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Abstract

We extend the construction of Born’s Reciprocal Phase Space Relativ-
ity to the case of Clifford Spaces which involve the use of polyvectors and
a lower/upper length scale. We present the generalized polyvector-valued
velocity and acceleration/force boosts in Clifford Phase Spaces and find an
explicit Clifford algebraic realization of the velocity and acceleration/force
boosts. Finally, we provide a Clifford Phase-Space Gravitational Theory
based in gauging the generalization of the Quaplectic group and invoking
Born’s reciprocity principle between coordinates and momenta (maximal
speed of light velocity and maximal force). The generalized gravitational
vacuum field equations are explicitly displayed. We conclude with a brief
discussion on the role of higher-order Finsler geometry in the construc-
tion of extended relativity theories with an upper and lower bound to
the higher order accelerations (associated with the higher order tangent
and cotangent spaces). We explain how to find the procedure that will
allow us to find the n-ary analog of the Quaplectic group transformations
which will now mix the X,P,Q, ....... coordinates of the higher order tan-
gent (cotangent) spaces in this extended relativity theory based on Born’s
reciprocal gravity and n-ary algebraic structures.

1 Introduction : Born’s Reciprocal Relativity
in Phase Spaces

In recent years we have argued that the underlying fundamental physical prin-
ciple behind string theory, not unlike the principle of equivalence and general
covariance in Einstein’s general relativity, might well be related to the existence
of an invariant minimal length scale (Planck scale) attainable in nature. A scale
relativistic theory involving spacetime resolutions was developed long ago by
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Nottale where the Planck scale was postulated as the minimum observer inde-
pendent invariant resolution in Nature [1]. Since “points” cannot be observed
physically with an ultimate resolution, they are fuzzy and smeared out into
fuzzy balls of Planck radius of arbitrary dimension. For this reason one must
construct a theory that includes all dimensions (and signatures) on the equal
footing. Because the notion of dimension is a topological invariant, and the con-
cept of a fixed dimension is lost due to the fuzzy nature of points, dimensions
are resolution-dependent, one must also include a theory with all topologies as
well. It turned out that Clifford algebras contained the appropriate algebro-
geometric features to implement this principle of polydimensional transforma-
tions that reshuffle a five-brane history for a membrane history, for example.
For an extensive review of this Extended Relativity Theory in Clifford Spaces
that encompasses the unified dynamics of all p-branes, for different values of
the dimensions of the extended objects, and numerous physical consequences,
see [2], [4], [3], [6].

An upper limit on the maximal acceleration of particles was proposed long
ago by Cainello [9]. This idea is a direct consequence of a suggestion made years
earlier by Max Born on a Reciprocal Relativity principle operating in Phase
Spaces [8], [10] where there is an upper bound on the four-force (maximal string
tension or tidal forces in strings ) acting on a particle as well as an upper bound
in the particle’s velocity given by the speed of light.

In this introductory section we briefly review Born’s Reciprocal Phase Space
Relativity and the principle of Maximal-acceleration/force Relativity from the
perspective of 8D Phase Spaces and the U(1, 3) Group. The U(1, 3) = SU(1, 3)⊗
U(1) Group transformations which leave invariant the phase-space intervals un-
der rotations, velocity and acceleration boosts, were found by Low [10] and can
be simplified drastically when the velocity/acceleration boosts are taken to lie
in the z-direction, leaving the transverse directions x, y, px, py intact ; i.e., the
U(1, 1) = SU(1, 1)⊗ U(1) subgroup transformations leave invariant the phase-
space interval given by (in units of h̄ = c = 1)

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2[1 +
(dE/dτ)2 − (dP/dτ)2

b2
] = (dτ)2[1− m2g2(τ)

m2
PA

2
max

]. (1.1)

where we have factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2

in eq-(1.1) and the maximal proper-force is set to be b ≡ mPAmax. mP is the
Planck mass 1/LP so that b = (1/LP )2, may also be interpreted as the maximal
string tension when LP is the Planck scale.

The quantity g(τ) is the proper four-acceleration of a particle of mass m in
the z-direction which we take to be defined by the X coordinate. The interval
(dω)2 described by Low [10] is U(1, 3)-invariant for the most general transfor-
mations in the 8D phase-space. These transformations are rather elaborate, so
we refer to the references [10] for details.
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The appearance of the U(1, 3) group in 8D Phase Space is not too surprising
since it could be seen as the ” complex doubling ” version of the Lorentz group
SO(1, 3). Low discussed the irreducible unitary representations of such U(1, 3)
group and the relevance for the strong interactions of quarks and hadrons since
U(1, 3), with 16 generators, contains the SU(3) group.

The analog of the Lorentz relativistic factor in eq-(1.1) involves the ratios
of two proper forces. One variable force is given by mg(τ) and the maximal
proper force sustained by an elementary particle of mass mP is assumed to
be Fmax = mPlanckc

2/LP . When m = mP , the ratio-squared of the forces
appearing in the relativistic factor of eq-(1.1 ) becomes then g2/A2

max, and the
phase space interval coincides with the geometric interval discussed by

The transformations laws of the coordinates in that leave invariant the in-
terval (1.1) were given by [10]:

T ′ = Tcoshξ + (
ξvX

c2
+
ξaP

b2
)
sinhξ

ξ
. (1.2a)

E′ = Ecoshξ + (−ξaX + ξvP )
sinhξ

ξ
. (1.2b)

X ′ = Xcoshξ + (ξvT −
ξaE

b2
)
sinhξ

ξ
. (1.2c)

P ′ = Pcoshξ + (
ξvE

c2
+ ξaT )

sinhξ

ξ
. (1.2d)

The ξv is velocity-boost rapidity parameter and the ξa is the force/acceleration-
boost rapidity parameter of the primed-reference frame. They are defined re-
spectively :

tanh(
ξv
c

) =
v

c
. tanh(

ξa
b

) =
ma

mPAmax
. (1.3)

The effective boost parameter ξ of the U(1, 1) subgroup transformations
appearing in eqs-(2-2a, 2-2d) is defined in terms of the velocity and acceleration
boosts parameters ξv, ξa respectively as:

ξ ≡
√
ξ2v
c2

+
ξ2a
b2
. (1.4)

Straightforward algebra allows us to verify that these transformations leave
the interval of eq- (1.1) in classical phase space invariant. They are are fully con-
sistent with Born’s duality Relativity symmetry principle [8] (Q,P )→ (P,−Q).
By inspection we can see that under Born reciprocity, the transformations in
eqs-(1.2a-1.2d) are rotated into each other, up to numerical b factors in order to
match units. When on sets ξa = 0 in (1.2a-1.2d) one recovers automatically the
standard Lorentz transformations for the X,T and E,P variables separately,
leaving invariant the intervals dT 2−dX2 = (dτ)2 and (dE2−dP 2)/b2 separately.

Also the transformations leave invariant the symplectic two-form
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dT ′ ∧ dE′ − dX ′ ∧ dP ′ = dT ∧ dE − dX ∧ dP (1.5)

For simplicity, unless otherwise indicated, we shall choose the natural units
h̄ = c = G = 1 so that b = mP = LP = 1. The composition of two successive
transformations like in eqs-(1.2) yields a similar transformation as (1.2) due
to the group nature of U(1, 1). The composition of the rapidity parameters is
simplified enormously as

ξ′′v = ξ′v + ξv; ξ′′a = ξ′a + ξa; ξ′′ = ξ′ + ξ (1.6)

and obeying the relations

(ξ)2 = (ξv)
2 + (ξa)2; (ξ′)2 = (ξ′v)

2 + (ξ′a)2; (ξ′′)2 = (ξ′′v )2 + (ξ′′a )2 (1.7)

when the following conditions are obeyed

ξa
ξ

=
ξ′a
ξ′

=
ξ′′a
ξ′′

=
ξ′a + ξa
ξ′ + ξ

(1.8a)

ξv
ξ

=
ξ′v
ξ′

=
ξ′′v
ξ′′

=
ξ′v + ξv
ξ′ + ξ

(1.8b)

from the relations (1.6-1.8) one can show that

(ξ′′)2 = (ξ′′v )2 + (ξ′′a )2 = (ξ′v + ξv)
2 + (ξ′a + ξa)2 = (ξ′ + ξ)2 (1.9)

The Eddington-Dirac large numbers coincidence ( and an ultraviolet/infrared
entanglement ) can be easily implemented if one equates the upper bound on the
proper-four force sustained by a fundamental particle , (mg)bound = mP (c2/LP ),
with the proper-four force associated with the mass of the (observed ) universe
MU , and whose minimal acceleration c2/R is given in terms of an infrared-cutoff
R ( the Hubble horizon radius ). Equating these proper-four forces gives

mP c
2

LP
=
MUc

2

R
⇒ MU

mP
=

R

LP
∼ 1061. (1.10)

from this equality of proper-four forces associated with a maximal/minimal
acceleration one infers MU ∼ 1061mPlanck ∼ 10611019mproton = 1080mproton

which agrees with observations and with the Eddington-Dirac number 1080 [3]

N = 1080 = (1040)2 ∼ (
Fe
FG

)2 ∼ (
R

re
)2. (1.11)

where Fe = e2/r2 is the electrostatic force between an electron and a proton ;
FG = Gmemproton/r

2 is the corresponding gravitational force and re = e2/me ∼
10−13cm is the classical electron radius ( in units h̄ = c = 1 ).

