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Abstract. Let P (z) be a polynomial of degree n having all zeros in |z| ≤ k where
k ≤ 1, then it was proved by Dewan et al [6] that for every real or complex number α

with |α| ≥ k and each r ≥ 0

n(|α| − k)


2π∫
0

∣∣∣P (eiθ)∣∣∣r dθ


1
r

≤


2π∫
0

∣∣∣1 + keiθ
∣∣∣r dθ


1
r

Max
|z|=1

|DαP (z)|.

In this paper, we shall present a refinement and generalization of above result and
also extend it to the class of polynomials P (z) = anzn +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n,

having all its zeros in |z| ≤ k where k ≤ 1 and thereby obtain certain generalizations of

above and many other known results.

1. Introduction and statement of results

Let P (z) be a polynomial of degree n. It was shown by Turán [12] that if P (z) has all
its zeros in |z| ≤ 1, then

nMax
|z|=1

|P (z)| ≤ 2Max
|z|=1

|P ′(z)| . (1.1)

Inequality (1.1) is best possible with equality holds for P (z) = αzn + β where |α| = |β|.
The above inequality (1.1) of Turán [12] was generalized by Malik [10], who proved that if
P (z) is a polynomial of degree n having all its zeros in |z| ≤ k, where k ≤ 1, then

Max
|z|=1

|P ′(z)| ≥ n

1 + k
Max
|z|=1

|P (z)| . (1.2)

where as for k ≥ 1, Govil [7] showed that

Max
|z|=1

|P ′(z)| ≥ n

1 + kn
Max
|z|=1

|P (z)| , (1.3)

Both the above inequalities (1.2) and (1.3) are best possible, with equality in (1.2) holding
for P (z) = (z + k)n, where k ≥ 1. While in (1.3) the equality holds for the polynomial
P (z) = αzn + βkn where |α| = |β|.

As a refinement of (1.2), Aziz and Shah [4] proved if P (z) is a polynomial of degree n
having all its zeros in |z| ≤ k, where k ≤ 1, then

Max
|z|=1

|P ′(z)| ≥ n

1 + k

{
Max
|z|=1

|P (z)|+ 1

kn−1
Min
|z|=1
|P (z)|

}
. (1.4)

Let DαP (z) denotes the polar derivative of the polynomial P (z) of degree n with respect
to the point α, then

DαP (z) = nP (z) + (α− z)P ′(z).
The polynomial DαP (z) is a polynomial of degree at most n − 1 and it generalizes the
ordinary derivative in the sense that

Lim
α→∞

[
DαP (z)

α

]
= P ′(z).
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Aziz and Rather [2] extends (1.2) to polar derivatives of a polynomial and proved that
if all the zeros of P (z) lie in |z| ≤ k where k ≤ 1 then for every real or complex number α
with |α| ≥ k,

Max
|z|=1

|DαP (z)| ≥ n
(
|α| − k
1 + k

)
Max
|z|=1

|P (z)| . (1.5)

For the class of polynomials P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, of degree n

having all its zeros in |z| ≤ k where k ≤ 1, Aziz and Rather [3] proved that if α is real or
complex number with |α| ≥ kµ then

Max
|z|=1

|DαP (z)| ≥ n
(
|α| − kµ

1 + kµ

)
Max
|z|=1

|P (z)| . (1.6)

Malik [11] obtained a generalization of (1.1) in the sense that the left-hand side of (1.1)
is replaced by a factor involving the integral mean of |P (z)| on |z| = 1. In fact he proved
that if P (z) has all its zeros in |z| ≤ 1, then for each q > 0,

n


2π∫
0

∣∣P (eiθ)∣∣q dθ


1/q

≤


2π∫
0

∣∣1 + eiθ
∣∣q dθ


1/q

Max
|z|=1

|P ′(z)|. (1.7)

