 

= 𝜆±𝜂±𝜈 
 (88)  

at the point 𝑄. 

Using (85) and (87) one can find that in the frame 𝑀⊥ 

𝜉±
1𝜉±

1 =    𝐹1 − 𝑖𝐹2 (𝐹1 + 𝑖𝐹2) =   𝐸2 + 𝐵2 − 2(𝐸1𝐵2 − 𝐸2𝐵1) = 𝜂±
1 𝜂±

1 

𝜉±
2𝜉±

2 =    𝐹1 + 𝑖𝐹2 (𝐹1 − 𝑖𝐹2) =   𝐸2 + 𝐵2 + 2(𝐸1𝐵2 − 𝐸2𝐵1) = 𝜂±
2 𝜂±

2 

𝜉±
1𝜉±

2 =  ±  𝐹1 − 𝑖𝐹2 (𝐹1 − 𝑖𝐹2) =  ± (𝐸1)2 − (𝐸2)2 + (𝐵1)2 − (𝐵2)2 − 2𝑖(𝐸1𝐸2 + 𝐵1𝐵2) = −𝜂±
1 𝜂±

2 

𝜉±
2𝜉±

1 =  ±  𝐹1 + 𝑖𝐹2 (𝐹1 + 𝑖𝐹2) =  ± (𝐸1)2 − (𝐸2)2 + (𝐵1)2 − (𝐵2)2 + 2𝑖(𝐸1𝐸2 + 𝐵1𝐵2) = −𝜂±
2 𝜂±

1 

 (89)  

at the point 𝑄. From this we can see that in the frame 𝑀⊥ the components of the spinorial currents 𝑝𝜇  

and 𝑝 𝜇  (see (78)) satisfy the relationships 

𝑝±0
= 𝑝 ±

0 ,       𝑝±1
= 𝑝 ±

1

𝑝±2
= 𝑝 ±

2 ,      𝑝±3
= −𝑝 ±

3 (90)  

and the total momentum density 𝑃𝜇  has only two non-zero components in the frame 𝑀⊥ 

𝑃±0
= 2 𝑝±0

= 2 𝑝 ±
0 ,       𝑃±1

= 0

𝑃±2
= 0,      𝑃±3

= 2 𝑝±3
= −2 𝑝 ±

3 (91)  

From (89) we can derive the “mass square” of the momentum density 4-vector 𝑃𝜇 , which is invariant 

under Lorentz transformations and hence has the same value in all reference frames: 

𝑃𝜇𝑃𝜇 = 4 𝜆 2 (92)  

This is another manifestation of the electromagnetic origin of our “mass term”. It is worth noting that 
the momentum density vector 𝑃𝜇  is always time-like, and its time-like component 𝑃0 is always positive, 

hence no solutions with negative energies are allowed. 

From (89) we can find the values of the following Lorentz invariants: 

𝜉±
𝜇

 𝜂±𝜇
= ±2 𝜆±

𝜉±
𝜇 

 𝜂±𝜇 
= ±2 𝜆 ±

 (93)  

In Section 7 we will also use the following identities in connection with neutrino model: 
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𝜉−
𝜇  𝜂+𝜇 = 0

𝜉−
𝜇  𝜂+𝜇 = 0

 (94)  

5.4 Conservation of spinorial currents 

Let us now assume that fields 𝜉 and 𝜂  are the eigenvectors of the electromagnetic field spinors 𝑓𝜈
𝜇

 and 

𝑓 𝜈 
𝜇 

, i.e. condition (74) is satisfied. Then using (74) and (93) the expressions (82) can be written as 

𝜕𝜌𝑝±
𝜌

=  − 𝜆±𝜉±
𝜇
𝜂±𝜇

+ 𝜆±𝜂𝜇 𝜉
𝜇  = ∓2(𝜆±

2 + 𝜆±

2
)

𝜕𝜌𝑝 ±
𝜌

=  +  𝜆±𝜉±
𝜇
𝜂±𝜇

+ 𝜆±𝜂𝜇 𝜉
𝜇  = ±2(𝜆±

2 + 𝜆±

2
)

 (95)  

From (95) we conclude that spinorial currents 𝑝𝜇  and 𝑝 𝜇  are conserved independently when 𝐸 = 𝐵, i.e. 

when real parts of the squared electromagnetic field invariants 𝜆2 and 𝜆 2 are zero. This might be 
important for considering the case of neutrino fields that violate parity (see Section 7). 

