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Abstract

This paper about indefinite summation describes a natural approach to discrete calculus. Two
natural operators for discrete difference and summation are defined. They preserve symmetry
and show a duality in contrast to the classical operators. Several summation and differentiation
algorithms will be presented.

1 Introduction

After a short summary of the well known classical discrete calculus in this introduction, we derive
the natural form of discrete calculus in chapter 2 and show some of it’s remarkable properties. In
chapter 3 we present several summation algorithms which were used to obtain the formulae listed in
chapter 4.

1.1 Notation

Throughout this paper we focus on intuitive readability. So we try to use non-letter symbols as
operators and avoid indices where possible. Therefore all operators like increment ↑, summation Σ,
integration

∫
, discrete difference ∆ and derivative ∂ are with respect to the variable x. The summation

step size δ is always assumed to be one because δ , 1 can be achieved by Σ f (δx).

Consequently all operators (especially the evaluation
∣∣∣
c
) are used as prefix operators. They will be

evaluated from left to right. The precedence of all operators ↑,Σ,
∫
,∆ and ∂ shall be the same as for

the addition operation. Hence there is Σ f + g = (Σ f ) + g and Σ f · g = Σ( f · g).
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↑ f (x) = f (x + 1) increment of x by 1∣∣∣
c

f (x) =
∣∣∣
0
↑

c
f (x) = f (c) evaluation at x = c

a∣∣∣
b

f (x) =
∣∣∣
b

f (x) −
∣∣∣
a

f (x) = f (b) − f (a) interval evaluation∣∣∣
cx

f (x) = f (cx) substitution of x by cx

1 f (x) = f (x) identity operator

b∣∣∣
a
Σ0 =

b−1∑
x=a

classical definite sum over x

Σ0 = ∆
−1
0 =

(
↑ − 1

)−1
classical indefinite summation operator over x

Σ = ∆
−1

=
1
2
·
↑ + 1
↑ − 1

natural indefinite summation operator over x

∂ =
d
dx

indefinite derivative operator with respect to x∫
= ∂

−1 =

∫
· · ·

d
dx

indefinite integration operator with respect to x

1.2 Increment Operator

In the beginning there was the increment operator ↑. It allows us to count and defines the natural
numbers given a first number usually called „one“. The increment is the basis for summation and
discrete calculus.

↑ f (x) := f (x + 1) Increment Operator ↑ (1.1)

↑ f (x) := f (x + 1) ↑
a

f (x) = f (x + a)

↓ f (x) := f (x − 1) ↓
a

f (x) = f (x − a)

↑
a
↑

b
= ↑

a+b

↓ = ↑
−1

↑↓ = ↓↑ = 1
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1.3 Classical Discrete Calculus

The classical discrete difference operator ∆0 is defined as an increment minus the identity. The sub-
script 0 indicates here the classical operator because ∆ will later be used for the natural difference
operator. Classical literature about discrete calculus is e.g. [Jo65]. A modern description can be
found in [GKP95] and some classical summation results in [WP1]. Elementary formulae can be
found in [NI10, Ab72].

∆0 := ↑ − 1 ∆0 f (x) = f (x + 1) − f (x) (1.2)

The classical summation operator is simply defined as the inverse discrete difference.

Σ0 := ∆
−1
0 classical summation operator (1.3)

Like in the case of geometric progressions we use the telescoping method to obtain a relation between
definite and indefinite sums.

Σ
−1
0

b−1∑
k=a

↑
k

=
(
↑ − 1

)
·

b−1∑
k=a

↑
k

=

b∑
k=a+1

↑
k
−

b−1∑
k=a

↑
k

= ↑
b
−↑

a

b−1∑
k=a

↑
k

=
(
↑

b
−↑

a)
Σ0 =

b∣∣∣
a
Σ0

b−1∑
x=a

f (x) =
b∣∣∣
a
Σ0 f (x) (1.4)

1.4 General Operators

By introducing the weighted summation operator Σw = Σ0 + w · 1 we can control the borders of the
summation interval

(
↑

b
− ↑

a
)
Σw = (1 − w)↑a +

∑b−1
k=a+1 ↑

k + w↑b.

Σw = Σ0 + w · 1 ∆w = Σ
−1
w =

1
w − 1

+

∞∑
k=1

wk−1

(w − 1)k+1↑
k

(1.5)
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The classical operators Σ0 and ∆0 = ↑ − 1 with weight w = 0 represent the lower border summation∑b−1
a . The weight w = 1 results in the upper border summation

∑b
a+1 with operators Σ1 = Σ0 + 1 and

∆1 = ↓∆0 = 1 − ↓.

The symmetric half border summation with weight w = 1
2 is the approach to the natural discrete

calculus presented in the next chapter.

2 Natural Discrete Calculus

The natural convention is to count the interval borders of a sum only with their half values. So
this natural sum Σ is simply the mean of two classical sums Σ0 where one of them is shifted Σ =

= 1
2Σ0↑ + 1

2Σ0 or after applying Σ−1
0 = ∆0 = ↑ − 1

(
↑ − 1

)
Σ =

1
2

(
↑ + 1

)
(2.1)

This directly leads to the symmetrical functional equation:

F(x + 1) − F(x) =
1
2

f (x + 1) +
1
2

f (x) (2.2)

∆F(x) = f (x) F(x) = Σ f (x) (2.3)

Instead of arguments x and x + 1 the functional equation (2.2) may also be written with the symmetric
arguments x ± 1

2 as F(x + 1
2 ) − F(x − 1

2 ) = 1
2 f (x + 1

2 ) + 1
2 f (x − 1

2 ).

Both functions f (x) and F(x) are evaluated only at points x with integer distance, although x itself
needs not to be an integer. This explains the attribute „discrete“. So both functions may also be finite
or infinite series fx = f (x), general number sequences or numerical data in array or vector form.

2.1 Linearity

The functional equation (2.2) is linear with respect to the argument function.

∆c · f (x) = c ·∆ f (x) Σc · f (x) = c ·Σ f (x)

∆ ( f (x) + g(x)) = ∆ f (x) + ∆g(x) Σ ( f (x) + g(x)) = Σ f (x) + Σg(x)
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2.2 Translation Invariance

The functional equation (2.2) is invariant under the translation x→ x+a and negative under argument
negation x→ −x.