If we let q tend to infinity in (1.7), we get (1.1).
The corresponding generalization of (1.2) which is an extension of (1.7) was obtained

by Aziz [1] by proving that if P (z) is a polynomial of degree n having all its zeros in |z| ≤
where k ≥ 1, then for each q ≥ 1

n


2π∫
0

∣∣P (eiθ)∣∣q dθ


1/q

≤


2π∫
0

∣∣1 + kneiθ
∣∣q dθ


1/q

Max
|z|=1

|P ′(z)|. (1.8)

The result is best possible and equality in (1.5) holds for the polynomial P (z) = αzn +βkn

where |α| = |β|.
As a generalization of inequality 1.5, Dewan et al [6] obtained an Lp inequality for the

polar derivative of a polynomial and proved the following:

Theorem 1.1. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k, where
k ≤ 1, then for every real or complex number α with |α| ≥ k and for each r > 0,

n(|α| − k)


2π∫
0

∣∣P (eiθ)∣∣r dθ


1
r

≤


2π∫
0

∣∣1 + keiθ
∣∣r dθ


1
r

Max
|z|=1

|DαP (z)|. (1.9)

In this paper, we consider the class of polynomials P (z) = anz
n +

∑n
j=µ an−jz

n−j ,

1 ≤ µ ≤ n, having all its zeros in |z| ≤ k where k ≤ 1 and establish some improvements
and generalizations of inequalities (1.1),(1.2),(1.5),(1.8) and (1.9).

In this direction, we first present the following interesting results which yields (1.9) as a
special case.

Theorem 1.2. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k, where
k ≤ 1, then for every real or complex α, β with |α| ≥ k, |β| ≤ 1 and for each r > 0, p > 1,
q > 1 with p−1 + q−1 = 1, we have

n(|α| − k)


2π∫
0

∣∣∣P (eiθ) + β
m

kn−1

∣∣∣r dθ


1
r

≤


2π∫
0

|1 + keiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ)|qrdθ


1
qr

(1.10)
where m = Min|z|=k|P (z)|.
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If we take β = 0, we get the following result.

Corollary 1.3. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k, where
k ≤ 1, then for every real or complex α, with |α| ≥ k and for each r > 0, p > 1, q > 1 with
p−1 + q−1 = 1, we have

n(|α| − k)


2π∫
0

∣∣P (eiθ)
∣∣r dθ


1
r

≤


2π∫
0

|1 + keiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ)|qrdθ


1
qr

. (1.11)

Remark 1.4. Theorem 1.1 follows from (1.11) by letting q → ∞ (so that p → 1) in
Corollary 1.3. If we divide both sides of inequality (1.11) by |α| and make α→∞, we get
(1.5).

Dividing the two sides of (1.10) by |α| and letting |α| → ∞, we get the following result.

Corollary 1.5. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k, where
k ≤ 1, then for every real or complex β with |β| ≤ 1 and for each r > 0, p > 1, q > 1 with
p−1 + q−1 = 1, we have

n


2π∫
0

∣∣∣P (eiθ) + β
m

kn−1

∣∣∣r dθ


1
r

≤


2π∫
0

|1 + keiθ|prdθ


1
pr


2π∫
0

|P ′(eiθ)|qrdθ


1
qr

(1.12)

where m = Min|z|=k|P (z)|.

If we let q →∞ in (1.12), we get the following corollary.

Corollary 1.6. If P (z) is a polynomial of degree n having all its zeros in |z| ≤ k, where
k ≤ 1, then for every real or complex β with |β| ≤ 1 and for each r > 0, we have

n


2π∫
0

∣∣∣P (eiθ) + β
m

kn−1

∣∣∣r dθ


1
r

≤


2π∫
0

|1 + keiθ|rdθ


1
r

Max
|z|=1

|P ′(z)|, (1.13)

where m = Min|z|=k|P (z)|.

Remark 1.7. If we let r →∞ in (1.13) and choosing argument of β suitably with |β| = 1,
we obtain (1.4).