One may notice that the above equation (1.10) is also consistent with the
Machian postulate [3] that the rest mass of a particle is determined via the grav-
itational potential energy due to the other masses in the universe. In particular,
by equating
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mic
2 = Gmi

∑
j

mj

|ri − rj |
=
GmiMU

R
⇒ c2

G
=
MU

R
. (1.12)

Due to the negative binding energy, the composite mass m12 of a system of
two objects of mass m1,m2 is not equal to the sum m1 + m2 > m12. We can
now arrive at the conclusion that the minimal acceleration c2/R is also the
same acceleration induced on a test particle of mass m by a spherical mass
distribution MU inside a radius R . The acceleration felt by a test particle of
mass m sitting at the edge of the observable Universe ( at the Hubble horizon
radius R ) is

|a| =
GMU

R2
(1.13)

From the last two equations one gets the same expression for the minimal
acceleration

a = aminimal =
c2

R
. (1.14)

which is of the same order of magnitude as the anomalous acceleration of the
Pioneer and Galileo spacecrafts a ∼ 10−8cm/s2 .

Let us examine closer the equality between the proper-four forces

mP c
2

LP
=
MUc

2

R
⇒ mP

LP
=
MU

R
=
c2

G
. (1.15)

The last term in eq-(1.15) is directly obtained after implementing the Machian
principle. Thus, one concludes from eq-(1.15 ) that as the universe evolves in
time one must have the conserved ratio of the quantities MU/R = c2/G =
mP /LP . This interesting possibility, advocated by Dirac long ago, for the
fundamental constants h̄, c, G, ..... to vary over cosmological time is a plausible
idea with the provision that the above ratios satisfy the relations in eq-(1.15)
at any given moment of cosmological time. If the fundamental constants do not
vary over time then the ratio MU/R = c2/G must refer then to the asymptotic
values of the Hubble horizon radius R = Rasymptotic.

The outline of the rest of this work goes as follows. In section 2.1 we ex-
tend the construction of Born’s Reciprocal Phase Space Relativity to the case
of Clifford Spaces which involve the use of polyvectors and a lower and upper
length scale. In particular we explain how to build a generalized gravitational
theory invoking Born’s reciprocity principle. In 2.2 we display the general-
ized polyvector-valued velocity and acceleration/force boosts in Clifford Phase
Spaces. In 2.3 we construct an explicit Clifford algebraic realization of the
velocity and acceleration/force boosts furnishing the same transformations as
in eqs-(1.2), and show how to generalize and extend these transformations to
the full-fledge Clifford Phase Space involving polyvector-valued coordinates and
momenta.
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In section 3 we construct a Clifford Phase Space Gravitational Theory based
in gauging the Clifford generalization of the Quaplectic group. The generalized
gravitational vacuum field equations are explicitly displayed. Finally, in section
4 we present our conclusions with a brief discussion of the role of Finsler ge-
ometry in the construction of extended relativity theories with an upper and
lower bound to the higher order accelerations associated with the higher order
tangent and cotangent spaces.

2 The Extended Relativity in Born-Clifford Phase
Spaces

2.1 The Clifford-Phase Space with a Lower and Upper
Length scales

We briefly embark into the extended relativity theory in Clifford (C-spaces), [2],
[3], [11] by generalizing the notion of a spacetime interval in Minkwoski space
to C-space

dX2 = dσ2 + dxµdx
µ + dxµνdx

µν + dxµνρdx
µνρ + ... (2.1)

The Clifford valued polyvector

X = XMEM = σ 1 + xµγµ + xµνγµ∧γν + .... xµ1µ2....µDγµ1 ∧γµ2 ....∧γµD
.

(2.2a)
denotes the position of a polyparticle in a manifold, called Clifford space or
C-space. The series of terms in (2.1) terminates at a finite value depending on
the dimension D. A real Clifford algebra Cl(p, q) with p+ q = D has 2D basis
elements. The gammas γµ correspond to a Clifford algebra associated with a
flat spacetime

{γµ, γν} = 2 ηµν . (2.2b)

but in general one could extend this formulation to curved spacetimes with a
metric gµν by introducing the vielbeins γµ = eaµγa.

The connection to strings and p-branes can be seen as follows. In the case of
a closed string (a 1-loop) embedded in a target flat spacetime background of D-
dimensions, one represents the projections of the closed string (1-loop) onto the
embedding spacetime coordinate-planes by the variables xµν . These variables
represent the respective areas enclosed by the projections of the closed string
(1-loop) onto the corresponding embedding spacetime planes. Similarly, one can
embed a closed membrane (a 2-loop) onto a D-dim flat spacetime, where the
projections given by the antisymmetric variables xµνρ represent the correspond-
ing volumes enclosed by the projections of the 2-loop along the hyperplanes of
the flat target spacetime background.
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This procedure can be carried to all closed p-branes ( p-loops ) where the
values of p are p = 0, 1, 2, 3, ....D − 2. The p = 0 value represents the center
of mass and the coordinates xµν , xµνρ.... have been coined in the string-brane
literature [7] as the holographic areas, volumes, ...projections of the p-loops (
closed p-branes ) onto the embedding spacetime coordinate planes/hyperplanes.

If we take the differential dX and compute the scalar product among two
polyvectors < dX̃ dX >scalar we obtain the C-space extension of the particle’s
proper time in Minkwoski space. The symbol X̃ denotes the reversion operation
and involves reversing the order of all the basis γµ elements in the expansion of
X . It is the analog of the transpose ( Hermitian ) conjugation. The C-space
proper time associated with a polyparticle motion is then

dΣ2 = (dσ)2 + L2D−2
P dxµdx

µ +  L2D−4
P dxµν dx

µν + ...... (2.3)

Here we have explicitly introduced the Planck scale  LP since a length pa-
rameter is needed in order to tie objects of different dimensionality together:
0-loops, 1-loops,..., p-loops. Einstein introduced the speed of light as a universal
absolute invariant in order to “unite” space with time (to match units) in the
Minkwoski space interval:

ds2 = c2dt2 − dxidx
i. (2.4)

A similar unification is needed here to “unite” objects of different dimensions,
such as xµ, xµν , etc... The Planck scale then emerges as another universal
invariant in constructing an extended scale relativity theory in C-spaces.

To continue along the same path, we consider the analog of Lorentz transfor-
mations in C-spaces which transform a poly-vector X into another poly-vector
X ′ given by X ′ = RXR−1 with

R = eθ
MEM = exp [ θ1 + θµγµ + θµ1µ2γµ1

∧ γµ2
..... ]. (2.5)

and

R−1 = e−θ
MEM = exp [ − (θ1 + θνγν + θν1ν2γν1 ∧ γν2 + ..... ) ]. (2.6)

where the theta parameters θ; θµ; θµν , .... in (2.5, 2.6) are the components of the
Clifford-valued parameter Θ = θMEAM . The transformations X ′ = RXR−1

are the C-space version of the Lorentz rotations/boosts parameters. If one re-
quires to satisfy the condition R−1 = R̃, after using the tilde operation (which
reverses the order of the products of the gamma basis generators present in the
EM polyvectors ) so that the inner product < X̃X > (the bracket operation
denotes taking the scalar part of the Clifford geometric product) is invariant un-
der polyrotations, one is forced to restrict the grades of the polyvector elements
allowed in the definition of R. Hence, the condition R−1 = R̃ will restrict the
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type of terms allowed inside the exponential defining the rotor R because the
reversal operation (denoted below by †) of a p-vector obeys

(γµ1∧γµ2 .....∧γµp)† = γµp∧γµp−1 .....∧γµ2∧γµ1 = (−1)p(p−1)/2γµ1∧γµ2 .....∧γµp

(2.7)
Hence only those terms that change sign (under the reversal operation) are
permitted inside the exponential defining R = exp[θMEM ].