∆
∣∣∣

x+a
=

∣∣∣
x+a

∆ Σ
∣∣∣

x+a
=

∣∣∣
x+a

Σ

∆
∣∣∣
−x

= −
∣∣∣
−x

∆ Σ
∣∣∣
−x

= −
∣∣∣
−x

Σ

(2.4)

2.3 Symmetry

The functional equation (2.2) preserves the symmetry of the argument function by changing the sign
of the symmetry. This can easily be shown by inserting −x into (2.2) and utilize the translation
invariance (2.4) to increment x. For even fe(−x) = fe(x) we get fe(−x+1)± fe(−x) = fe(x−1)± fe(x) =

± fe(x′ + 1) + fe(x′) and for odd fo(−x) = − fo(x) we get fo(−x + 1) ± fo(−x) = − fo(x − 1) ∓ fo(x) =

∓ fo(x′ + 1) − fe(x′). So an even fe(x) maps to an odd Fo(x) in the functional equation and vice versa.
Note that all functions f (x) = fe(x) + fo(x) can be split into even and odd parts.

∆even = odd Σeven = odd

∆odd = even Σodd = even

(2.5)

Later the expansion (3.4) into odd powers of the derivative operator ∂ shows, that this symmetry fea-
ture has it’s origin is infinitesimal calculus. So the sum and difference operator inherits all symmetry
problems from calculus. E.g. the odd function 1/x has the integral ln |x| and the sum Ψ(x) + (2x)−1

without evident symmetry.

Half-Symmetry

In addition to the even/odd symmetry around x = 0 we also have to pay attention to the half-
even/half-odd symmetry around 1

2 . The function fE

(
1
2 − x

)
= fE

(
1
2 + x

)
is half-even and the function

fO

(
1
2 − x

)
= − fO

(
1
2 + x

)
is half-odd. So there is fE(x + 1) = fE(−x) and fO(x + 1) = − fO(−x).
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Combined symmetry around zero and one half

Now we discuss functions which show both symmetries around x = 0 and x = 1
2 . We denote function

to be even and half-odd as feO(x). So there is feE(x + 1) = feE(x) and foO(x + 1) = foO(x) but
feO(x + 1) = − feO(x) and foE(x + 1) = − foE(x).

f (x) feE(x) feO(x) foE(x) foO(x)

Symmetry even, 1/2-even even, 1/2-odd odd, 1/2-even odd, 1/2-odd

↑ feE(x) − feO(x) − foE(x) foO(x)

∆ 0 4x · feO(x) 4x · foE(x) 0

Σ x · feE(x) 0 0 x · foO(x)

Even/half-even functions feE(x) and odd/half-odd functions foO(x) are constant functions also de-
scribed in chapter 2.10. Even/half-odd functions feO(x) and odd/half-even functions foE(x) are anti-
constant functions also described in chapter 2.11.

f (x) cos(2nπx) cos((2n + 1)πx) sin((2n + 1)πx) sin(2nπx)

Symmetry even, 1/2-even even, 1/2-odd odd, 1/2-even odd, 1/2-odd

∆ 0 4x · cos((2n + 1)πx) 4x · sin((2n + 1)πx) 0

Σ x · cos(2nπx) 0 0 x · sin(2nπx)

2.4 Duality

The most remarkable feature of the functional equation (2.2) is a duality between difference ∆ and
summation operator Σ = ∆−1. Simply multiply the functional equation by (−1)x to get (−1)x+1F(x +

1) + (−1)xF(x) = 1
2 (−1)x+1 f (x + 1) − 1

2 (−1)x f (x).

Σ f (x) =
1
4

(−1)x ∆(−1)x · f (x)

∆ f (x) = 4 (−1)x Σ(−1)x · f (x)

(2.6)

(−1)x f (x) is called the alternate function of f (x).
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2.5 Additive Intervals

The functional equation (2.2) is additive in the summation intervals.

b∣∣∣
a
Σ f (x) +

c∣∣∣
b
Σ f (x) =

c∣∣∣
a
Σ f (x) (2.7)

2.6 Comparison with Classical Discrete Calculus

By inserting (1.2) Σ0 = (↑ − 1)−1 into the functional equation (2.1) we get Σ = 1
2Σ0 (↑ + 1). Now we

replace ↑ by ∆0 + 1 and find the simple relation between the classical and natural summation.

Σ = Σ0 +
1
21 (2.8)

This means that we can use our classical summation formulae and simply add one half of the original
function to get the natural indefinite summation formula. As in the definition of natural summation,
the interval borders are counted only with their half value

∣∣∣b
a Σ f (x) =

∑b−1
a f (x) +

∣∣∣b
a

1
2 f (x) = 1

2 f (a) +∑b−1
a+1 f (x) + 1

2 f (b).

b∣∣∣
a
Σ f (x) =

b−1∑
x=a

f (x) +
1
2

b∣∣∣
a

f (x) (2.9)

Note that on the left side of this equation we have a natural definite sum, whereas on the right side we
have the classical definite sum.

2.7 Series Expansion of Operators

By using the relation ∆0∆ = ∆∆0 = 2 (∆0 − ∆) between natural and classical discrete difference, it
is possible to expand the natural operators ∆ in terms of the classical operators ∆0. These are only
formal infinite equations. We have to assure a terminating expansion either by ∆n

0 f (x) = 0 (like a
geometric progression) or in case of a periodic sequence by ∆n

0 f (x) = f (x).
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Σ = −
1
2

∞∑
k=1

(
∆0Σ

)k
= −

1
2
−

∞∑
k=1

↑
k

(2.10)

∆ = ∆0

∞∑
k=0

(
−

∆0

2

)k

= −2 − 4
∞∑

k=1

(−1)k↑
k

(2.11)

2.8 Definite Summation

The following equation (2.12) can either be derived from (1.4) and (2.1) or by factorizing ↑b
− ↑

a =

↑
a (↑ − 1)

∑b−a−1
k=0 ↑

k. The factor ↑ − 1 in this geometric progression cancels the denominator of Σ =
1
2 (↑ + 1)/(↑ − 1) (3.2). So we see that the definite natural summation consists of five parts.

b∣∣∣
a
Σ =

∣∣∣
0

(
↑

b
−↑

a)
Σ =

5)︷︸︸︷∣∣∣
0

4) 3)︷      ︸︸      ︷
(↑

b
−↑

a
)

2)︷     ︸︸     ︷
1
2 (↑ + 1)

1)︷      ︸︸      ︷
(↑ − 1)−1 (2.12)

From right to left there are:

1. Classical indefinite summation Σ0 = (↑ − 1)−1 = −1 − ↑ − ↑2
− ↑

3
− ↑

4
− · · ·

2. Symmetrization 1
2 (↑ + 1) to the natural form

3. Border shifts ↑b and ↑a

4. Interval forming by subtracting the borders

5. Evaluation |0 at zero

2.9 Definite Difference

Accordingly we get expansion (2.13) of the definite difference by further factorizing ↑b
− ↑

a =

↑
a (↑ − 1) (↑ + 1)

∑n/2−1
k=0 ↑

2k for even integer n = b − a. The additional factor ↑ + 1 now cancels
the denominator of ∆ = 2(↑ − 1)/(↑ + 1) (3.3).

b∣∣∣
a
∆ =

∣∣∣
0

(
↑

b
−↑

a)
∆ = 2↑

a (
↑ − 1

)2

b−a
2 −1∑
k=0

↑
2k

= even b − a (2.13)

= 2↑
a

+ 4
b−1∑

k=a+1

(−1)k−a↑
k

+ 2↑
b
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b∣∣∣
a
∆ f (x) = 2 f (a) + 4

b−1∑
k=a+1

(−1)k−a f (k) + 2 f (b) even b − a (2.14)

There is no such factorization and series expansion for odd n = b − a.