5.5 Divergence of axial vector current 

Axial vector current 𝑃𝐴
𝜇  is defined, as usual, as a difference of spinorial currents 𝑝𝜇  and 𝑝 𝜇  

𝑃𝐴
𝜇 = 𝑝𝜇 − 𝑝 𝜇  (96)  

From (95) one can see that the 4-divergence of the axial vector current equals to 

𝜕𝜌𝑃𝐴±
𝜌 = 𝜕𝜌𝑝±

𝜌
− 𝜕𝜌𝑝 ±

𝜌
= ∓4  𝜆±

2 + 𝜆±

2
 = ∓8 𝐸2 − 𝐵2 = ±8𝐹𝜇𝜈𝐹𝜇𝜈  (97)  

5.6 Transition to the rest frame 

Let us briefly discuss the properties of the momentum densities 𝑃𝜇  in the special cases of orthogonal 
(𝑬 ⊥ 𝑩) electromagnetic fields. The case of parallel (𝑬 ∥ 𝑩, 𝐸 = 𝐵) electromagnetic fields will be 
considered in connection with neutrino model in Section 7. 

Let us first consider the case 𝑬 ⊥ 𝑩, 𝐸 > 𝐵. 

In this case the squares of invariants of the electromagnetic fields are positive real numbers: 

𝜆±
2 =  𝐸2 − 𝐵2 >  0

𝜆±

2
=  𝐸2 − 𝐵2 > 0

 (98)  

It is easy to check that in the frame 𝑀⊥ the non-zero components of the momentum density 4-vector 𝑃𝜇  
will be 

  
𝑃0 = +4𝐸
𝑃3 = −4𝐵

 (99)  

if the pair of vectors  𝑬, 𝑩  has the same orientation as basis vectors  𝒆1 ,𝒆2 , and 

  
𝑃0 = +4𝐸
𝑃3 = +4𝐵

 (100)  

for inverse orientation of the pair of vectors  𝑬, 𝑩 . 
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It is well known that if 𝑬 ⊥ 𝑩, 𝐸 > 𝐵, there is a reference frame where magnetic field 𝑩 vanish [6]. Let’s 
denote this frame as 𝑀𝐸 . 

From (99-100) we can see that only time-like component 𝑃0 of the momentum density has non-zero 
value in the frame 𝑀𝐸 . In this sense frame 𝑀𝐸  might be considered as a “rest frame” of the momentum 
density 𝑃𝜇 . 

Similarly we can show that in the case of 𝑬 ⊥ 𝑩, 𝐸 < 𝐵 the squares of invariants of the electromagnetic 
fields are negative real numbers: 

𝜆±
2 =  𝐸2 − 𝐵2 <  0

𝜆±

2
=  𝐸2 − 𝐵2 < 0

 (101)  

and in the frame 𝑀⊥ the non-zero components of the momentum 4-vector 𝑃𝜇  will be 

  
𝑃0 = +4𝐵
𝑃3 = −4𝐸

 (102)  

if the pair of vectors  𝑬, 𝑩  has the same orientation as basis vectors  𝒆1 ,𝒆2 , and 

  
𝑃0 = +4𝐵
𝑃3 = +4𝐸

 (103)  

for inverse orientation of the pair of vectors  𝑬, 𝑩 . 

Similarly, in the reference frame 𝑀𝐵 where electric field 𝑬 vanish, only time-like component 𝑃0 of the 
momentum density has non-zero value. 

In the case of 𝑬 ⊥ 𝑩, 𝐸 = 𝐵 we have 𝜆 = 𝜆 = 0, and the momentum density is isotropic in all reference 
frames: 𝑃𝜇𝑃𝜇 = 4 𝜆 2 = 0. 

6 Electromagnetic charge 

In this section we will see how matter field equations can be reduced to Maxwell equations. For 
simplicity we will consider two systems with special symmetries: 

 Transverse plane waves corresponding to photons, 

 Stationary fields with axial symmetry, that can be associated with charged massive fermions at 

their rest frames. 

Due to chosen symmetries of the field configurations, at every point of the space-time the electric and 

magnetic field vectors 𝑬, 𝑩 are orthogonal to one of the basis vectors. 

In particular, for the transverse plane waves we direct axis 𝒆3 parallel to the direction of wave 

propagation, so that electric and magnetic fields are orthogonal to 𝒆3. 

For axially symmetric configuration we introduce cylindrical polar coordinates (see Figure 1, Section 

3.2.2) in such a way that fields 𝑬, 𝑩 are orthogonal to the basis vector 𝒆𝜑  in each point. 