Our task now is to construct a Relativity theory that implements simultaneously
the Born’s reciprocity principle (associated with a minimal and maximal accel-
eration/scale) . The upper scale R can be set to the Hubble scale which can be
seen as infrared regulator. The minimal scale is set equal to the Planck length
LP which can be seen as an ultraviolet regulator.

The interval in Clifford-Phase-Spaces is defined

dΣ2 = < dX̃ dX > +
1

F2
< dP̃ dP >=

(
dσ

LD−1P

)2 + dxµdx
µ +

dxµνdx
µν

L2
P

+
dxµνρdx

µνρ

L4
P

+ .... +

1

F2
[

(dρ)2

(h̄/R)2D−2
+ dpµdp

µ +
dpµνdp

µν

(h̄/R)2
+

dpµνρdp
µνρ

(h̄/R)4
+ ...... ] (2.8)

where the maximal force is

F =
mP c

2

LP
=
MUc

2

R
=
c4

G
(2.9)

The infrared scale R → ∞ limit is set in conjunction with the vanishing limit
of the holographic momenta variables (to avoid singularities)

pµν → 0, pµνρ → 0, ...

constraining the interval in the Born-Clifford Phase Space to be of the form

dΣ2 ⇒ (dσ)2

L2D−2
P

+ dxµ1dx
µ1 +

dxµ1µ2dx
µ1µ2

L2
P

+
dxµ1µ2µ3dx

µ1µ2µ3

L4
P

+ .... +

dxµ1µ2µ3....µD−1
dxµ1µ2µ3....µD−1

L2D−2
P

+
1

F2
dpµdp

µ. (2.10)

In the classical limit h̄ → 0 the Planck scale LP =
√

(h̄G/c3) → 0 . Thus,
the ultraviolet limit LP → 0 is accompanied with the vanishing limit of the
holographic coordinate variables

xµν → 0, xµνρ → 0, ...

and the interval reduces further to the standard Born Phase Space interval

dΣ2 ⇒ dxµdx
µ +

1

F2
dpµdp

µ =
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.

dτ2[1 +
(dpµ/dτ)(dpµ/dτ)

F2
] =

dτ2[1 +
1

F2
m2 d

2xµ
dτ2

d2xµ

dτ2
] = dτ2[1 − m2g2(τ)

F2
]. (2.11)

When F →∞ the Phase Space interval (2.11) reduces further to the Minkowski
spacetime interval.

As stated above, when h̄ → 0 one has that the Planck scale LP → 0 and
also one should notice that

mP =
h̄

cLP
=

h̄

c
√

(h̄G/c3)
→ 0. amax =

c2

LP
=
√

(c7/h̄G)→∞ ⇒

mP amax =
c4

G
= F . (2.12)

Despite that the maximal acceleration is infinite this does not necessarily imply
that the maximal force is also divergent due to the fact that the mP → 0. This
type of limit in (2.12) has also been studied by [15] pertaining to the notion of
“relativity of locality” in curved phase space.

Hence there are two regimes that interpolate from the Born-Clifford Phase
Space interval to the standard point-particle Born Phase Space interval (related
to the existence of a maximal force). In the infinite distance ( infrared ) limit
R → ∞ the minimum momentum collapses to zero and in order to avoid sin-
gularities we must set all the holographic momenta to zero that leads to the
decoupling of the holographic momenta variables. In the classical limit h̄ → 0
the Planck scale collapses to zero and in order to avoid singularities we must
set all the holographic coordinate variables to zero so one ends up solely with
the Born’s Reciprocal Phase Space Relativity interval associated with a point
particle subjected to an upper bound on the force F = c4/G and with an upper
bound on the speed given by c .

Born’s Reciprocal Relativity theory in Phase Spaces [19] leads to modified
dispersion relations involving both coordinates and momenta, and whose trun-
cations furnish Lorentz-violating dispersion relations which appear in Finsler
Geometry, rainbow-metrics models and Double (deformed) Special Relativity
[14]. We provided in [18] six specific results stemming from Born’s recipro-
cal Relativity and which are not present in Special Relativity. These were
: momentum-dependent time delay in the emission and detection of photons;
energy-dependent notion of locality; superluminal behavior; relative rotation
of photon trajectories due to the aberration of light; invariance of areas-cells
in phase-space and modified dispersion relations. One of the most interesting
conclusions was that there are null hypersurfaces in a flat phase-spaces where
points can have superluminal v > c behavior in ordinary spacetime, despite cor-
responding to a null hypersurface in a flat phase-space. Superluminal behavior
in spacetime can occur without having superluminal behavior in C-spaces [5].

Gravity in curved phase-spaces and two-times Physics following the strict
formalism of Lagrange-Finsler and Hamilton-Cartan geometry was analyzed in
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[19]. The scalar curvature of the 8D cotangent bundle (phase space) was ex-
plicitly evaluated and a generalized gravitational action in 8D was constructed
that yields the observed value of the cosmological constant and the Brans-Dicke-
Jordan Gravity action in 4D as two special cases. It was found that the geometry
of the momentum space can be linked to the observed value of the cosmologi-
cal constant when the curvature in momentum space is very large, namely the
small size of P is of the order of (1/RHubble). More general 8D actions can be
developed from Finsler geometric methods that involve sums of 5 distinct types
of torsion squared terms and 3 distinct curvature scalars.

A Born’s reciprocal complex gravitational theory as a local gauge theory in
8D of the deformed Quaplectic group was developed by [17]. The gauge group
was given by the semi-direct product of U(1, 3) with the deformed (noncommu-
tative) Weyl-Heisenberg group involving four noncommutative coordinates and
momenta. The (deformed) Quaplectic group acts as the automorphism group
along the internal fiber coordinates. One must not confuse the deformed com-
plex gravity constructed in [17] with the noncommutative gravity work in the
literature. Another salient feature of [17] was that the metric is complex with
symmetric real components and antisymmetric imaginary ones. An action in
8D involving 2 curvature scalars and torsion-squared terms was presented. In
section 3 we shall construct a Clifford Phase Space Gravitational Theory based
in gauging the polyvector generalization of the Quaplectic group. Before do-
ing so we will continue with studying the transformations of polyvector-valued
coordinates and momenta in Clifford Phase Spaces.

2.2 Generalized Velocity and Acceleration Boosts in Clif-
ford Phase Spaces

The most general transformations in C-phase-space mix different grade compo-
nents of the polyvectors XM , PM . To begin with we shall study those transfor-
mations which do not mix the different grade components and we shall choose
the natural units h̄ = c = G = 1 so that b = mP = LP = 1. The pure
areal-boost transformations of the areal coordinates and momenta, involving
the areal-velocity ξ12v and areal-acceleration rapidity boosts ξ12a parameters ,
are given by

X ′01 = X01 cosh(|ξ|) + ( ξ12v X12 + ξ12a P12)
sinh(|ξ|)
|ξ|

(2.13a)

P ′01 = P 01 cosh(|ξ|) + (ξ12v P12 − ξ12a X12)
sinh(|ξ|)
|ξ|

(2.13b)

X ′12 = X12 cosh(|ξ|) + (ξ12v X01 − ξ12a P01)
sinh(|ξ|)
|ξ|

(2.13c)
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P ′12 = P 12 cosh(|ξ|) + (ξ12v P01 + ξ12a X01)
sinh(|ξ|)
|ξ|

(2.13d)

X ′ij = Xij , P ′ij = Pij , for ij 6= 12; X ′0i = X0i, P ′0i = P 0i, for i 6= 1
(2.13e)

where the absolute value |ξ| for the areal-boost rapidity parameter is given by

|ξ|2 = (ξ12v )2 + (ξ12a )2 (2.14)

The above areal rapidity boost parameters are defined in terms of the areal
velocities and areal accelerations/forces of a new primed C-phase-space frame
of reference which is moving with respect to the initial C-phase-space frame.
Namely one has

tanh(ξ12v ) =
1

cLP

dX12

dt
, tanh(ξ12a ) =

1

mP c Fmax
dP 12

dt
(2.15)