2.10 Constants

To all sums we can add functions c(x) which are ∆-constant in the sense ∆c(x) = 0 without changing
the derivative of the sum. From (2.11) follows that ∆0 f (x) = 0 =⇒ ∆ f (x) = 0. In other words:
All ∆0-constant functions are also ∆-constant. ∆0-constant functions fulfill the condition ∆0 f (x) =

f (x + 1)− f (x) = 0 or f (x + 1) = f (x) and are either the constant real value c or any periodic function
p(x) with period one. Such ∆0- and ∆-constant periodic functions are e.g. cos(2πkx), sin(2πkx),
exp(2πikx) or {x} (3.33). See also chapter 2.3 about symmetry.

2.11 Anti-Constants

Analogously we can define anti-constant functions a(x) which fulfill Σa(x) = 0⇐= a(x + 1) = −a(x).
Anti-constant functions have a period of two, which will be be relevant later in chapter 3.5 when we
discuss duplication. Such anti-constant functions are e.g. (−1)x or cos(πx).

By using the product rules (3.39) and (3.40), we get an expression for the sum of constant function
and the difference of anti-constant functions.

∆c(x) = 0 Σc(x) = x · c(x)

Σa(x) = 0 ∆a(x) = 4x · a(x)

2.12 Equivalence Relation

The relation ≡ is defined to skip all constants and anti-constants.

∆F(x) = f (x) ≡ f (x) + a(x) with Σa(x) = 0

Σ f (x) = F(x) ≡ F(x) + c(x) with ∆c(x) = 0
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3 Summation and Differentiation Algorithms

In this chapter we provide several algorithms to calculate sums and discrete differences with the
natural operators.

3.1 Functional Equation

Like all functional equations also (2.2) (↑−1)Σ = 1
2 (↑+1) is not really suitable for directly obtaining

an indefinite summation formula. The functional equation may be used for guessing a solution but
the main field of application is the verification of a solution found by one of the other algorithms.

Example 1: With (↑−1)ex = (e−1)ex and (↑+1)ex = (e+1)ex we find Σex = 1
2

e+1
e−1 ex = 1

2 coth 1
2 ·e

x.

3.2 Classical Summation

With relation (2.8) Σ = Σ0 + 1
21 we are able to obtain natural sums from all existing classical sums sim-

ply by adding one half of the original function. Especially the powerful Gosper and Wilf-Zeilberger
algorithms [Go78, Wi90, Ze91, Ko94] can be used to generate natural summation formulae.

Example 2: From the classical sum
∑n

k=1
1
k = Ψ(n+1)+γ and Ψ(1) = −γwe find Σ

1
x = Ψ(x)+ 1

2x =

ln |x| −
∑∞

k=1
B2k
2k x−2k.

3.3 Infinitesimal Calculus

The discrete calculus operators Σ, Σ0 and ∆ commute with the integration
∫

and differentiation ∂
operators except for some constant or anti-constant terms. Therefore if we know e.g. the sum Σ∂ f (x)
of the derivative, we can calculate the sum of f (x) by Σ f (x) ≡

∫
Σ∂ f (x). The result must be checked

in any case with the functional equation (2.2) to get the correct constant and anti-constant terms or
for a double integration (i.e.

∫
Σ or Σ

∫
) also the linear term.

Σ f (x) ≡
∫

Σ∂ f (x) Σ f (x) ≡ ∂Σ
∫

f (x)

∆ f (x) ≡
∫

∆∂ f (x) ∆ f (x) ≡ ∂∆
∫

f (x)

Example 3: We already know Σ
1
x = Ψ(x) + 1

2x with Ψ(x) = ∂ ln Γ(x) and ∂ ln |x| = 1
x . So we get

Σ ln x ≡ ln Γ(x) + 1
2 ln x.
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3.4 Operator Expansion

Starting with the Taylor expansion f (x + δ) =
∑∞

k=0
δk

k!∂
k f (x) at distance δ around x we get for δ = 1

the equation ↑ f (x) = f (x + 1) =
∑∞

k=0
1
k!∂

k f (x) which formally equals the exponential function of the
derivative operator ↑ =

∑∞
k=0

1
k!∂

k = e∂. Analogously we get for the decrement ↓ = e−∂.

↑ = e∂ =

∞∑
k=0

∂k

k!
≈ 1 + ∂ +

1
2
∂

2 +
1
6
∂

3 +
1

24
∂

4 + · · · (3.1)

It is allowed to handle the derivative operator ∂ as argument of a power series, because ∂ obeys all
necessary rules like linearity, commutativity and e.g. ∂n∂m = ∂n · ∂m = ∂n+m. But keep in mind
that instead of a multiplication, the operator concatenation ◦ is used in power series of operators.
Therefore the function evaluation g(∂) on an operator is itself an operator. When we sloppy write
g(∂) f (x) we actually mean g(∂) ◦ f (x) the application of the operator g(∂) on f (x). So g(∂) shall only
be applied in the form of it’s expansion into a power series. These arguments are in the same sense
valid for all other linear operators which commute with addition like ↑, ↓, ∆0, Σ0, ∆, Σ and

∫
.

We rewrite the functional equation (2.2) as rational function of the increment operator and transform
it with ↑ = e∂ (3.1) into a function of the derivative operator.

Σ =
1
2
↑ + 1
↑ − 1

=
1
2

coth ∂
2

Summation Operator (3.2)

∆ = 2
↑ − 1
↑ + 1

= 2 tanh ∂
2

Difference Operator (3.3)

Expanding the rational functions in (3.2) and (3.3) into a series of increments will give (2.10) and
(2.11) which were already described in chapter 2.7. The series expansions of 1

2 coth ∂
2 and 2 tanh ∂

2 in
terms of the derivative operator ∂ are as follows.