Next, we extend (1.9) to the class of polynomials P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤
µ ≤ n, having all its zeros in |z| ≤ k, k ≤ 1 and thereby obtain the following result.

Theorem 1.8. If P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, is a polynomial of degree n

having all its zeros in |z| ≤ k where k ≤ 1, then for every real or complex α with |α| ≥ kµ

and for each r > 0, p > 1, q > 1 with p−1 + q−1 = 1, we have

n(|α|−kµ)


2π∫
0

|P (eiθ)|rdθ


1
r

≤


2π∫
0

|1 + kµeiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ)|qrdθ


1
qr

. (1.14)

Remark 1.9. We let r →∞ and p→∞ (so that q → 1) in (1.14), we get inequality (1.6).

If we divide both sides of (1.14) by |α| and make α→∞, we get the following result.

Corollary 1.10. If P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having all its zeros in |z| ≤ k where k ≤ 1, then for for each r > 0, p > 1, q > 1 with
p−1 + q−1 = 1, we have

n


2π∫
0

|P (eiθ)|rdθ


1
r

≤


2π∫
0

|1 + kµeiθ|prdθ


1
pr


2π∫
0

|P ′(eiθ)|qrdθ


1
qr

. (1.15)
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Letting q →∞ (so that p→ 1) in (1.14), we get the following result:

Corollary 1.11. If P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, where 1 ≤ µ ≤ n, is a

polynomial of degree n having all its zeros in |z| ≤ k, where k ≤ 1, then for every real or
complex number α with |α| ≥ kµ and for each r > 0,

n(|α| − kµ)


2π∫
0

∣∣P (eiθ)∣∣r dθ


1
r

≤


2π∫
0

∣∣1 + kµeiθ
∣∣r dθ


1
r

Max
|z|=1

|DαP (z)|. (1.16)

As a generalization of Theorem 1.8, we present the following result:

Theorem 1.12. If P (z) = anz
n +

∑n
ν=µ an−νz

n−ν where 1 ≤ µ ≤ n, is a polynomial of

degree n having all its zeros in |z| ≤ k where k ≤ 1, then for every real or complex α with
|α| ≥ kµ and for each r > 0, p > 1, q > 1 with p−1 + q−1 = 1, we have

n(|α| − kµ)


2π∫
0

|P (eiθ) + βm|rdθ


1
r

≤


2π∫
0

|1 + kµeiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ)|qrdθ


1
qr

(1.17)

where m = Min|z|=k|P (z)|.

If we divide both sides by |α| and make α→∞, we get the following result:

Corollary 1.13. If P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having all its zeros in |z| ≤ k where k ≤ 1, then for for each r > 0, p > 1, q > 1 with
p−1 + q−1 = 1, we have

n


2π∫
0

|P (eiθ) + βm|rdθ


1
r

≤


2π∫
0

|1 + kµeiθ|prdθ


1
pr


2π∫
0

|P ′(eiθ)|qrdθ


1
qr

(1.18)

where m = Min|z|=k|P (z)|.

Letting q →∞ (so that p→ 1) in (1.14), we get the following result:

Corollary 1.14. If P (z) = anz
n +

∑n
ν=µ an−νz

n−ν where 1 ≤ µ ≤ n, is a polynomial of

degree n having all its zeros in |z| ≤ k, where k ≤ 1, then for every real or complex number
α with |α| ≥ kµ and for each r > 0,

n(|α| − kµ)


2π∫
0

∣∣P (eiθ)+ βm
∣∣r dθ


1
r

≤


2π∫
0

∣∣1 + kµeiθ
∣∣r dθ


1
r

Max
|z|=1

|DαP (z)| (1.19)

where m = Min|z|=k|P (z)|.