When

ξ12v →∞ ⇔ dX12

dt
→ cLP ; ξ12a →∞ ⇔ dP 12

dt
→ mP c Fmax (2.16)

One can easily verify that the transformations (2.13) leave the interval in-
variant

− (X ′0i)2 − (P ′0i)2 + (X ′ij)2 + (P ′ij)2 = − (X0i)2 − (P 0i)2 + (Xij)2 + (P ij)2

(2.17)
and also leave invariant the bivector generalizations of the symplectic two-form

− dX ′0i ∧ dP ′0i + dX ′ij ∧ dP ′ij = − dX0i ∧ dP 0i + dXij ∧ dP ij (2.18)

where

dX ′0i ∧ dP ′0i = − dP ′0i ∧ dX ′0i; dX ′ij ∧ dP ′ij = − dP ′ij ∧ dX ′ij

dX ′ij ∧ dX ′ij = 0; dP ′ij ∧ dP ′ij = 0; ...... (2.19)

Naturally the transformations (2.13) solely affect the bivector components and
do not affect the other polyvector components. The composition of two suc-
cessive transformations of the form (2.13) yields a similar transformation (2.13)
with the composition of rapidity parameters obeying similar relations as in eqs-
(1.6-1.9).

The transformations (2.13) can be generalized to tri-vectors and other higher
grade polyvectors associated with the Clifford Phase Space. For example, in the
trivector case we have the following transformations

11



X ′012 = X012 cosh(|ξ|) + ( ξ123v X123 + ξ123a P123)
sinh(|ξ|)
|ξ|

(2.20a)

P ′012 = P 012 cosh(|ξ|) + (ξ123v P123 − ξ123a X123)
sinh(|ξ|)
|ξ|

(2.20b)

X ′123 = X123 cosh(|ξ|) + (ξ123v X012 − ξ123a P012)
sinh(|ξ|)
|ξ|

(2.20c)

P ′123 = P 123 cosh(|ξ|) + (ξ123v P012 + ξ123a X012)
sinh(|ξ|)
|ξ|

(2.20d)

X ′ijk = Xijk, P ′ijk = Pijk, for ijk 6= 123 (2.20e)

X ′0ij = X0ij , P ′0ij = P 0ij , for ij 6= 12 (2.20f)

where the absolute value |ξ| for the volume-boost rapidity parameter is given
by

|ξ|2 = (ξ123v )2 + (ξ123a )2 (2.21)

the volume rapidity boost parameters are defined in terms of the volume veloc-
ities and volume accelerations/forces of a new primed C-phase-space frame of
reference which is moving with respect to the initial C-phase-space frame such
that

tanh(ξ123v ) =
1

cL2
P

dX123

dt
, tanh(ξ123a ) =

1

m2
P c

2 Fmax
dP 123

dt
(2.22)

The composition of two successive transformations (2.20) yields a similar trans-
formation (2.20) with the composition of the rapidity parameters obeying similar
relations as in eqs-(1.6-1.9 ).

One can easily verify that the transformations (2.20) leave the interval in-
variant

(X ′0ij)2 + (P ′0ij)2 − (X ′ijk)2 − (P ′ijk)2 = (X0ij)2 + (P 0ij)2 − (Xijk)2 − (P ijk)2

(2.23)
and also leave invariant the trivector generalizations of the symplectic two-form

dX ′0ij ∧ dP ′0ij − dX ′ijk ∧ dP ′ijk = dX0ij ∧ dP 0ij − dXijk ∧ dP ijk (2.24)

Naturally the transformations (2.20) solely affect the trivector components and
do not affect the other polyvector components. In this fashion one can construct
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the other transformations for the same grade polyvectors. One should notice
that inD = 4, for example, one hasX0123, P 0123 but there is no X1234, P 1234, ξ1234,
then one must have in this D = 4 case that X ′0123 = X0123, P ′0123 = P 0123,
implying that the pseudo-scalar components are invariant. The scalar compo-
nents of the polyvectors are trivially invariant under C-(phase)-space coordinate
transformations. The most general transformations in C-phase-space mix dif-
ferent grade components of the polyvectors XM , PM . These will be the subject
of further investigation.

2.3 A Clifford realization of velocity and acceleration/force
boosts

We begin by defining the phase space vector associated to a D-dim spacetime
(in natural units h̄ = G = c = b = 1) as

Z = x0γ0 + p0β0 + x1γ1 + p1β1 + ...... (2.25)

In four spacetime dimensions, the signature of the 8D Phase space x0, p0, x1, p1, x2, p2, ....
is chosen to be (+,+,−,−,−,−...−); i.e. there are two timelike and six space-
like directions. We choose to split the 8D Clifford algebra generators into pairs
of γ’s and β’s as follows

Γ0 = γ0. Γ1 = γ1, Γ2 = γ2. Γ3 = γ3. Γ4 = β0, Γ5 = β1, Γ6 = β2, Γ7 = β3
(2.26)

obeying the relations

{γµ, γν} = 2ηµν . {βµ, βν} = 2ηµν . {γµ, βν} = 0. {βµ, γν} = 0 (2.27)

Thus the squares of the basis generators are

γ20 = β2
0 = 1. γ21 = β2

1 = −1. γ22 = β2
2 = −1. γ23 = β2

3 = −1. .... (2.28)

we also have the important relations

(γ0γ1)(γ0γ1) = −γ20γ21 = 1. (β0β1)(β0β1) = −β2
0β

2
1 = 1 (2.29)

The real Clifford algebras Cl(2, 6, R), Cl(6, 2, R) can be realized in terms of
the matrix algebra M(8,H) given by 8 × 8 Quaternionic entries. Rather than
working directly with a Clifford algebra in 8D one may use instead the direct
sum Cl(4)⊕ Cl(4) with 16 + 16 generators.

The identities

cosh(||ξ||) = cosh2(
1

2
||ξ||) + sinh2(

1

2
||ξ||), cosh2(

1

2
||ξ||) − sinh2(

1

2
||ξ||) = 1

(2.30a)
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sinh(||ξ||) = 2 sinh(
1

2
||ξ||) cosh(

1

2
||ξ||). (2.30b)

must be used always in order to reproduce the cosh(||ξ||), sinh(||ξ||) from their
half-values. For simplicity and without loss of generality we shall focus on the
transformations corresponding to a four-dim phase space associated with a two-
dim spacetime. There are four relevant bivectors

γ0 ∧ γ1, β0 ∧ β1. γ0 ∧ β1, β0 ∧ γ1 (2.31)

the first two bivectors in (2.31) correspond to ordinary velocity boosts/rotations
in the x0 − x1 and p0 − p1 planes, respectively, whereas the last two bivectors
are acceleration/force boosts mixing the T time coordinate with the momentum
P1, and the energy E with the coordinate X1, respectively. For instance, after
setting c = b = 1, the transformation

(cosh(
1

2
ξa) + γ0β1 sinh(

1

2
ξa) ) ( Tγ0 + Eβ0 +Xγ1 + Pβ1 ) (cosh(

1

2
ξa)− γ0β1 sinh(

1

2
ξa) ) =

T ′γ0 + E′β0 + X ′γ1 + P ′β1 (2.32)

yields

T ′ = T cosh(ξa) − P sinh(ξa), P ′ = P cosh(ξa) − T sinh(ξa) (2.33a)

and
E′ = E, X ′ = X (2.33b)

such that the interval is invariant

(T ′)2 + (E′)2 − (X ′)2 − (P ′)2 = (T )2 + (E)2 − (X)2 − (P )2 (2.34)

Whereas the transformation

(cosh(
1

2
ξa) + β0γ1 sinh(

1

2
ξa) ) ( Tγ0 + Eβ0 +Xγ1 + Pβ1 ) (cosh(

1

2
ξa)− β0γ1 sinh(

1

2
ξa) ) =

T ′γ0 + E′β0 + X ′γ1 + P ′β1 (2.35)

yields

E′ = E cosh(ξa) − X sinh(ξa), X ′ = X cosh(ξa) − E sinh(ξa) (2.36a)

and
P ′ = P, T ′ = T (2.36b)

such that the interval (2.34) is invariant.
The transformations involving the rotor

R = cosh(
1

2
ξv) + γ0γ1 sinh(

1

2
ξv), R−1 = cosh(

1

2
ξv) − γ0γ1 sinh(

1

2
ξv)

(2.37)
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lead to the ordinary velocity Lorentz boosts of the X,T coordinates and leave
invariant the energy-momentum E,P .