This enables us to use in our calculations the explicit expressions for spinorial filed components (85) and 

(87). 
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6.1 Transverse plane waves 

As mentioned above, we choose the coordinates system in such a way that in each point 

𝑬, 𝑩 ⊥  𝒆3 , 𝐹3 = 𝐹 3 ≡ 0 (104)  

Let us now consider the matter wave equations (75) written in the form 

𝜕𝜇𝜈 𝜂𝜈 = + 𝜆𝜉𝜇

𝜕𝜇𝜈 𝜉
𝜈 =  −𝜆 𝜂𝜇

 (105)  

We can expand these equations using (33), (34), (85) and (87) 

 𝜕0 + 𝜕3  𝐹 1 − 𝑖𝐹 2 +  𝜕1 − 𝑖𝜕2  𝐹 1 + 𝑖𝐹 2 = +𝜆 𝐹1 − 𝑖𝐹2 (i) 

 𝜕1 + 𝑖𝜕2  𝐹 1 − 𝑖𝐹 2 +  𝜕0 − 𝜕3  𝐹 1 + 𝑖𝐹 2 = +𝜆 𝐹1 + 𝑖𝐹2 (ii)

 𝜕0 − 𝜕3  𝐹 1 + 𝑖𝐹 2 +  −𝜕1 − 𝑖𝜕2  𝐹 1 − 𝑖𝐹 2 = −𝜆 𝐹1 + 𝑖𝐹2 (iii)

 −𝜕1 + 𝑖𝜕2  𝐹 1 + 𝑖𝐹 2 +  𝜕0 + 𝜕3  𝐹 1 − 𝑖𝐹 2 = −𝜆 𝐹1 − 𝑖𝐹2 (iv)

 (106)  

By adding (i) and (iv) we obtain 

 𝜕0 + 𝜕3  𝐹 
1 − 𝑖𝐹 2 = 0 (107)  

Similarly, by adding (ii) and (iii) we obtain 

 𝜕0 − 𝜕3  𝐹 
1 + 𝑖𝐹 2 = 0 (108)  

With the two remaining equations the whole system can be written as 

 𝜕1 + 𝑖𝜕2  𝐹 
1 − 𝑖𝐹 2 = +2𝜆 𝐹1 + 𝑖𝐹2 𝐹 1 − 𝑖𝐹 2

 𝜕0 − 𝜕3  𝐹 
1 + 𝑖𝐹 2 = 0

 𝜕0 + 𝜕3  𝐹 
1 − 𝑖𝐹 2 = 0

 𝜕1 − 𝑖𝜕2  𝐹 
1 + 𝑖𝐹 2 = +2𝜆 𝐹1 − 𝑖𝐹2 𝐹 1 + 𝑖𝐹 2

 (109)  

and complex conjugated equations will have the form 

 𝜕1 − 𝑖𝜕2  𝐹
1 + 𝑖𝐹2 = +2𝜆  𝐹1 + 𝑖𝐹2 𝐹 1 − 𝑖𝐹 2

 𝜕0 − 𝜕3  𝐹
1 − 𝑖𝐹2 = 0

 𝜕0 + 𝜕3  𝐹
1 + 𝑖𝐹2 = 0

 𝜕1 + 𝑖𝜕2  𝐹
1 − 𝑖𝐹2 = +2𝜆  𝐹1 − 𝑖𝐹2 𝐹 1 + 𝑖𝐹 2

 (110)  

With expressions (89-91) for the momentum density of the matter field 𝑃𝜇  in the frame 𝑀⊥, we can 

rewrite (110) in the following form: 

 𝜕1 − 𝑖𝜕2  𝐹
1 + 𝑖𝐹2 = 𝜆  𝑃0 + 𝑃3 

 𝜕0 − 𝜕3  𝐹
1 − 𝑖𝐹2 = 0

 𝜕0 + 𝜕3  𝐹
1 + 𝑖𝐹2 = 0

 𝜕1 + 𝑖𝜕2  𝐹
1 − 𝑖𝐹2 = 𝜆  𝑃0 − 𝑃3 

 (111)  

From comparison of (110) and (67) we conclude that in the case of the transverse plane waves: 

 Matter field equations are reduced to the Maxwell equations, and 
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 The charge density current 𝐽𝜇  is expressed via electromagnetic field invariant 𝜆  and momentum 
density 𝑃𝜇  in the following way: 

𝐽𝜇 = 𝜆  𝑃𝜇  (112)  

Hence we conclude that, in the case of the transverse plane waves, electromagnetic field invariant 𝜆  
plays the role of the electromagnetic charge density (it is clear that 𝜆 plays the same role for anti-

particles). Generally 𝜆  is complex valued, hence allowing for both non-zero electric and magnetic charge 
densities. 

Now we can find the expression for the Lorentz force density (64) acting on matter fields. 