2. Lemmas

For the proofs of the theorems, we need the following Lemmas:

Lemma 2.1. If P (z) is a polynomial of degree almost n having all its zeros in in |z| ≤ k
k ≤ 1 then for |z| = 1,

|Q′(z)|+ nm

kn−1
≤ k|P ′(z)|, (2.1)

where Q(z) = znP (1/z) and m = Min|z|=k|P (z)|.

The above Lemma is due to Govil and McTume [8].



INTEGRAL MEAN ESTIMATES FOR THE POLAR DERIVATIVE OF A POLYNOMIAL 5

Lemma 2.2. Let P (z) = a0 +
∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n, which

does not vanish for |z| < k, where k ≥ 1 then for |z| = 1,

kµ|P ′(z)| ≤ |Q′(z)|, (2.2)

where Q(z) = znP (1/z).

The above Lemma is due to Chan and Malik [5]. By applying Lemma 2.2 to the poly-

nomial znP (1/z), one can easily deduce:

Lemma 2.3. Let P (z) = anz
n +

∑n
ν=µ an−νz

n−ν , 1 ≤ µ ≤ n, is a polynomial of degree n,

having all its zeros in |z| ≤ k, where k ≤ 1 then for |z| = 1

kµ|P ′(z)| ≥ |Q′(z)|, (2.3)

where Q(z) = znP (1/z).

3. Proof of Theorems

Proof of Theorem 1.2. Let Q(z) = znP (1/z) then P (z) = znQ(1/z) and it can be easily
verified that for |z| = 1,

|Q′(z)| = |nP (z)− zP ′(z)| and |P ′(z)| = |nQ(z)− zQ′(z)|. (3.1)

By Lemma (2.1), we have for every β with |β| ≤ 1 and |z| = 1,∣∣∣∣Q′(z) + β̄
nmzn−1

kn−1

∣∣∣∣ ≤ |Q′(z)|+ nm

kn−1
≤ k|P ′(z)|. (3.2)

Using (3.1) in (3.2), for |z| = 1 we have∣∣∣∣Q′(z) + β̄
nmzn−1

kn−1

∣∣∣∣ ≤ k|nQ(z)− zQ′(z)|. (3.3)

By Lemma 2.3 with µ = 1, for every real or complex number α with |α| ≥ k and |z| = 1,
we have

|DαP (z)| ≥ |α||P ′(z)| − |Q′(z)|
≥ (|α| − k)|P ′(z)|. (3.4)

Since P (z) has all its zeros in |z| ≤ k ≤ 1, it follows by Gauss-Lucas Theorem that all the
zeros of P ′(z) also lie in |z| ≤ k ≤ 1. This implies that the polynomial

zn−1P ′(1/z) ≡ nQ(z)− zQ′(z)
does not vanish in |z| < 1. Therefore, it follows from (3.3) that the function

w(z) =

z

(
Q′(z) + β̄

nmzn−1

kn−1

)
k (nQ(z)− zQ′(z))

is analytic for |z| ≤ 1 and |w(z)| ≤ 1 for |z| = 1. Furthermore, w(0) = 0. Thus the function
1 + kw(z) is subordinate to the function 1 + kz for |z| ≤ 1. Hence by a well known property
of subordination [9], we have

2π∫
0

∣∣1 + kw(eiθ)
∣∣r dθ ≤ 2π∫

0

∣∣1 + keiθ
∣∣r dθ, r > 0. (3.5)

Now

1 + kw(z) =

n

(
Q(z) + β̄

mzn

kn−1

)
nQ(z)− zQ′(z)

,

and
|P ′(z)| = |zn−1P ′(1/z)| = |nQ(z)− zQ′(z)|, for |z| = 1,
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therefore for |z| = 1,

n

∣∣∣∣Q(z) + β̄
mzn

kn−1

∣∣∣∣ = |1 + kw(z)||nQ(z)− zQ′(z)| = |1 + kw(z)||P ′(z)|.

equivalently,

n

∣∣∣∣znP (1/z) + β̄
mzn

kn−1

∣∣∣∣ = |1 + kw(z)||P ′(z)|.