The transformations involving the rotor

R = cosh(
1

2
ξv) + β0β1 sinh(

1

2
ξv), R−1 = cosh(

1

2
ξv) − β0β1 sinh(

1

2
ξv)

(2.38)
lead to the ordinary velocity Lorentz boosts of the E,P energy-momentum and
leave invariant the X,T coordinates.

Finally, given Z = Tγ0+Eβ0+Xγ1+Pβ1 the transformation we are looking
for which combines both velocity and acceleration/force boosts simultaneously
is

Z′ = R1 R2 Z R−12 R−11 (2.39)

the first rotor is given by

R1 = cosh(||α||) − [αvγ0γ1 + αaγ1β0 ]
sinh(||α||)
||α||

. (2.40a)

R̃1 = R−11 = cosh(||α||) + [αvγ0γ1 + αaγ1β0 ]
sinh(||α||)
||α||

(2.40b)

and where ||α|| ≡
√

(αv)2 + (αa)2. The other rotor is

R2 = cosh(||α||) − [αvβ0β1 + αaγ0β1 ]
sinh(||α||)
||α||

. (2.41a)

R̃2 = R−12 = cosh(||α||) + [αvβ0β1 + αaγ0β1 ]
sinh(||α||)
||α′||

. (2.41b)

Therefore, the transformation

R1 R2 ( Tγ0 + Eβ0 + Xγ1 + Pβ1 ) R−12 R−11 =

T ′γ0 + E′β0 + X ′γ1 + P ′β1 (2.42)

with

R1 R2 = cosh2(||α||) + γ0γ1β0β1 sinh
2(||α||) −

(αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1)
sinh(||α||)cosh(||α||)

α
(2.43a)

(R1 R2)−1 = R−12 R−11 = cosh2(||α||) + γ0γ1β0β1 sinh
2(||α||) +

(αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1)
sinh(||α||)cosh(||α||)

α
(2.43b)
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involving the rotors (2.40, 2.41) associated with the generalized rapidity pa-
rameters ||α|| ≡

√
(αv)2 + (αa)2 lead to the sought-after velocity and acceler-

ation/force boosts transformations mixing the coordinates and momenta and
which leave invariant the interval

(T ′)2 + (E′)2 − (X ′)2 − (P ′)2 = (T )2 + (E)2 − (X)2 − (P )2 (2.44)

However, these transformations instead of being displayed explicitly in terms
of the generalized rapidity parameter ||ξ|| =

√
(ξv)2 + (ξa)2, as indicated by

eqs-(1.2,1.4), we have the transformations (2.42) written explicitly in terms of
the parameters αv, αa, ||α|| and the Clifford algebra generators. One can recast
the latter parameters in terms of ξv, ξa, ||ξ|| after equating the set of variables
T ′, E′, X ′, P ′ in eq-(2.42) with those appearing in eqs-(1.2).

For example, by focusing on the factors of the T variable appearing in both
eqs-(2.42) and eqs-(1.2), after lengthy algebra and recurring to the results

(γ0γ1β0β1) γ0 (γ0γ1β0β1) = − γ0 (2.45)

(αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1) γ0 (αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1) = 0
(2.46)

and the identities for the hyperbolic functions, one arrives at

cosh4α− sinh4α = (cosh2α+sinh2α) (cosh2α−sinh2α) = cosh(2α) = cosh(ξ)
(2.47)

(cosh2α− sinh2α)
sinh(α) cosh(α)

α
=

sinh(2α)

2α
=

sinh(ξ)

ξ
(2.48)

from which one obtains the desired relationship among the rapidity parameters

ξv = 2 αv, ξa = 2 αa, ξ =
√

(ξv)2 + (ξa)2 = 2 α = 2
√

(αv)2 + (αa)2

(2.49)
The reason one has to recur to the transformations of the form (2.42) is

because

(αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1)2 =

2 α2 ( 1 + γ0γ1β0β1) 6= 2α2 (2.50a)

eq-(2.50a) is a result of

{ γ0γ1 + β0β1, γ1β0 + γ0β1 } = 0 (2.50b)

One can explicitly verify that after using the rest of the relations

(γ0γ1β0β1) γ1 (γ0γ1β0β1) = − γ1 (2.51a)
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(γ0γ1β0β1) β0 (γ0γ1β0β1) = − β0 (2.51b)

(γ0γ1β0β1) β1 (γ0γ1β0β1) = − β1 (2.51c)

(αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1) γ1 (αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1) = 0

(αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1) β0 (αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1) = 0

(αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1) β1 (αvγ0γ1 + αvβ0β1 + αaβ0γ1 + αaγ0β1) = 0
(2.52)

and eqs-(2.45-2.48), it leads to the full set of transformations given by eqs-(1.2).
In general, in higher spacetime dimensions than D = 2 (higher dimensional

phase spaces greater than 4), one can have velocity and acceleration boosts
along arbitrary spatial directions Xi with i = 1, 2, 3, ...., D− 1. Due to the fact
that

[αivγ0γi + αiaγiβ0 ] [αjvγ0γj + αjaγjβ0 ] =

(αiv)
2 + (αia)2 + α[i

vα
j]
a γ0γijβ0 6= (αiv)

2 + (αia)2 = α2 (2.53)

the rotor given by

R1 = cosh(||α||) − [αivγ0γi + αiaγiβ0 ]
sinh(||α||)
||α||

. (2.54a)

does no longer satisfy the condition R̃1 = R−11 , so now one has that

R̃1 = cosh(||α||) + [αivγ0γi + αiaγiβ0 ]
sinh(||α||)
||α||

6= R−11 (2.54b)

where now one must sum over all the spatial directions : ||α|| ≡
√

(αiv)
2 + (αia)2.

The other rotor

R2 = cosh(||α||) − [αivβ0βi + αiaγ0βi ]
sinh(||α||)
||α||

. (2.54c)

does no longer satisfy the condition R̃2 = R−12 , so now one has that

R̃2 = cosh(||α||) + [αivβ0βi + αiaγ0βi ]
sinh(||α||)
||α||

6= R−12 (2.54d)

In order to obtain the most general transformations [10], in units h̄ = G = c =
b = 1,

T ′ = T coshξ + (ξivXi + ξiaPi)
sinhξ

ξ
. (2.55a)

E′ = E coshξ + (ξivPi − ξiaXi)
sinhξ

ξ
. (2.55b)

17



X ′i = Xi + Xj (ξivξ
j
v + ξiaξ

j
a)

coshξ − 1

ξ2
+ ( ξivT − ξiaE )

sinhξ

ξ
. (2.55c)

P ′i = P i + Pj (ξivξ
j
v + ξiaξ

j
a)

coshξ − 1

ξ2
+ ( ξivE + ξiaT )

sinhξ

ξ
. (2.55d)

where the effective boost parameter ξ is defined in terms of the velocity and
acceleration boosts parameters ξiv, ξ

i
a, respectively, as

ξ ≡
√

(ξiv)
2 + (ξia)2, i = 1, 2, 3, ....., D − 1 (2.56)

one would need to find a more complicated expression for the rotors. In partic-
ular, one may propose a transformation of the form

(
R

(1)
1 R

(1)
2 ........ R

(D−1)
1 R

(D−1)
2

)
Z
(

(R
(D−1)
2 )−1 (R

(D−1)
1 )−1 ...... (R

(1)
2 )−1 (R

(1)
1 )−1

)
=

T ′ γ0 + E′ β0 + X ′i γi + P ′i βi; i = 1, 2, 3, ....., D − 1 (2.57)

which leaves invariant the interval (T )2 + (E)2− (Xi)2− (P i)2, to see whether
or not it reproduces the transformations (2.55) after one finds the relation-
ship among the rapidity parameters ξ, ξiv, ξ

i
a and α, αiv, α

i
a. Each pair of rotors

R
(i)
1 R

(i)
2 for i = 1, 2, 3, ...., D − 1 has the same functional form as those pro-

vided by eqs-(2.40, 2.41) with the provision that one uses one pair of rapidity
parameters αiv, α

i
a for each different value of i = 1, 2, 3, ..., D − 1. To verify this

is beyond the scope of this work due to cumbersome algebra and will be the
study of further investigations.