Σ =
1
2

coth ∂
2
≈ ∂

−1 +
1
12
∂ −

1
720

∂
3 +

1
30240

∂
5 −

1
1209600

∂
7 + · · ·

∆ = 2 tanh ∂
2
≈ ∂ −

1
12
∂

3 +
1

120
∂

5 −
17

20160
∂

7 + · · ·

(3.4)

It is remarkable that the series expansions of 1
2 coth ∂

2 and 2 tanh ∂
2 consist only of odd derivative pow-

ers. So applying Σ or ∆ will swap the even/odd symmetry of the argument. Also the series expansions
of Σ contains an integral

∫
= ∂−1 whereas the series expansions of ∆ contains only derivatives.
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It seems that all numerators in these series expansions are one. But especially because of B12 = − 691
2730

this is not the case.

1
2

coth
x
2

=

∞∑
k=0

B2k

(2k)!
x2k−1 ≈ (3.5)

≈
1
x

+
x

12
−

x3

720
+

x5

30240
−

x7

1209600
+

x9

47900160
−

691 x11

1307674368000
+ · · ·

2 tanh
x
2

= 4
∞∑

k=1

B2k

(
22k − 1

)
(2k)!

x2k−1 ≈ (3.6)

≈ x −
x3

12
+

x5

120
−

17 x7

20160
+

31 x9

362880
−

691 x11

79833600
+ · · ·

[GKP95] describes that the series expansion of x
2 coth x

2 and x
ex−1 differ by the term x

2 . This appears as
difference 1

2 between the natural and classical sum Σ − Σ0 in equation (2.8). So omitting the single
non-zero odd Bernoulli term B1 = −1

2 is responsible for the symmetry of our natural summation.

x
2

coth
x
2

=

∞∑
k=0

B2k

(2k)!
x2k =

x
2

ex + 1
ex − 1

=
x

ex − 1
+

x
2

=

∞∑
k=0

Bk

k!
xk +

x
2

formally
∑

Beven =
∑

Ball − B1

To get rid of the factors two and one half, we tentatively introduced new and much simpler operators
for Σ and ∆ without these factors. But it turned out to be more confusing to handle new operators than
to handle constant factors. So we continue to use our operators Σ and ∆.

3.5 Duplication

The factor 22k − 1 in the hyperbolic tangent expansion (3.6) leads to the duplication formula (3.7) for
the hyperbolic cotangent

2 coth x = coth
x
2

+ tanh
x
2

(3.7)

and thus to the duplication formula (3.8) for the discrete calculus.
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Even Duplication

2 Σ
2x

= Σ +
1
4∆ Duplication Formula (3.8)

Where Σ
2x

is the even sum i.e. the sum over all even indices.

Σ
2x

=
∣∣∣

x/2
Σ

∣∣∣
2x

=
1
2
↑

2 + 1
↑

2
− 1

=
1
2

coth ∂ even duplication (3.9)

Σ
2x

=
1
2

coth ∂ =

∞∑
k=0

B2k 22k−1

(2k)!
∂

2k−1 ≈

≈
1
2
∂
−1 +

1
6
∂ −

1
90
∂

3 +
1

945
∂

5 −
1

9450
∂

7 + · · ·

Odd Duplication

The odd sum Σ
2x+1

over all odd indices and the even sum Σ
2x

together must be equal to the sum over all

indices.

Σ = Σ
2x

+ Σ
2x+1

2 Σ
2x+1

= Σ −
1
4∆ (3.10)

Σ
2x+1

=
↑

↑
2
− 1

=
1

2 sinh ∂
odd duplication (3.11)

Σ
2x+1

=
1

2 sinh ∂
=

∞∑
k=0

B2k (1 − 22k−1)
(2k)!

∂
2k−1 ≈

≈
1
2
∂
−1 −

1
12
∂ +

7
720

∂
3 −

31
30240

∂
5 +

127
1209600

∂
7 − · · ·
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Inverse Duplication

We obtain inverse duplication operators simply by inverting the fractions in (3.9) and (3.11).

∆
2x

= 2
↑

2
− 1

↑
2 + 1

= 2 tanh ∂ even duplication (3.12)

∆
2x

= 2 tanh ∂ = 2
∞∑

k=1

B2k 22k
(
22k − 1

)
(2k)!

∂
2k−1 ≈

≈ 2∂ −
2
3
∂

3 +
4

15
∂

5 −
34

315
∂

7 +
124

2835
∂

9 −
2764

155925
∂

11 + · · ·

In contrast to ∆
2x

the odd duplicate difference ∆
2x+1

=
↑

2
−1
↑

= ↑ − ↓ has a very simple representation

∆
2x+1

f (x) = f (x+1)− f (x−1). In chapter 3.15 we take advantage of this fact when handling numerical

data.

∆
2x+1

= ↑ −↓ = 2 sinh ∂ odd duplication (3.13)

∆
2x+1

= 2 sinh ∂ = 2
∞∑

k=0

1
(2k + 1)!

∂
2k+1 ≈

≈ 2∂ +
1
3
∂

3 +
1

60
∂

5 +
1

2520
∂

7 +
1

181440
∂

9 +
1

19958400
∂

11 + · · ·

Duplication in detail

The connection between even/odd and total/alternating sum can intuitively be seen with the following
picture of summation coefficients (+ represents +1, − represents −1 and a space represents 0):

Σ = + + + + + + + + + + + + · · · = Σ
2x

+ Σ
2x+1

total

1
4∆ = + − + − + − + − + − + − · · · = Σ

2x
− Σ

2x+1
alternating

Σ
2x

= + + + + + + · · · = 1
2Σ + 1

2
1
4∆ even

Σ
2x+1

= + + + + + + · · · = 1
2Σ −

1
2

1
4∆ odd
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There are special duplication formulae for constant ∆c(x) = 0 and anti-constant functions Σa(x) = 0.

Σ
2x

c(x) = Σ
2x+1

c(x) =
1
2Σc(x) ∆c(x) = 0 constant c(x)

Σ
2x

a(x) = − Σ
2x+1

a(x) =
1
8∆a(x) Σa(x) = 0 anti-constant a(x)

It shall be emphasized that all sums have a duplication formula. You will find them for trigonometric
and hyperbolic functions, for ln Γ(x), Ψ(n)(x) and ζ(x).

We also observed that even Σ
2x

and ∆
2x

show the half border behavior of natural discrete calculus whereas

Σ
2x+1

and ∆
2x+1

are equal to their corresponding classical sum or difference. This fact will be generalized

in the next chapter 3.6 about scaling with arbitrary factors n , 2.