This implies

n
∣∣∣P (z) + β

m

kn−1

∣∣∣ = |1 + kw(z)||P ′(z)| for |z| = 1. (3.6)

From (3.4) and (3.6), we deduce that for r > 0,

nr(|α| − k)r
2π∫
0

∣∣∣P (eiθ) + β
m

kn−1

∣∣∣r dθ ≤ 2π∫
0

|1 + kw(eiθ)|r|DαP (eiθ)|rdθ.

This gives with the help of Hölder’s inequality and using (3.5), for p > 1, q > 1 with
p−1 + q−1 = 1,

nr(|α| − k)r
2π∫
0

∣∣∣P (eiθ) + β
m

kn−1

∣∣∣r dθ ≤
 2π∫

0

|1 + keiθ|prdθ

1/p 2π∫
0

|DαP (eiθ)|qrdθ

1/q

,

equivalently,

n(|α|−kµ)


2π∫
0

∣∣∣P (eiθ) + β
m

kn−1

∣∣∣r dθ


1
r

≤


2π∫
0

|1 + keiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ)|qrdθ


1
qr

which proves the desired result. �

Proof of Theorem 1.8. Since P (z) has all its zeros in |z| ≤ k, therefore, by using Lemma
2.3 we have for |z| = 1,

|Q′(z)| ≤ kµ|nQ(z)− zQ′(z)|. (3.7)

Now for every real or complex number α with |α| ≥ kµ, we have

|DαP (z)| = |nP (z) + (α− z)P ′(z)|
≥ |α||P ′(z)| − |nP (z)− zP ′(z)|,

by using (3.1) and Lemma 2.3, for |z| = 1, we get

|DαP (z)| ≥ |α||P ′(z)| − |Q′(z)|
≥ (|α| − kµ)|P ′(z)|. (3.8)

Since P (z) has all its zeros in |z| ≤ k ≤ 1, it follows by Gauss-Lucas Theorem that all the
zeros of P ′(z) also lie in |z| ≤ k ≤ 1. This implies that the polynomial

zn−1P ′(1/z) ≡ nQ(z)− zQ′(z)
does not vanish in |z| < 1. Therefore, it follows from (3.7) that the function

w(z) =
zQ′(z)

kµ (nQ(z)− zQ′(z))
is analytic for |z| ≤ 1 and |w(z)| ≤ 1 for |z| = 1. Furthermore, w(0) = 0. Thus the function
1 + kµw(z) is subordinate to the function 1 + kµz for |z| ≤ 1. Hence by a well known
property of subordination [9], we have

2π∫
0

∣∣1 + kµw(eiθ)
∣∣r dθ ≤ 2π∫

0

∣∣1 + kµeiθ
∣∣r dθ, r > 0. (3.9)
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Now

1 + kµw(z) =
nQ(z)

nQ(z)− zQ′(z)
,

and
|P ′(z)| = |zn−1P ′(1/z)| = |nQ(z)− zQ′(z)|, for |z| = 1,

therefore, for |z| = 1,

n|Q(z)| = |1 + kµw(z)||nQ(z)− zQ′(z)| = |1 + kµw(z)||P ′(z)|. (3.10)

From (3.8) and (3.10), we deduce that for r > 0,

nr(|α| − kµ)r
2π∫
0

|P (eiθ)|rdθ ≤
2π∫
0

|1 + kµw(eiθ)|r|DαP (eiθ)|rdθ.