Another procedure is to write the U(p, q) algebra generators in terms of the
SO(2p, 2q) algebra generators and, which in turn, can be written in terms of
the bivectors generators of the real Cl(2p, 2q) algebra. It is well known to the
experts that the U(N) generators Eij can be written as bilinears of oscillators,
which in turn, are given by linear combinations of the SO(2N) generators.
When the velocity and acceleration/force boosts point along one of the spatial
axis directions, like X1, all values of ξiv, ξ

i
a are zero except when i = 1, and

one then recovers the transformations (1.2) from eqs-(2.55) and (2.57). The
coordinates and momenta Xi, P i remain invariant when i 6= 1.

One can generalize the construction of this subsection to the case of areal
velocity and areal acceleration/force boosts, etc..... The most general trans-
formations of the form Z′ = RZR−1 and involving a rotor given by eqs-(2.5,
2.6) will mix the different grade components. We avoided the use of complex
numbers (complex parameters). Nevertheless one could have worked with com-
plexified Clifford algebras. Symplectic Clifford algebras [16] should also play an
important role in Clifford Phase Spaces. The latter algebras are crucial in the
formulation of Clifford super-analysis and the construction of superspaces with
bosonic and Grassmanian valued coordinates.
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3 A Clifford Phase Space Gravitational Theory

A brief presentation of the formulation of C-space gravity from a Clifford bundle
structure perspective is needed before one can construct a Clifford Phase Space
Gravitational Theory. A review of the formulation of gravity and spin from a
local conformal-affine symmetry point of view can be found in [20]. A geometric
approach to f(R) gravity with torsion within the Jet-bundle framework can be
found in [21]. In particular, the torsion and curvature tensors can be chosen
as fiber Jet-bundle coordinates which permit a simpler study of the symmetries
and conservation laws of the theory.

Let us begin with a Clifford gauge field theory based on the Cl(4, 1;R)
algebra acting on the fibers associated with a Clifford fibre bundle constructed
over a Clifford base space manifold associated to a Cl(3, 1;R) algebra, and whose
polyvector valued coordinates are X = XMγM . The Cl(4, 1;R)-valued gauge
field AM is given by

AM = AIM γI = A0
M 1 + AiM γi + Ai1i2M γi1i2 + ......... +Ai1i2.....i5M γi1i2...i5

(3.1)
One can decompose the Cl(4, 1) poly-vector valued indices I as

AiM = (AaM , A
5
M ); Ai1i2M = (Aa1a2M , Aa5M ), ....

Ai1i2i3M = (Aa1a2a3M , Aa1a25M ), ......, Ai1i2i3i4i5M = Aa1a2a3a45M (3.2)

the indices a1, a2, .... span the values 1, 2, 3, 4, whereas the indices i1, i2, .... span
the values 1, 2, ..., 4, 5. In this way one extract the generalized beins EAM from
eq-(3.2) as follows

E0
M ↔ A5

M , EaM ↔ Aa5M , Ea1a2M ↔ Aa1a25M , ....., Ea1a2....a4M ↔ Aa1a2a3a45M

(3.3)
after a suitable scaling by powers of a fundamental length (Planck scale). Simi-
larly, the (noncommuting) polyvector valued momentum (translation operators)
in the tangent C-space are identified as

P0 ↔ γ5, Pa ↔ γa5, Pa1a2 ↔ γa1a25, ....., Pa1a2....a4 ↔ γa1a2a3a45 (3.4)

The ordinary spin connection ωa1a2µ of spacetime sits inside the components

Ωa1a2M = Aa1a2M = { Aa1a20 , Aa1a2µ , Aa1a2µ1µ2
, ..... , Aa1a2µ1µ2µ3µ4

} (3.5)

in particular, by identifying Aa1a2µ = ωa1a2µ . The generalized poly-rotations
generators JA correspond to those basis generators which do not contain the
5-th direction

Ja ↔ γa, Ja1a2 ↔ γa1a2 , Ja1a2a3 ↔ γa1a2a3 , ....., Ja1a2....a4 ↔ γa1a2a3a4
(3.6)
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one must also include the unit generator γ0 = J0 = 1 as well.
Therefore, after recurring to eqs-(3.1-3.6) the Cl(4, 1)-valued gauge field AM

in eq-(3.1) can be rewritten in terms of generalized poly-rotations JA and poly-
translations PA (in the tangent C-space ) as

AM = AIM γI = ΩAM JA + EAM PA (3.7)

This is the Clifford space analog of gauging the de Sitter group SO(4, 1) so that
the ”translations” along the four-dimensional directions Pa can be viewed as the
rotations involving the internal 5-th direction Ja5. The Poincare group in four
dimensions SO(3, 1)×sT4 (semi-direct product of Lorentz with translations) can
be obtained as a group contraction of the de Sitter group SO(4, 1) by taking
the throat size of the four-dim hyperboloid (embedded in five flat dimensions)
to infinity.

Therefore, the field strength associated with the Cl(4, 1) valued gauge field
AM = AIM γI can be decomposed into a rotational and translational piece as
follows

FKMN γK = (∂MA
K
N − ∂NA

K
M ) γK + [AIMγI , A

J
NγJ ] =

RAMN JA + T AMN PA (3.8)

after recurring to the commutators

[JA, JB ] = fABC JC , [JA, PB ] = f ′ABC PC , [PA, PB ] = f ′′ABC JC (3.9)

the above commutators are the Cl(4, 1) algebraic extension of the SO(4, 1) com-
mutators. We have set the length scale to unity in the last term of (3.14). Such
scale must be included in order to match units. In [22] the whole construction
was generalized to include the conformal group SO(4, 2) as well.

One can convert the gauge group indices of the field strengths into base space
indices by contracting indices with the (inverse) beins as follows RAMNE

L
A =

RLMN . In the diagonal gauge, when the mixed grade components of the (inverse)
beins EAL , E

L
A are zero, one has as an example for the conversion process of gauge

group indices of into base space indices the following

F a1a2MN ↔ Ra1a2MN ⇒ Ra1a2MN Eρ1ρ2a1a2 = R [ρ1ρ2]
MN (3.10)

such that the de Siter (dS) curvature tensor R
(dS) [ρ1ρ2]
[µν] sits now inside the

components

R [ρ1ρ2]
[MN ] = { R [ρ1ρ2]

[µν] , R [ρ1ρ2]
[µ1µ2 ν1ν2]

, R [ρ1ρ2]
[µ1µ2µ3 ν1ν2ν3]

, ...... } (3.11)

In particular one can verify that one recovers the de Sitter (dS) curvature tensor

R
(dS) [ρ1ρ2]
[µν] as a sum of the Riemannian curvature tensor plus corrections in-

volving the vielbeins multiplying the cosmological constant. In differential form
notation one has that the de Sitter curvature 2-form is R(dS) = R(ω)+ l−2 e∧e.
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The MacDowell-Mansouri-Chamsedinne-West action in four-dimensions is given
by
∫
R∧R, which in turn, becomes the Gauss-Bonnet topological invariant term∫

R∧R; the Einstein-Hilbert action l−2
∫
R∧e∧e, and the cosmological constant

term l−4
∫
e ∧ e ∧ e ∧ e.

After setting the length scale l = 1 one has that the components of the
modified curvature 2-form due to the Clifford algebraic structure are given by

Ra1a2µ ν = ∂[µ Ωa1a2ν] + Ωm5
µ Ωr5ν < [γm5, γr5] γa1a2 > + Ωmnµ Ωrsν < [γmn, γrs] γ

a1a2 > +

Ωmnpµ Ωrstν < [γmnp, γrst] γ
a1a2 > + Ωmnpqµ Ωrstuν < [γmnpq, γrstu] γa1a2 > +

Ωmnpqkµ Ωrstuvν < [γmnpqk, γrstuv] γ
a1a2 > . (3.12)

where the brackets < [γmn, γr] γ
a >,< [γmnpq, γrst] γ

a > indicate the scalar
part of the product of the Cl(4, 1) algebra elements; i.e it extracts the Cl(4, 1)
invariant contribution. For example,

< [γmn, γr] γ
a > = < −ηmr γn γa > + < ηnrγmγ

a > = −ηmr δan + ηnr δ
a
m.