(112) can be written as 

𝑆𝜇𝜈 = 𝜆 𝑃𝜇𝜈 = 𝜆  𝑝𝜇𝜈 + 𝑝 𝜇𝜈  = 𝜆  𝜉𝜇𝜉𝜈 + 𝜂𝜇𝜂𝜈  

𝑆 𝜇𝜈 = 𝜆𝑃𝜇𝜈 = 𝜆 𝑝𝜇𝜈 + 𝑝 𝜇𝜈  = 𝜆 𝜉𝜇𝜉𝜈 + 𝜂𝜇𝜂𝜈  

 (113)  

Using (74) we find that  

𝑓𝜇
𝛿𝑆 𝛿𝜈 = 𝜆 𝑓𝜇

𝛿𝜉𝛿𝜉𝜈 + 𝑓𝜇
𝛿𝜂𝛿𝜂𝜈  = 𝜆2 −𝜉𝜇𝜉𝜈 + 𝜂𝜇𝜂𝜈  

𝑓 𝜈 
𝜌 
𝑆𝜇𝜌 = 𝜆  𝜉𝜇𝑓 𝜈 

𝜌 
𝜉𝜌 + 𝜂𝜇𝑓 𝜈 

𝜌 
𝜂𝜌  = 𝜆 2 −𝜉𝜇𝜉𝜈 + 𝜂𝜇𝜂𝜈  

 (114)  

and the Lorentz force density becomes 

Λ𝜇𝜈 = − 𝑓 𝜈 
𝜌 
𝑆𝜇𝜌 + 𝑓𝜇

𝛿𝑆 𝛿𝜈  =  𝜆2 + 𝜆 2  𝜉𝜇𝜉𝜈 − 𝜂𝜇𝜂𝜈  =  𝜆2 + 𝜆 2 𝑃𝐴𝜇𝜈  (115)  

It is interesting that the Lorentz force ℱ𝜇  is proportional to the axial vector current 𝑃𝐴
𝜇  (see Section 

5.5). From (115) we can see that Lorentz force vanishes if 𝐸 = 𝐵, i.e. when real parts of electromagnetic 

fields invariants 𝜆 and 𝜆  are zero. Particularly, this is the case of electromagnetic waves “in vacuum” (i.e. 
photons, see below) and neutrino (see Section 7). When Lorentz force is zero, the momentum density of 
the matter field remains constant in the course of particle’s motion, hence allowing for uniform motion 
of the particle. 

In the case of plane electromagnetic waves “in vacuum” (𝑬 ⊥ 𝑩, 𝐸 = 𝐵) we have 𝜆 = 𝜆 = 0, and matter 
field equations (111) coincide with the “source-free” Maxwell equations (68). In this case the 
momentum density 𝑃𝜇  of the matter field is non-zero, while the charge density 𝐽𝜇  is zero. In this sense 
our system is not actually “source-free”. 

Thus we have demonstrated that our model can be used for description of bosonic particles such as 
photons. In further sections we will apply our model to the field configurations corresponding to 
charged fermions (Section 6.2) and neutrino (Section 7). 

 

6.2 Stationary field configurations with axial symmetry 

In Cartesian basis matter field equations 

𝜕𝜇𝜈 𝜂𝜈 =  +𝜆𝜉𝜇

𝜕𝜇𝜈 𝜉
𝜇 =  −𝜆 𝜂𝜈 

 (116)  

can be written in the following matrix form 
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 𝜕0 + 𝜕1𝜎1 + 𝜕2𝜎2 + 𝜕3𝜎3 𝜂 = +𝜆𝜉

 𝜕0 − 𝜕1𝜎1 − 𝜕2𝜎2 − 𝜕3𝜎3 𝜉 = −𝜆 𝜂 
 (117)  

where 

𝜉 =   
𝜉1

𝜉2 , 𝜂 =  
𝜂1 

𝜂2 
  (118)  

By introducing polar cylindrical coordinates (see Figure 1) 

𝑥2 = 𝜌 cos 𝜑

𝑥3 = 𝜌 sin𝜑

𝑥1 = 𝑥1

 (119)  

we will have the following expressions for partial derivatives 

𝜕0 = 𝜕0

𝜕2 = cos 𝜑 𝜕𝜌 −
sin 𝜑

𝜌
𝜕𝜑

𝜕3 = sin 𝜑𝜕𝜌 +
cos 𝜑

𝜌
𝜕𝜑

𝜕1 = 𝜕1

 (120)  

By using (120) we obtain 

𝜕2𝜎2 + 𝜕3𝜎3 =  𝜎2 cos 𝜑 + 𝜎3 sin𝜑 𝜕𝜌 +
1

𝜌
 −𝜎2 sin𝜑 + 𝜎3 cos 𝜑 𝜕𝜑  (121)  

with consequent expressions for matter field equations (117) in the new coordinate system. 

To complete the transition to the polar coordinate system, we need to account for change of spinor 

components due to change of basis vectors in each point:  𝒆2 ,𝒆3 →   𝒆𝜌 ,𝒆𝜑   . 