The duplication formula (3.8) together with the duality relation (2.6) results in following formula for
the summation of alternating functions:

Σ(−1)x f (x) =
1
4

(−1)x∆ f (x) = (−1)x

(
2 Σ

2x
−Σ

)
f (x) (3.14)

Example 4:

Σx5 =
1
2

coth ∂
2

x5 =
1
6

x6 +
5
12

x4 −
1
12

x2 +
1

252

Σ
2x

x5 =
1
2

coth ∂ x5 =
1

12
x6 +

5
6

x4 −
2
3

x2 +
8
63

Σ
2x+1

x5 =
1

2 sinh ∂
x5 =

1
12

x6 −
5
12

x4 +
7
12

x2 −
31
252

∆x5 = 2 tanh ∂
2

x5 = 5x4 − 5x2 + 1

∆
2x

x5 = 2 tanh ∂ x5 = 10x4 − 40x2 + 32

∆
2x+1

x5 = 2 sinh ∂ x5 = 10x4 + 20x2 + 2 = (x + 1)5 − (x − 1)5

3.6 Scaling

A difficult problem in discrete calculus are scaled functions Σ f (ax) or sums Σ
nx

f (x) with a step size

n different from one. In the previous chapter 3.5 we discussed the case n = 2 of duplication which
already showed a lot of remarkable features.
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Quadruplication

Before we discuss the scaling Σ
nx

with arbitrary factors n, let us have a closer look to the interesting case

n = 4. To split Σ
4x

=
∣∣∣
x/4 Σ

∣∣∣
4x

= 1
2 (↑4 +1) / (↑4

−1) into terms we use the partial fraction decomposition.

i :=
√
−1 shall denote the imaginary unit.

Σ
4x

=
1
2
↑

4 + 1
↑

4
− 1

=
1
2

+
1
4

1
↑ − 1

+
i

4
1
↑ − i

−
1
4

1
↑ + 1

−
i

4
1
↑ + i

=

=

(
1
8

+
1
4

1
↑ − 1

)
+

(
1
8

+
i

4
1
↑ − i

)
+

(
1
8
−

1
4

1
↑ + 1

)
+

(
1
8
−
i

4
1
↑ + i

)
=

=
1
8
↑ + 1
↑ − 1

+
1
8
↑ + i

↑ − i
+

1
8
↑ − 1
↑ + 1

+
1
8
↑ − i

↑ + i

According to the integer scaling Σ
4x

we derive the fractional scaling Σ
4x+k

for k = 1, 2, 3.

Σ
4x

=
1
2
↑

4 + 1
↑

4
− 1

=
1
8
↑ + 1
↑ − 1

+
1
8
↑ + i

↑ − i
+

1
8
↑ − 1
↑ + 1

+
1
8
↑ − i

↑ + i

Σ
4x+1

=
↑

↑
4
− 1

=
1
8
↑ + 1
↑ − 1

+
i

8
↑ + i

↑ − i
−

1
8
↑ − 1
↑ + 1

−
i

8
↑ − i

↑ + i

Σ
4x+2

=
↑

2

↑
4
− 1

=
1
8
↑ + 1
↑ − 1

−
1
8
↑ + i

↑ − i
+

1
8
↑ − 1
↑ + 1

−
1
8
↑ − i

↑ + i

Σ
4x+3

=
↑

3

↑
4
− 1

=
1
8
↑ + 1
↑ − 1

−
i

8
↑ + i

↑ − i
−

1
8
↑ − 1
↑ + 1

+
i

8
↑ − i

↑ + i

These results for n = 4 are rather disturbing but show an interesting general pattern.

Scaling with arbitrary factors

With the duplication in chapter 3.5 and the quadruplication in chapter 3.6 we are now prepared to
formulate the scaling Σ

nx+k
with arbitrary factors n i.e. the sum over all indices i ≡ k (mod n).

Σ
nx+k

=
↑

k

↑
n
− 1

+
1
21δk=0 Σ

nx
=

1
2
·
↑

n + 1
↑

n
− 1

=
∣∣∣

x/n
Σ

∣∣∣
nx

(3.15)



3 SUMMATION AND DIFFERENTIATION ALGORITHMS 17

∆
nx+k

=


2
↑

n
− 1

↑
n + 1

for k = 0

↑
n−k
−↓

k
for k , 0

(3.16)

Σ
nx+k

=


1
2

coth
n∂
2

ek∂

2 sinh n∂
2

∆
nx+k

=


2 tanh

n∂
2

for k = 0

2 e−k∂ sinh
n∂
2

for k , 0
(3.17)

This reflects the fact that Σ
nx

and ∆
nx

with k = 0 show the half border behavior of natural discrete calculus

whereas Σ
nx+k

and ∆
nx+k

with k , 0 are equal to their corresponding classical sum or difference. Also for

k , 0 there is ∆
nx+k

f (x) = f (x + n − k) − f (x − k). Now we define the circular sums:

Σ
k/n

:=
1
2
·
↑ + 1e2πik/n

↑ − 1e2πik/n =
1
2

coth
(
∂

2
−
πik

n

)
circular sum (3.18)

So the discrete Fourier transform of the circular sum operators equals the scaled sums Σ
nx+k

, ideally

suitable for applying the FFT (Fast Fourier Transform).

Σ
nx+k

=
1
n

n−1∑
j=0

e2πi jk/n · Σ
j/n

Σ
nx

=
1
n

n−1∑
j=0

Σ
j/n

(3.19)

3.7 Operators in Product Representation

In chapter 4.36 of [NI10] we find product representations for cosh x and sinh x
x .

ln
sinh ∂

2
∂
2

= ln
∞∏

k=1

(
1 +

∂2

(2k)2π2

)
=

1
2

∞∑
k=1

B2k

(2k)! k
∂

2k (3.20)

ln cosh ∂
2

= ln
∞∏

k=1

(
1 +

∂2

(2k − 1)2π2

)
=

1
2

∞∑
k=1

B2k (22k − 1)
(2k)! k

∂
2k (3.21)

Together with ln sinh ∂
∂

= ln sinh(∂/2)
∂/2 + ln cosh ∂

2 we get a product representation of the summation and
discrete difference operator which may be useful for number theoretic applications.
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P = ln cosh ∂
2
− ln

sinh ∂
2

∂
2

=

∞∑
k=1

B2k (22k−1 − 1)
(2k)! k

∂
2k (3.22)

Σ = eP
∫

∆ = e−P∂

3.8 Laplace Transformation

The Laplace transformation is defined by:

L f (x) :=
∫ ∞

0
f (t) e−xt dt (3.23)

L f (ax) =
1
a

∣∣∣
x/a

(L f ) (3.24)

Lxn =
n!

xn+1 (3.25)

L(stepa(x) · f (x − a)) = e−axL f (x) a > 0 (3.26)

with stepa(x) :=

 1 for x > a

0 for x < a

The Laplace transformation is used to solve the functional equation (2.2) F(x) − F(x − 1) = 1
2 f (x) +

1
2 f (x − 1) by application of (3.26). This results in LF(x) − e−xLF(x) = 1

2L f (x) + 1
2e−xL f (x) which

can be rewritten in terms of the hyperbolic tangent function.