(3.13)
Therefore one can verify that de Sitter curvature tensor is given by the

first line of (3.12). The modified torsion 2-form due to the Clifford algebraic
structure is given by

T aµ ν = Ra5µ ν = ∂[µ Ωa5ν] + Ωmnµ Ωr5ν < [γmn, γr5] γa5 > +

Ωmµ Ωrν < [γm, γr] γ
a5 > + Ωmnpµ Ωrstν < [γmnp, γrst] γ

a5 > +

Ωmnpqµ Ωrstuν < [γmnpq, γrstu] γa5 > + Ωmnpqkµ Ωrstuvν < [γmnpqk, γrstuv] γ
a5 > .

(3.14)
Form (3.14) one can see that the Cl(4, 1)-algebraic expression for the torsion
T aµ ν contains the standard expression for the torsion in Riemann-Cartan space-
times. The Riemann-Cartan torsion is given by the first line of (3.14).

To finalize this discussion we recall [22] where one can define the double-
index generators

JAB = [γA, γB ] = fCAB γC ⇒ ΩABM JAB = ΩABM fCAB γC = ΩCM γC (3.15)

from which one learns that ΩABM fCAB = ΩCM so the rotational part of the curva-
ture can be rewritten in double-index notation as

RCMN γC = RCMN fABC JAB = RABMN JAB (3.16)

and will allow us to convert group indices into base space indices

RABMN EPA EQB = R PQ
MN ⇒ R MQ

MN = RQN ⇒ RNN = R (3.17)
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hence, eq-(3.17) will enable us to construct the C-space scalar curvature R and
build the analog of the Einstein-Hilbert action. For a detailed discussion of a
Clifford gauge theory approach to gravity with torsion see [22].

The procedure that led to the construction of a Born reciprocal general rel-
ativity theory in a curved 4D spacetime [17] (based in gauging the Quaplectic
group) can be extended to a theory involving polyvector-valued coordinates
and momenta; i.e. to Clifford Phase Spaces. The gauge theory is associated to
the fiber bundle over the base Clifford Phase-Space manifold with commuting
polyvector-valued coordinates and momenta XM = x, xµ, xµν , .... ;PM =
p, pµ, pµν , ........ The indices µ, ν, .. span 1, 2, 3, 4 and 1, 2, 3, ......, D in gen-
eral. We denote the coordinates of the Clifford Phase-Space collectively by
ZM = (XM , PM ).

The polyvector extension of the Weyl-Heisenberg algebra involves the gen-
erators

YA =
1√
2

(
XA

λ
|A|
l

− i
PA

λ
|A|
p

); ȲA =
1√
2

(
XA

λ
|A|
l

+ i
PA

λ
|A|
p

); A = 1, 2, 3, ......., 2D

(3.18)
where λl, λp are the Planck length and Planck momentum which can be set to
unity when one chooses the natural units h̄ = c = G = b = 1. |A| denotes
the grade of the polyvector index. The generators in (3.18) are chosen to be
dimensionless.

Notice that we must not confuse the generators XA, PA (associated with
the fiber coordinates of the internal space of the fiber bundle) with the base
manifold polyvector-valued coordinates and momenta XM , PM corresponding
to the Clifford Phase-Space. One may notice that the interval (2.8) in the base
Clifford Phase-Space manifold requires the introduction of the upper Hubble
and lower Planck scale, in addition to the maximal force F given by eq-(2.9).
Where the λl, λp length and momentum scales in (3.18) are introduced in the
expression of the polyvector extension of the Weyl-Heisenberg algebra generators
in order to render them dimensionless. The extended Weyl-Heisenberg algebra
is

[XA, PB ] = [Xa1a2.....an , Pb1b2.....bn ] = i ηAB I = i η[a1a2.....an] [b1b2.....bn] I
(3.19)

The nonvanishing elements belong to the same-grade components of the fiber
space metric ηAB = ηa1a2...an b1b2...bn and which can be decomposed into its
irreducible factors as antisymmetrized sums of products of ηab as follows

ηAB = det


ηa1b1 . . . . . . ηa1bn
ηa2b1 . . . . . . ηa2bn

−−−−−−−−−−− −−−−−−−−−−−−−−
ηanb1 . . . . . . ηanbn


(3.20)

The mixed grade metric components ηAB are zero.
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The generators YAB can be decomposed into the ”Lorentz” like generators
L[AB] and the ”shear”-like generators M(AB) as

YAB ≡
1

2
(MAB − iLAB); (3.21)

and the explicit commutation relations of the above generators are

[LAB , LCD] = (ηBCLAD − ηACLBD − ηBDLAC + ηADLBC). (3.22a)

[MAB , MCD] = − (ηBCLAD + ηACLBD + ηBDLAC + ηADLBC). (3.22b)

[LAB , MCD] = (ηBCMAD − ηACMBD + ηBDMAC − ηADMBC). (3.22c)

The commutators of LAB with the XC , PC generators are

[LAB , XC ] = ( ηBC XA − ηAC XB ); [LAB , PC ] = ( ηBC PA − ηAC PB ).
(3.24)

The commutators of MAB with the XC , PC generators are

[MAB , XC ] = − i ( ηBC PA + ηAC PB ); [MAB , PC ] = −i ( ηBC XA + ηAC Xb )
(3.25)

The gauge field AM is given in terms of the connection, frame field as

AM = ΩABM YAB + i ( EAM YA + ĒAM ȲA ) + i ΩM I . (3.26)

where the complex frame EAM which is no longer a square matrix is defined as

EAM =
1√
2

( eAM + ifAM ); ĒAM =
1√
2

( eAM − ifAM ). (3.27)

The complex Hermitian metric is given by

GMN = ĒAM EBN ηAB = g(MN) + ig[MN ] ≡ g(MN) + iBMN . (3.28)

such that
(GMN )† = ḠNM = GMN ; ḠMN = GNM . (3.29)

where the bar denotes complex conjugation. Despite that the metric is complex
the infinitesimal line element is real

ds2 = GMN dZM dZN = g(MN) dZ
M dZN , because i g[MN ] dZ

M dZN = 0.
(3.30)

The connection ΩABM in (3.26) can be decomposed into anti-symmetric [AB]
and symmetric (AB) pieces with respect to the internal indices

ΩABM = Ω
[AB]
M + i Ω

(AB)
M (3.31)
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giving

ΩABM YAB = − i

2
Ω

[AB]
M LAB +

i

2
Ω

(AB)
M MAB (3.32)

Given ZM̂ = (XM , PM ), ∂M̂ = (∂/∂XM , ∂/∂PM ), dropping the hats in the

indices ZM̂ for convenience, the field strength is defined as

FMN = ∂MAN − ∂NAM + [AM , AN ] =

FABMN YAB + i (FAMN YA + F̄AMN ȲA) + FMN I =

i

2
F

(AB)
MN MAB −

i

2
F

[AB]
MN LAB + i (FAMN YA + F̄AMN ȲA) + FMN I (3.33)

after decomposing YAB = 1
2 (MAB − iLAB). The components of the curvature

two-form associated with the anti-Hermitian connection ΩABM = Ω
[AB]
M +iΩ

(AB)
M

are

−i F [AB]
MN = ∂MΩ

[AB]
N − ∂NΩ

[AB]
M + Ω

[AC]
[M Ω

[CB]
N ] − Ω

(AC)
[M Ω

(CB)
N ] . (3.34)

i F
(AB)
MN = ∂MΩ

(AB)
N − ∂NΩ

(AB)
M + Ω

(AC)
[M Ω

[CB]
N ] + Ω

(BC)
[M Ω

[CA]
N ] (3.35)

where a summation over the repeated C indices is implied and [MN ] denotes
the anti-symmetrization of indices with weight one.

The components of the torsion are

FAMN = ∂ME
A
N − ∂NE

A
M − i Ω

[AC]
[M ECN ] + i Ω

(AC)
[M ĒCN ] −2i ĒA[M ΩN ]. (3.36)

F̄AMN = ∂M Ē
A
N − ∂N Ē

A
M +i Ω

[AC]
[M ĒCN ] −i Ω

(AC)
[M ECN ] +2i EA[M ΩN ]. (3.37)

The remaining field strength assoiated with the I generator is

FMN = i ∂MΩN − i ∂NΩM + EAM ĒBN ηAB − ĒAM EBN ηAB (3.38)

The curvature tensor is defined in terms of the field strength and complex frame
fields as

RQMNP ≡
1

4
( F

[AB]
MN + i F

(AB)
MN ) (EQA EBP + ĒQA ĒBP + EQA ĒBP + ĒQA EBP ).