The pair of vectors   𝒆𝜌 ,𝒆𝜑    can be obtained by rotating the pair of Cartesian basis vectors  𝒆2, 𝒆3  by 

the angle 𝜑 around the axis 𝒆1 at every point with coordinates  𝜌, 𝜑, 𝑥1 . This rotation results in the 
following transformation of the spinor components: 

𝜉′ = exp  𝑖
𝜑

2
𝜎1 𝜉 =  cos

𝜑

2
+ 𝑖𝜎1 sin

𝜑

2
 𝜉 = 𝑆𝜉

𝜂 ′ = exp  𝑖
𝜑

2
𝜎1 𝜂 =  cos

𝜑

2
+ 𝑖𝜎1 sin

𝜑

2
 𝜂 = 𝑆𝜂 

 (122)  

with the following transition operators 

𝑆 = exp  𝑖
𝜑

2
𝜎1 𝑆−1 = exp  −𝑖

𝜑

2
𝜎1  (123)  

By applying operators 𝑆 and 𝑆−1 to the equations (117) we obtain 

𝑆  𝜕0 + 𝜕1𝜎1 + 𝜕2𝜎2 + 𝜕3𝜎3 𝑆
−1𝑆𝜂 = +𝜆𝑆𝜉

𝑆 𝜕0 − 𝜕1𝜎1 − 𝜕2𝜎2 − 𝜕3𝜎3 𝑆
−1𝑆𝜉 = −𝜆 𝑆𝜂 

 (124)  

or 

𝑆  𝜕0 + 𝜕1𝜎1 + 𝜕2𝜎2 + 𝜕3𝜎3 𝑆
−1𝜂 ′ = +𝜆𝜉′

𝑆 𝜕0 − 𝜕1𝜎1 − 𝜕2𝜎2 − 𝜕3𝜎3 𝑆
−1𝜉′ = −𝜆 𝜂 ′

 (125)  
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Since operator 𝑆 commutes with 𝜎0 and 𝜎1, we will have 

𝑆  𝜕0 + 𝜕1𝜎1 + 𝜕2𝜎2 + 𝜕3𝜎3 𝑆
−1 = 𝜕0 + 𝜕1𝜎1 + 𝑆 𝜕2𝜎2 + 𝜕3𝜎3 𝑆

−1

𝑆 𝜕0 − 𝜕1𝜎1 − 𝜕2𝜎2 − 𝜕3𝜎3 𝑆
−1 = 𝜕0 − 𝜕1𝜎1 − 𝑆 𝜕2𝜎2 + 𝜕3𝜎3 𝑆

−1  (126)  

It is now easy to check that  

𝑆 𝜕2𝜎2 + 𝜕3𝜎3 𝑆
−1 = 𝜎2𝜕𝜌 +

1

𝜌
𝜎3𝜕𝜑 +

1

2𝜌
𝜎2 (127)  

and we complete transition of the matter field equations to polar cylindrical coordinates: 

 𝜕0 + 𝜎1𝜕1 + 𝜎2𝜕𝜌 +
1

𝜌
𝜎3𝜕𝜑 +

1

2𝜌
𝜎2 𝜂 

′ = +𝜆𝜉′

 𝜕0 − 𝜎1𝜕1 − 𝜎2𝜕𝜌 −
1

𝜌
𝜎3𝜕𝜑 −

1

2𝜌
𝜎2 𝜉

′ = −𝜆 𝜂 ′
 (128)  

Now we can use (85) and (87) to express components of the spinors 𝜉′  and 𝜂 ′  via components of the 

fields 𝑬, 𝑩 in cylindrical coordinates (i.e. in the basis  𝒆𝜌 ,𝒆𝜑 ,𝒆1 ): 

𝜉′ =   
𝜉′1

𝜉′ 2
 =  

 𝐹1 − 𝑖𝐹𝜌

 𝐹1 + 𝑖𝐹𝜌

 

𝜂 ′ =  

𝜂′1 

𝜂′2 

 =  

 𝐹 1 − 𝑖𝐹 𝜌

 𝐹 1 + 𝑖𝐹 𝜌
 

 (129)  

and write matter field equations as follows: 

 
 
 
 𝜕0 +

1

𝜌
𝜕𝜑 𝜕1 − 𝑖𝜕𝜌 − 𝑖

1

2𝜌

𝜕1 + 𝑖𝜕𝜌 + 𝑖
1

2𝜌
𝜕0 −

1

𝜌
𝜕𝜑  

 
 
 

  

 𝐹 1 − 𝑖𝐹 𝜌

 𝐹 1 + 𝑖𝐹 𝜌
 = +𝜆  

 𝐹1 − 𝑖𝐹𝜌

 𝐹1 + 𝑖𝐹𝜌

 

 
 