LF(x) =
1
2

coth
x
2
·L f (x) or LΣ =

1
2

coth
x
2
·L (3.27)

L f (x) = 2 tanh
x
2
·LF(x) or L∆ = 2 tanh

x
2
·L (3.28)

Example 5: For the calculation of ∆x3 by (3.28) we multiply Lx3 = 6x−4 with 2 tanh x
2 (3.6)

which gives 6x−3 − 1
2 x−1 plus terms xn≥0 which can be ignored. We then get the final result

∆x3 = 3x2 − 1
2 by an inverse Laplace transform. The ignored constant term would transform

to a Dirac delta peak and the terms xn>0 would transform to Dirac derivatives. Analogously we
calculate Σx3 = 1

4 x4 + 1
4 x2 − 1

120 by (3.27) from the Laplace transform 6x−5 + 1
2 x−3 − 1

120 x−1.
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3.9 Euler-Maclaurin Summation

As described in [Ap99], it is possible to express sums by integrals plus some correction terms. This
is called the Euler-Maclaurin summation.

b∑
k=a

f (k) =

∫ b

a
f (x) dx + f (a) +

∫ b

a
(x − bxc) f ′(x) dx = (3.29)

=

∫ b

a
f (x) dx +

1
2

( f (a) + f (b)) +

∫ b

a

(
x − bxc −

1
2

)
f ′(x) dx

Σ f (x) =

∫
f (x) dx +

∫
{x} f ′(x) dx (3.30)

Where the half fraction {x} = x − bxc − 1
2 is defined by (3.33). The Euler-Maclaurin summation is

only valid for integer interval borders a and b because the Bernoulli numbers B2k are the values of the
Bernoulli function at integer borders 0 and 1.

b∣∣∣
k=a

Σ f (k) =

∫ b

a
f (x) dx +

b∣∣∣
a

n∑
k=1

B2k

(2k)!
f (2k−1)(x) + R2n (3.31)

R2n =
1

(2n + 1)!

∫ b

a
B2n+1(x) f (2n+1)(x) dx

With the Fourier expansion (3.34) of the half fraction x and integration by parts we see the connection
between the Euler-Maclaurin summation and the Poisson summation.

Σ f (x) =

∫
f (x) dx + 2

∞∑
k=1

∫
f (x) cos(2πkx) dx (3.32)
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3.10 Half Fraction

For the Euler-Maclaurin summation we have to introduce the half fraction. This is simply the non-
integer part of the argument minus one half.

{x} = x − bxc −
1
2

(3.33)

So these half fraction values are symmetrical around zero.

−1 0 1 2 3

− 1
2

+ 1
2

��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�

�
�
��

��u u u u u

e e e e e
{bxc} = −

1
2

bxc ≤ x < bxc + 1

The half fraction has a simple Fourier series:

{x} = −
1
π

∞∑
k=1

sin(2πkx)
k

(3.34)

3.11 Products

We obtain a product rule for the natural sum and difference simply by inserting the product into the
functional equation (2.2).

∆ f · g = f ·∆g + g ·∆ f −
1
4∆

(
∆ f ·∆g

)
product difference (3.35)

The product difference 3.35 is symmetric with respect to the functions and may also be written as
f · g = Σ( f · ∆g + g · ∆ f ) − 1

4∆ f · ∆g or as Σ f · Σg = Σ( f · Σg + g · Σ f ) − 1
4 f · g.

Additionally we get the sum of a product (3.36) in the form of summation by parts. It shall be noted,
that the summation by parts is not symmetric with respect to the functions.

Σ f · g = g ·Σ f +
1
4

f ·∆g − Σ
(
∆g ·Σ f

)
summation by parts (3.36)



3 SUMMATION AND DIFFERENTIATION ALGORITHMS 21

The difference of a product can be expanded into a series of differences.

∆ f · g =

n−1∑
k=0

(
−1

4

)k (
∆

k f ·∆
k+1g + ∆

k+1 f ·∆
kg

)
+

(
−1

4

)n
∆

(
∆

n f ·∆
ng

)
(3.37)

∆ f 2 = 2 f∆ f − 1
4∆

(
∆ f

)2
= 2

n−1∑
k=0

(
−1

4

)k
∆

k f ·∆
k+1 f +

(
−1

4

)n
∆

(
∆

n f
)2 (3.38)

The difference of a product has a finite number of terms when a) there is a zero nth difference ∆n f = 0
or when b) the nth difference equals the identity operator ∆n f = f and thus produces a periodic
sequence of terms.

The case a) with a zero nth difference leads to the integer powers which are discussed in chapter 4.4
and 4.5. For products of small integer powers and arbitrary functions f (x) we find the equations:

∆x · f = f + x ·∆ f −
1
4∆

2 f (3.39)

Σx · f = x ·Σ f +
1
4

f − ΣΣ f (3.40)

3.12 Product Pattern

By inserting the product pattern (3.41) into the functional equation (2.2) we get the relation (3.42)
which allows us to calculate f (x) and F(x) for any given kernel k(x) which has a product representa-
tion.

Σk(x) · f (x) = k(x) · F(x) (3.41)
k(x + 1)

k(x)
=

2F(x) + f (x)
2F(x + 1) − f (x + 1)

(3.42)

Example 6:
k(x) k(x+1

k(x) f (x) F(x)

x! x + 1 x 1
2 x + 1

(2x)! (2x + 1) · (2x + 2) 4
3 x2 + 2x + 1

3
2
3 x2 + x + 1

2(
2x
x

)
4−x 2x+1

2x+2 1 2x + 1
2
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3.13 Multiple Summation and Differentiation

Multiple summation Σn and differentiation operators ∆n can be obtained by raising (3.2) and (3.3) to
the n’th power.

∆
n

= 2n

(
↑ − 1
↑ + 1

)n

= 2n tanhn ∂

2 Σ
n

=
1
2n

(
↑ + 1
↑ − 1

)n

=
1
2n cothn ∂

2
(3.43)

The expansion of these operators with respect to ∂ show us that Σn ≈ ∂−n =
∫ n

and ∆n ≈ ∂n.