This gives with the help of Hölder’s inequality and (3.9), for p > 1, q > 1 with p−1+q−1 = 1,

nr(|α| − kµ)r
2π∫
0

|P (eiθ)|rdθ ≤

 2π∫
0

|1 + kµeiθ|prdθ

1/p 2π∫
0

|DαP (eiθ)|qrdθ

1/q

,

equivalently,

n(|α| − kµ)


2π∫
0

|P (eiθ)|rdθ


1
r

≤


2π∫
0

|1 + kµeiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ)|qrdθ


1
qr

which proves the desired result.
�

Proof of Theorem 1.12. Let m = Min|z|=k|P (z)|, so that m ≤ |P (z)| for |z| = k. If
P (z) has a zero on |z| = k then m = 0 and result follows from Theorem 1.8. Henceforth we
suppose that all the zeros of P (z) lie in |z| < k. Therefore for every β with |β| < 1, we have
|mβ| < |P (z)| for |z| = k. Since P (z) has all its zeros in |z| < k ≤ 1, it follows by Rouche’s

theorem that all the zeros of F (z) = P (z) + βm lie in |z| < k ≤ 1. If G(z) = znF (1/z) =
Q(z) + β̄mzn, then by applying Lemma 2.3 to polynomial F (z) = P (z) + βm, we have for
|z| = 1,

|G′(z)| ≤ kµ|F ′(z)|.
This gives

|Q′(z) + nmβ̄zn−1| ≤ kµ|P ′(z)|. (3.11)

Using (3.1) in (3.11), for |z| = 1 we have

|Q′(z) + nmβ̄zn−1| ≤ kµ|nQ(z)− zQ′(z)| (3.12)

Since P (z) has all its zeros in |z| < k ≤ 1, it follows by Gauss-Lucas Theorem that all the
zeros of P ′(z) also lie in |z| < k ≤ 1. This implies that the polynomial

zn−1P ′(1/z) ≡ nQ(z)− zQ′(z)
does not vanish in |z| < 1. Therefore, it follows from (3.12) that the function

w(z) =
z(Q′(z) + nmβ̄zn−1)

kµ (nQ(z)− zQ′(z))
is analytic for |z| ≤ 1 and |w(z)| ≤ 1 for |z| = 1. Furthermore, w(0) = 0. Thus the function
1 + kµw(z) is subordinate to the function 1 + kµz for |z| ≤ 1. Hence by a well known
property of subordination [9], we have

2π∫
0

∣∣1 + kµw(eiθ)
∣∣r dθ ≤ 2π∫

0

∣∣1 + kµeiθ
∣∣r dθ, r > 0. (3.13)
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Now

1 + kµw(z) =
n(Q(z) +mβ̄zn)

nQ(z)− zQ′(z)
,

and
|P ′(z)| = |zn−1P ′(1/z)| = |nQ(z)− zQ′(z)|, for |z| = 1,

therefore, for |z| = 1,

n|Q(z) +mβ̄zn| = |1 + kµw(z)||nQ(z)− zQ′(z)| = |1 + kµw(z)||P ′(z)|.
This implies

n|G(z)| = |1 + kµw(z)||nQ(z)− zQ′(z)| = |1 + kµw(z)||P ′(z)|. (3.14)

Since |F (z)| = |G(z)| for |z| = 1, therefore, from (3.14) we get

n|P (z) + βm| = |1 + kµw(z)||P ′(z)| for |z| = 1. (3.15)

From (3.8) and (3.15), we deduce that for r > 0,

nr(|α| − kµ)r
2π∫
0

|P (eiθ) + βm|rdθ ≤
2π∫
0

|1 + kµw(eiθ)|r|DαP (eiθ)|rdθ.

This gives with the help of Hölder’s inequality in conjunction with (3.13) for p > 1, q > 1
with p−1 + q−1 = 1,

nr(|α| − kµ)r
2π∫
0

|P (eiθ) + βm|rdθ ≤

 2π∫
0

|1 + kµeiθ|prdθ

1/p 2π∫
0

|DαP (eiθ)|qrdθ

1/q

,

equivalently,

n(|α| − kµ)


2π∫
0

|P (eiθ) + βm|rdθ


1
r

≤


2π∫
0

|1 + kµeiθ|prdθ


1
pr


2π∫
0

|DαP (eiθ)|qrdθ


1
qr

which proves the desired result. �
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