 
 𝜕0 −

1

𝜌
𝜕𝜑 −𝜕1 + 𝑖𝜕𝜌 + 𝑖

1

2𝜌

−𝜕1 − 𝑖𝜕𝜌 − 𝑖
1

2𝜌
𝜕0 +

1

𝜌
𝜕𝜑  

 
 
 

  

 𝐹1 − 𝑖𝐹𝜌

 𝐹1 + 𝑖𝐹𝜌

 = −𝜆  

 𝐹 1 − 𝑖𝐹 𝜌

 𝐹 1 + 𝑖𝐹 𝜌
 

 (130)  

After expanding expressions (130) and applying complex conjugation to the first two equations, we 
obtain 

 𝜕0 +
1

𝜌
𝜕𝜑  𝐹1 + 𝑖𝐹𝜌 +  𝜕1 + 𝑖𝜕𝜌 + 𝑖

1

2𝜌
  𝐹1 − 𝑖𝐹𝜌 = +𝜆  𝐹 1 + 𝑖𝐹 𝜌 (i)

 𝜕1 − 𝑖𝜕𝜌 − 𝑖
1

2𝜌
  𝐹1 + 𝑖𝐹𝜌 +  𝜕0 −

1

𝜌
𝜕𝜑  𝐹1 − 𝑖𝐹𝜌 = +𝜆  𝐹 1 − 𝑖𝐹 𝜌 (ii)

 𝜕0 −
1

𝜌
𝜕𝜑  𝐹1 − 𝑖𝐹𝜌 +  −𝜕1 + 𝑖𝜕𝜌 + 𝑖

1

2𝜌
  𝐹1 + 𝑖𝐹𝜌 = −𝜆  𝐹 1 − 𝑖𝐹 𝜌 (iii)

 −𝜕1 − 𝑖𝜕𝜌 − 𝑖
1

2𝜌
  𝐹1 − 𝑖𝐹𝜌 +  𝜕0 +

1

𝜌
𝜕𝜑  𝐹1 + 𝑖𝐹𝜌 = −𝜆  𝐹 1 + 𝑖𝐹 𝜌 (iv)

 (131)  
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By adding (i) and (iv) we obtain 

 𝜕0 +
1

𝜌
𝜕𝜑  𝐹1 + 𝑖𝐹𝜌 = 0 (132)  

Similarly, by adding (ii) and (iii) we obtain 

 𝜕0 −
1

𝜌
𝜕𝜑  𝐹1 − 𝑖𝐹𝜌 = 0 (133)  

Naturally, (132) and (133) are consistent with assumed stationarity and axial symmetry of the field 
configuration: 

𝜕0 ≡ 0 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦
𝜕𝜑 ≡ 0 𝑎𝑥𝑖𝑎𝑙 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 (134)  

With the two remaining equations the whole system can be written as 

 𝜕1 − 𝑖𝜕𝜌  𝐹
1 + 𝑖𝐹𝜌 − 𝑖

1

𝜌
 𝐹1 + 𝑖𝐹𝜌 = +2𝜆  𝐹 1 − 𝑖𝐹 𝜌 𝐹1 + 𝑖𝐹𝜌

 𝜕0 −
1

𝜌
𝜕𝜑  𝐹1 − 𝑖𝐹𝜌 = 0

 𝜕0 +
1

𝜌
𝜕𝜑  𝐹1 + 𝑖𝐹𝜌 = 0

 𝜕1 + 𝑖𝜕𝜌  𝐹
1 − 𝑖𝐹𝜌 + 𝑖

1

𝜌
 𝐹1 − 𝑖𝐹𝜌 = +2𝜆  𝐹 1 + 𝑖𝐹 𝜌 𝐹1 − 𝑖𝐹𝜌

 (135)  

From comparison with (70) we conclude that (135) will coincide with Maxwell equations if we define: 

𝐽0 − 𝐽𝜑 = 𝜆  𝑃0 − 𝑃𝜑 − 𝑖
1

𝜌
𝐹1

𝐽0 + 𝐽𝜑 = 𝜆  𝑃0 + 𝑃𝜑 + 𝑖
1

𝜌
𝐹1

 (136)  

where 𝐽0 , 𝐽𝜑  and 𝑃0 ,𝑃𝜑  are non-zero components of charge density and momentum density 
correspondingly. 

It is interesting that in axially symmetric case 

𝐽0 = 𝜆 𝑃0

𝐽𝜑 = 𝜆 𝑃𝜑 + 2𝑖
𝐹1

𝜌

 (137)  

and hence the ratio 
𝐽𝜑

𝐽0  is not equal to the ratio 
𝑃𝜑

𝑃0 . Consequently, the “velocity of charge” is not the 

same as “velocity of mass” anymore. 