∆
n
≈ ∂

n − n
12 ∂

n+2 +
n(5n+7)

60·4! ∂
n+4 −

n(35n2+147n+124)
504·6! ∂

n+6 +
n(175n3+1470n2+3509n+2286)

2160·8! ∂
n+8 − · · ·

Σ
n
≈ ∂

−n + n
12 ∂

2−n +
n(5n−7)

60·4! ∂
4−n +

n(35n2−147n+124)
504·6! ∂

6−n +
n(175n3−1470n2+3509n−2286)

2160·8! ∂
8−n + · · ·

(3.44)

Here we should stop and think about commutativity. Multiple differentiation ∆n is uncomplicated,
because it depends only on derivative operators ∂. But multiple summation also contains integration
operators

∫
c

= ∂−1 + c which do not commute with the derivative operator
[∫

c
, ∂

]
=

∫
c ∂ − ∂

∫
c

= c + a
when the integration

∫
c

adds an arbitrary constant c. The second constant residue a of the commutator
is due to ∂a = 0. So even if we define c = 0, there is no commutativity between integration and
the derivative operator. This commutativity situation also exists between summation and difference
operator.

So each consecutive application of a summation operator as part of Σn can add a different constant ck

with k = 1 . . . n. This results in additional terms Σn−kck for Σn which are no longer constant. So we
can have very different kinds of multiple summation operators Σn. Normally we define ck = 0 for the
iterative summation Σ ◦Σ ◦ · · · ◦Σ but our natural discrete calculus uses different constants when Σn is
represented by (3.43). A third representation of Σn is described in chapter 3.14. There the summation
constants cn are chosen to satisfy en(0) := 0 for the elementary Taylor polynomials en(x) := Σn 1.



3 SUMMATION AND DIFFERENTIATION ALGORITHMS 23

Natural Unit Sums

Natural unit sums sn(x) are defined by sn(x) = Σn 1 with the natural representation (3.43) and (3.44).

s0(x) = 1

s1(x) = x

s2(x) = 1
2 x2 + 1

6

s3(x) = 1
6 x3 + 1

4 x

s4(x) = 1
24 x4 + 1

6 x2 + 13
360

s5(x) = 1
120 x5 + 5

72 x3 + 1
16 x

s6(x) = 1
720 x6 + 1

48 x4 + 23
480 x2 + 251

30240

s7(x) = 1
5040 x7 + 7

1440 x5 + 49
2160 x3 + 1

64 x

s8(x) = 1
40320 x8 + 1

1080 x6 + 11
1440 x4 + 11

840 x2 + 3551
1814400

s9(x) = 1
362880 x9 + 1

6720 x7 + 19
9600 x5 + 409

60480 x3 + 1
256 x

We get an analytic formula for the natural unit sums by using the Laplace representation (3.27)
Σ f (x) = L−1

(
1
2 coth x

2 · L f (x)
)

of the summation operator. Applying this Laplace transformation
on the constant f (x) = 1 with L1 = 1

x and on the Taylor expansion of cothn x
2 results in:

sn(x) = Σ
n1 =

1
2nL

−1
(
cothn x

2
·L1

)
=

1
2nL

−1
(
1
x

cothn x
2

)
= (3.45)

=
1
n!

x−n +
n

12(n − 2)!
xn−2 +

n(5n − 7)
60 · 4! · (n − 4)!

xn−4 +

+
n(35n2 − 147n + 124)

504 · 6! · (n − 6)!
xn−6 +

n(175n3 − 1470n2 + 3509n − 2286)
2160 · 8! · (n − 8)!

xn−8 + · · ·
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Zero Unit Sums

Zero unit sums zn(x) are defined by zn(x) := Σzn−1(x) and z0(x) := 1 as iterative summation of 1. Note
that even the additive summation constant c = 0 allows here constant terms (e.g. 1

12 in z2(x)).

z0(x) = 1

z1(x) = x

z2(x) = 1
2 x2 + 1

12

z3(x) = 1
6 x3 + 1

6 x

z4(x) = 1
24 x4 + 1

8 x2 + 1
80

z5(x) = 1
120 x5 + 1

18 x3 + 23
720 x

z6(x) = 1
720 x6 + 5

288 x4 + 7
240 x2 + 1

448

z7(x) = 1
5040 x7 + 1

240 x5 + 11
720 x3 + 11

1680 x

z8(x) = 1
40320 x8 + 7

8640 x6 + 19
3456 x4 + 409

60480 x2 + 1
2304

z9(x) = 1
362880 x9 + 1

7560 x7 + 43
28800 x5 + 359

90720 x3 + 563
403200 x

3.14 Taylor Expansion and Elementary Polynomials

The Taylor expansion is used in infinitesimal calculus to split a function f (x) into a series
∑

fk ek(x)
of elementary polynomials ek(x) = 1

k! xk with coefficients fk =
∣∣∣
x=0

dk

dxk f (x). Terms with order < k
vanish because of the repeated derivatives and terms with order > k vanish because of ek(0) = δk=0. In
discrete calculus we are also able to construct such elementary polynomials by repeated summation
using the following definition:

en(x) := Σen−1(x) e0 := 1 en(0) := δn=0 (3.46)

The undefined constant summation offsets are chosen to satisfy en(0) = δn=0. All elementary polyno-
mials evaluate to zero at the expansion point except e0 = 1. So we get following representation of the
elementary polynomials which are even/odd functions for even/odd n.
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e0(x) = 1

e1(x) = x

e2(x) = 1
2 x2

e3(x) = 1
6 x3 + 1

12 x

e4(x) = 1
24 x4 + 1

12 x2

e5(x) = 1
120 x5 + 1

24 x3 + 1
80 x

e6(x) = 1
720 x6 + 1

72 x4 + 23
1440 x2

e7(x) = 1
5040 x7 + 1

288 x5 + 7
720 x3 + 1

448 x

e8(x) = 1
40320 x8 + 1

1440 x6 + 11
2880 x4 + 11

3360 x2

e9(x) = 1
362880 x9 + 1

8640 x7 + 19
17280 x5 + 409

181440 x3 + 1
2304 x

From equation (3.45) in chapter 3.13 we find following analytic formula without any proof. The
prefix x/n∂ cancels the constant term.

en(x) =
x
n
∂ sn(x) =

x
n
∂Σ

n1 = conjecture (3.47)

=
1
n!

x−n +
1

12(n − 3)!
xn−2 +

5n − 7
60 · 4! · (n − 5)!

xn−4 +

+
35n2 − 147n + 124
504 · 6! · (n − 6)!

xn−7 +
175n3 − 1470n2 + 3509n − 2286

2160 · 8! · (n − 9)!
xn−8 + · · ·

Example 7: The Taylor expansion of f (x) = 11x5 + 13x4 + 17x3 + 19x2 + 23x + 43 is f0...5 =

[43, 51
2 ,−14,−228, 312, 1320]. Because of the even/odd feature of the elementary polynomials

only the first c0 = 43, the last c5 = 1320
5! = 11 and the last but one c4 = 312

4! = 13 classical
polynomial coefficients are directly visible. The great benefit of this Taylor expansion into ele-
mentary polynomials is the calculation of the discrete difference and especially the sum simply
by shifting the coefficients. So the discrete difference is f0...4 = [ 51

2 ,−14,−228, 312, 1320] or
∆ f (x) = 55x4 + 52x3 − 4x2 + 12x + 51

2 . The sum is f1...6 = [43, 51
2 ,−14,−228, 312, 1320] or

Σ f (x) = 11
6 x6 + 13

5 x5 + 53
6 x4 + 32

3 x3 + 89
6 x2 + 686

15 x.