(3.39)

where the explicit components F
[AB]
MN and F

(AB)
MN can be read from the defining

relations (3.34, 3.35). The contraction of indices yields two different complex-
valued (Hermitian) Ricci tensors.

RMP = gKN gQK RQMNP = δNQ RQMNP = R(MP ) + i R[MP ]; (RMP )∗ = RPM
(3.40a)
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and

SMλ = gKN gKQ RQMNP = S(MP ) + i S[MP ]; (SMP )∗ = SPM (3.40b)

due to the fact that

gKN gQK = δNQ ; gKN gKQ 6= δNQ . (3.41)

because gKQ 6= gQK . The position of the indices is crucial. There is a third

Ricci tensor Q[MN ] = RQMNP δ
P
Q related to the curl of the nonmetricity Weyl

vector QM which one may set to zero. However, in the most general case one
should include nonmetricity.

A further contraction yields the generalized (real-valued) Ricci scalars

R = (g(MP ) + i g[MP ]) ( R(MP ) + i R[MP ] ) =

g(MP ) R(MP ) − BMP R[MP ]; g[MP ] ≡ BMP . (3.42)

S = (g(MP ) + i g[MP ]) ( S(MP ) + i S[MP ] ) =

g(MP ) S(MP ) − BMP S[MP ]. (3.43)

We should notice that the inverse complex metric is

g(MP ) + ig[MP ] = [ g(MP ) + ig[MP ] ]−1 6= (g(MP ))
−1 + (ig[MP ])

−1. (3.44)

so g(MP ) is now a complicated expression of both g(MP ) and g[MP ] = BMP . The

same occurs with g[MP ] = BMP . Rigorously we should have used a different
notation for the inverse metric g̃(MP ) + iB̃[MP ], but for notational simplicity
we chose to drop the tilde symbol.

One could add an extra contribution to the complex-gravity real-valued
action stemming from the terms iBMPFMP which is very reminiscent of the
BF terms in Schwarz Topological field theory and in Plebanksi’s formulation
of gravity. In the most general case, one must include both the contributions
from the torsion and the i BMPFMP terms. The contractions involving GMP =
g(MP ) + iBMP with the components FMP (due to the antisymmetry property
of FMP = −FPM ) lead to

i BMP FMP = − BMP ( ∂MΩP − ∂PΩM ) − 2 BMP BMP =

− BMP ΩMP − 2 BMP BMP . (3.45)

These BF terms contain a mass-like term for the BMP field. When the torsion
is not constrained to vanish one must include those contributions as well. The
real-valued torsion two-form is (FAMNYA + F̄AMN ȲA)dZM ∧ dZN and the torsion
tensor and torsion vector are

TPMN = FAMN EPA ; T̄PMN = ĒPA F̄AMN ; TMNP = gPQ TQMN ;

25



T̄MNP = T̄QMN (gPQ)∗ = T̄QMN gQP ; TM = δNP TPMN ; T̄M = T̄PMN δNP .
(3.46)

The (real-valued) Lagrangian density linear in the two (real-valued) Ricci
curvature scalars and quadratic in the torsion is of the form

L = a1 R + a2 S + a3 TMNQ TMNQ + a4 TM TM + c.c (3.47)

where one must add the complex conjugate (cc) terms in order to have a real-
valued action and a1, a2, a3, a4 are suitable numerical coefficients. The analog
of Einstein’s vacuum field equations without torsion are

( R(MN) + S(MN) ) − 1

2
g(MN) ( R+ S ) = 0

( R[MN ] + S[MN ] ) − 1

2
g[MN ] ( R+ S ) = 0 (3.48)

To conclude, the extended Born Reciprocal Gravitational theory in Clifford
Phase Spaces involving symmetric and antisymmetric metrics differs from the
gravitational theories in the literature, like in [25], [27], [24]. Gravitational the-
ories based on Born’s reciprocal relativity principle involving a maximal speed
limit and a maximal proper force is a very promising avenue to quantize gravity
that does not rely in breaking the Lorentz symmetry at the Planck scale, in
contrast to other approaches based on deformations of the Poincare algebra,
Hopf algebras, quantum groups, etc... Polyvector-valued gauge field theories in
Noncommutative Clifford spaces were studied in [29]. Such field theory is the
proper arena to construct a Noncommutative Gravitational theory in Clifford
Phase Spaces.

4 Conclusion : Finsler Geometry and Upper/Lower
Bounds to Higher Order Accelerations

To finalize we must point out the importance of Finsler geometry [13] in con-
structing an extended relativity theory based on setting bounds to the higher
order accelerations in addition to the velocity and ordinary acceleration. A
thorough study of Finsler geometry and Clifford algebras has been undertaken
by Vacaru [12] where Clifford/spinor structures were defined with respect to
nonlinear connections associated with certain nonholonomic modifications of
Riemann–Cartan gravity. The study of nonholonomic Clifford-Structures in the
construction of a Noncommutative Riemann-Finsler Geometry can be found
also in [12].

The fundamental problem in constructing an extended relativity theory
based on setting bounds to the higher order accelerations is the following. Let
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us take the simplest extension where one wishes to impose bounds on the ve-
locity, the first and second order accelerations. The generalization of the Born
interval is

(ds)2 = (dX)2 + (dP )2 + (dQ)2 (4.1)

omitting indices and numerical constants. P is the momentum and Q is the
“momentum” of the momentum; i.e. it involves the second order acceleration.
In order to build an extension of Born’s reciprocal relativity we have to find a
symmetry which leaves invariant the interval (ds)2. It looks like a SO(4+4+4) =
SO(12) algebra (ignoring signatures for the moment).

If one wishes to have an invariant triple wedge product

dX ∧ dP ∧ dQ = ωijk dX
i ∧ dP j ∧ dQk (4.2)

under the extension of the Quaplectic group transformations one requires to
introduce the (ternary) 3-ary ”symplectic” transformations leaving invariant
the tripe wedge product (4.2).

In Born’s relativity we have the invariance group which is the intersection of
SO(4 + 4) and the ordinary symplectic group Sp(8). The intersection contains
the unitary group U(4) which allowed Low [10] to write down the symmetry
transformations under velocity and acceleration boosts, etc .. One may ask the
question is : what is the intersection of the group SO(12) with the ternary
group ( SO(4n) and n-ary group in general ) which leaves invariant the triple-
wedge product (4.2) and the interval (4.1) ? A careful study reveals that this
is the wrong question. The correct way to proceed is the following. Instead of
writing the quadratic form (4.1) one must begin with a cubic norm

(ds)3 = dijk dX
i dP j dQk (4.3)

where dijk is a symmetric rank three tensor. A realm of mathematics where cubic
norms are very relevant is in the construction of Jordan algebras. They have
been classified by Schafer [30] and there are three cases. In particular the four
”magical” cases consisting of 3× 3 hermitain matrices whose components take
values in the four division algebras, real, complex, quaternions and octonions.
The four magical Jordan algebras were key ingredients in the construction of
magical supergravities [31].

Now one can ask the proper question : what is the ternary algebra resulting
from the intersection of the ternary algebras which leave invariant the 3-form
(4.2) and the cubic norm (4.3) ? . One can then extend this construction to the
n-ary algebra case by having

(ds)n = di1i2....in dZ
i1
(1) dZ

i2
(2) ....... dZ

in
(n) (4.4)

ω(n) = ωi1i2......in dZ
i1
(1) ∧ dZ

i2
(2) ∧ ....... ∧ dZin(n) (4.5)

and then finding the the intersection of the n-ary algebras which leave invariant
the n-form (4.5) and the n-norm (4.4).
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This procedure will allow us to find the n-ary analog of the Quaplectic
group transformations which will now mix the X,P,Q, ....... coordinates of the
higher order tangent (cotangent) spaces in this extended relativity theory based
on Born’s reciprocal gravity and n-ary algebraic structures. Before answering
this difficult question one should recur firstly to the geometry of Higher-Order
Finsler Spaces [13] and see whether or not one can set bounds to the higher order
accelerations, and secondly, to study the symmetry transformation laws. In the
meantime we need to explore the large number of novel physical consequences
of Born’s Reciprocal Gravitational theory in Clifford Phase Spaces described in
this work.
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