In principle, equations (135) can be resolved with respect to 𝐹1 and 𝐹𝜌 , therefore allowing for 
calculation of the particle’s total mass 𝑀 and charge 𝑄: 

𝑀 =  𝑃0𝑑𝑉,

𝑉

𝑄 =  𝐽0𝑑𝑉

𝑉

 (138)  
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7 Neutrino model 

7.1 General considerations 

So far we have always been considering the matter field equations in the following forms: 

𝜕𝜇𝜈 𝜂±𝜈 
= + 𝜆± 𝜉±

𝜇 , 𝜕𝜇𝜈 𝜉±
𝜇 =  −𝜆 ± 𝜂±𝜈 

 (139)  

In (139) spinor 𝜉+ is coupled with co-spinor 𝜂 +, and spinor 𝜉− is coupled with co-spinor 𝜂 −. 

Let us now consider a field configuration where spinor 𝜉− is coupled with co-spinor 𝜂 +. The matter field 
equations will be written as 

𝜕𝜇𝜈 𝜂+𝜈 = + 𝜆− 𝜉−
𝜇 , 𝜕𝜇𝜈 𝜉−

𝜇 =  −𝜆 + 𝜂+𝜈  (140)  

or, taking account that 𝜆± = −𝜆∓ (see (76)) 

𝜕𝜇𝜈 𝜂+𝜈 = + 𝜆− 𝜉−
𝜇 , 𝜕𝜇𝜈 𝜉−

𝜇 =  +𝜆 − 𝜂+𝜈  (141)  

According to (85) and (87) the components of the spinor and co-spinor fields will be 

𝜉−
1 = − 𝐹1 − 𝑖𝐹2 𝜂+1 = + 𝐹1 − 𝑖𝐹2

𝜉−
2 = + 𝐹1 + 𝑖𝐹2 𝜂+2 = + 𝐹1 + 𝑖𝐹2

 (142)  

and hence the Lorentz invariant Majorana condition will be satisfied: 

𝜉1 = −𝜂2

𝜉2 = +𝜂1

 (143)  

We put (142) in the matter field equations (141) 

 
𝜕0 + 𝜕3 𝜕1 − 𝑖𝜕2

𝜕1 + 𝑖𝜕2 𝜕0 − 𝜕3
  

𝜉2

−𝜉1
 = +𝜆−  

𝜉1

𝜉2 

 
𝜕0 − 𝜕3 −𝜕1 + 𝑖𝜕2

−𝜕1 − 𝑖𝜕2 𝜕0 + 𝜕3
  

𝜉1

𝜉2 = +𝜆 −  
𝜉2

−𝜉1
 

 (144)  

and after expansion of the formulas and complex conjugation of the first pair of equations we obtain 

  𝜕0 + 𝜕3 𝜉
2 −  𝜕1 + 𝑖𝜕2 𝜉

1 = +𝜆 − 𝜉1   

 𝜕1 − 𝑖𝜕2 𝜉
2 −  𝜕0 − 𝜕3 𝜉

1 = +𝜆 − 𝜉2    

  𝜕0 − 𝜕3 𝜉
1 −  𝜕1 − 𝑖𝜕2 𝜉

2 = +𝜆 − 𝜉2   

− 𝜕1 + 𝑖𝜕2 𝜉
1 +  𝜕0 + 𝜕3 𝜉

2 = +𝜆 − 𝜉1    

 (145)  

From (145) it is clear that, due to Majorana condition, the two matter field equations (140) become 
equivalent to each other, hence only one of these equations is independent. 

Let us now find the expressions for divergences of spinorial currents and momentum density. 

With matter field equations (141) one can easily find that 
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𝜕𝜇𝜈 𝑝
𝜇𝜈 =  𝜕𝜇𝜈  𝜉

𝜇𝜉𝜈  =   𝜕𝜇𝜈 𝜉
𝜇  𝜉𝜈 + 𝜉𝜇  𝜕𝜇𝜈 𝜉

𝜈   =  −𝜆 + 𝜂+𝜈 𝜉−
𝜈 − 𝜆+𝜂+𝜇𝜉−

𝜇 = 0

𝜕𝜇𝜈 𝑝 
𝜇𝜈 =  𝜕𝜇𝜈  𝜂𝜇𝜂𝜈  =   𝜕𝜇𝜈 𝜂𝜇  𝜂𝜈 + 𝜂𝜇  𝜕

𝜇𝜈 𝜂𝜈   =  𝜆 − 𝜂+𝜈 𝜉−
𝜈 + 𝜆− 𝜉−

𝜇𝜂+𝜇 = 0

 (146)  

In (146) we used the invariant properties (94). 

Consequently we conclude that both spinorial currents 𝑝𝜇  and 𝑝 𝜇 , as well as momentum density current 

𝑃𝜇  are conserved. 

7.2 longitudinal plane waves 

In Section 5.4 we have demonstrated that spinorial currents 𝑝𝜇  and 𝑝 𝜇  are conserved independently 

when 𝐸 = 𝐵, i.e. when real parts of the squared electromagnetic fields invariants 𝜆2 and 𝜆 2 are zero. 

It is known (see [6]) that if 𝐸 = 𝐵 and electric and magnetic fields vectors  𝑬, 𝑩  are not orthogonal to 

each other, there exist a reference frame where these vectors are parallel to each other: 𝑬 ∥ 𝑩, 𝐸 = 𝐵. 

Let’s denote this frame as 𝑀∥ and assume for simplicity that both 𝑬 and 𝑩 are directed along the axis 𝒆1: 

𝐹1 ≠ 0 𝐹2 = 𝐹3 = 0 (147)  

In the frame 𝑀∥ the components of the spinors (142) will have the form: 

𝜉−
1 = − 𝐹1 𝜂+1 = + 𝐹1

𝜉−
2 = + 𝐹1 𝜂+2 = + 𝐹1

 (148)  

If we denote 

𝜁 =  𝐹1 (149)  

then spinorial currents (78) can be written as 

𝑝0 = +𝜁𝜁 𝑝1 = −𝜁𝜁 

𝑝2 = 0 𝑝3 = 0
 (150)  

and 

𝑝 0 = +𝜁𝜁 𝑝 1 = +𝜁𝜁 

𝑝 2 = 0 𝑝 3 = 0
 (151)  

Consequently, spatial parts of both spinorial currents 𝑝𝜇  and 𝑝 𝜇 , as well as momentum density vector 

𝑃𝜇 , are opposite in direction to the axis 𝒆1, while the momentum density 4-vector is isotropic: 𝑃𝜇𝑃𝜇 = 0. 

This is the first indication that, in spite of non-zero “mass term” 𝜆 in the matter field equations, the 
neutrino field is “moving” at the speed of light. 

Let us now rewrite the matter field equations (145) in the frame 𝑀∥. 

 𝜕0 + 𝜕3 𝜁 +  𝜕1 + 𝑖𝜕2 𝜁 = −𝜆 − 𝜁 

 𝜕1 − 𝑖𝜕2 𝜁 +  𝜕0 − 𝜕3 𝜁 = +𝜆 − 𝜁 
 (152)  

By adding and subtracting these equations we obtain: 
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 𝜕0 + 𝜕1 𝜁 = 0

 𝜕3 + 𝑖𝜕2 𝜁 = −2 𝜆 − 𝜁 
 (153)  

The first equation means that the field 𝜁 is “moving” at the speed of light in the direction opposite to 
the axis 𝒆1. That means that in the frame 𝑀∥ the neutrino field is a longitudinal wave, i.e. the wave 
propagating parallel to the direction of the fields 𝑬, 𝑩. 

The second equation in (153) can be further expressed in terms of the field 𝜁 taking account that 

𝜆 − = − 𝜁  2: 

 𝜕3 + 𝑖𝜕2 𝜁 = +2  𝜁  3 (154)  

The Maxwell equations in the chosen frame 𝑀∥ will have the form 

 𝜕1 + 𝑖𝜕2 𝐹
1 =  𝐽0 − 𝐽3

 𝜕0 − 𝜕3 𝐹
1 =  −𝐽1 + 𝑖𝐽2

 𝜕0 + 𝜕3 𝐹
1 =  −𝐽1 − 𝑖𝐽2

 𝜕1 − 𝑖𝜕2 𝐹
1 =  𝐽0 + 𝐽3

(i)
(ii)
(iii)
 iv 

 (155)  

By adding all equations we will obtain: 

 𝜕0 + 𝜕1 𝐹
1 =  𝐽0 − 𝐽1 (156)  

By adding and subtracting equations  (i) − (ii) + (iii) − (iv)  we obtain 

 𝜕3 + 𝑖𝜕2 𝐹
1 = −𝐽3  − 𝑖𝐽2 (157)  

Hence the Maxwell equations will be consistent with matter field equations if the following relationships 
are satisfied: 

𝐽0 − 𝐽1 = 0

−𝐽3  − 𝑖𝐽2 = 4𝜁 𝜁  3
 (158)  

In Section 6.1 we have demonstrated that in the case of the transverse plane electromagnetic waves “in 
vacuum” the charge density was zero while the momentum density of the matter field was non-zero. 

From (158) we conclude that in our model of neutrino the components of the charge density 𝐽2 and 

𝐽3might be non-zero while the components of the momentum density 𝑃2 and 𝑃3 are both zero. 
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