3.15 Local Approximation

Numerical data in form of a series or a vector fx = f (x) is only accessible at integer indices x ∈ N. So
a local approximation of order n around x shall depend only on values fk with k near x or |k − x| ≤ n,
i.e. only small powers −n · · · n of the increment operator ↑k−x can be used.
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We are interested in a local approximation of the summation and discrete difference operator. So we
have to express them in terms of the increment operator. This can be done by using the very simple
and finite representation of 2 sinh(n∂) = en∂ − e−n∂ = ↑n

− ↓
n and 2 cosh(n∂) = en∂ + e−n∂ = ↑n + ↓n as

increments.

2 cosh(n∂) = ↑
n

+ ↓
n

2 sinh(n∂) = ↑
n
− ↓

n
≡ f (x + n) + f (x − n)

≡ f (x + n) − f (x − n)

(3.48)

A short look on the series expansions (3.4) in terms of the derivative operator shows, that sinh, the sum
and difference operator are odd functions whereas cosh is even. Furthermore only the sum operator
contains a term ∂−1. Therefore the sum can not be expanded into sinh and cosh. But it is possible
to expand the difference operator in a series of sinh(n∂) terms. We may use a coefficient comparison
between the expansion (3.44) of ∆n with respect to ∂ and sinh(n∂) terms. But there is a simpler way
to obtain an expansion by using half integer steps sinh n∂

2 = ↑n/2
− ↓

n/2. In the following we define
2c := cosh ∂

2 = ↑1/2 + ↓1/2 and 2s := sinh ∂
2 = ↑1/2

− ↓
1/2. The expansions of ∆n in terms of sinh(k∂)

up to order k ≤ m is denoted by
m
≈.

Odd Difference Powers

∆
n

=

(
2 tanh ∂

2

)n

= 2n sn

cn = 2nc
sn(

1 + s2) n+1
2

≈ odd n

≈ 2ncsn

(
1 −

n + 1
2

s2 +
(n + 1)(n + 3)

2 · 4
s4 −

(n + 1)(n + 3)(n + 5)
2 · 4 · 6

s6 + · · ·

)
n+1

2
≈ 2ncsn =

1
2

(
↑

1
2 +↓

1
2

) (
↑

1
2 −↓

1
2

)n
=

1
2

(
↑ −↓

) n−1∑
k=0

(−1)k

(
n − 1

k

)
↑

k− n−1
2
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∆
1
≈ 1

2 (↑ − ↓) i.e. ∆ f (x)
1
≈ 1

2 f (x + 1) − 1
2 f (x − 1)

2
≈ 3

4 (↑ − ↓) − 1
8

(
↑

2
− ↓

2
)

3
≈ 29

32 (↑ − ↓) − 1
4

(
↑

2
− ↓

2
)

+ 1
32

(
↑

3
− ↓

3
)

4
≈ 65

64 (↑ − ↓) − 23
64

(
↑

2
− ↓

2
)

+ 5
64

(
↑

3
− ↓

3
)
− 1

128

(
↑

4
− ↓

4
)

∆
3 2
≈ −(↑ − ↓) + 1

2

(
↑

2
− ↓

2
)

3
≈ −9

4 (↑ − ↓) + 3
2

(
↑

2
− ↓

2
)
− 1

4

(
↑

3
− ↓

3
)

∆
5 3
≈ 5

2 (↑ − ↓) − 2
(
↑

2
− ↓

2
)

+ 1
2

(
↑

3
− ↓

3
)

∆
7 4
≈ −7(↑ − ↓) + 7

(
↑

2
− ↓

2
)
− 3

(
↑

3
− ↓

3
)

+ 1
2

(
↑

4
− ↓

4
)

Even Difference Powers

∆
n

=

(
2 tanh ∂

2

)n

= 2n sn

cn = 2n sn(
1 + s2) n

2
≈ even n

≈ 2nsn

(
1 −

n
2

s2 +
n(n + 2)

2 · 4
s4 −

n(n + 2)(n + 4)
2 · 4 · 6

s6 +
n(n + 2)(n + 4)(n + 6)

2 · 4 · 6 · 8
s8 − · · ·

)
n
2
≈ 2nsn =

(
↑

1
2 −↓

1
2

)n
=

n∑
k=0

(−1)k

(
n
k

)
↑

k− n
2

∆
2 1
≈ −2·1 + (↑ + ↓) i.e. ∆

2 f (x)
1
≈ f (x − 1) − 2 f (x) + f (x + 1)

2
≈ − 7

2 ·1 + 2(↑ + ↓) − 1
4

(
↑

2 + ↓2
)

3
≈ − 19

4 ·1 + 47
16 (↑ + ↓) − 5

8

(
↑

2 + ↓2
)

+ 1
16

(
↑

3 + ↓3
)

∆
4 2
≈ 6·1 − 4(↑ + ↓) +

(
↑

2 + ↓2
)

∆
6 3
≈ −20·1 + 15(↑ + ↓) − 6

(
↑

2 + ↓2
)

+
(
↑

3 + ↓3
)
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3.16 Periodic Numerical Data

The discrete difference and sum of periodic numerical data fx with integer 0 ≤ x < n and period n or
fx+n = fx can be obtained using the Fourier transform f̃x = F fx.

f̃x = F fx =
1
n

n−1∑
k=0

fk · e−2πikx/n

fx =F
−1 f̃x =

n−1∑
k=0

f̃k · e2πikx/n

With the discrete difference and sum of the exponential function (4.1) as ∆meicx = 2mim tanm c
2eicx

and Σeicx = −1
2i cot c

2eicx we get the equations:

∆
m f (x) = 2mim

n−1∑
k=0

f̃k tanm kπ
n e2πikx/n = 2mim

F
−1 (

tanm kπ
n · f̃k

)
Σ f (x) = −

1
2
i

n−1∑
k=0

f̃k cot kπ
n e2πikx/n = −

1
2
iF

−1 (
cot kπ

n · f̃k

)
There are some important remarks: Both equations are convolutions of fk with F −1 tan kπ

n respectively
F
−1 cot kπ

n . Further the difference of the constant is zero because f̃0 is ignored due to tan 0 = 0. The
same holds for the zero sum of f̃n/2. Finally the term f̃n/2 in the difference formula has to be handled
separately because of the pole tan π

2 . Simply set the frequency f̃n/2 = 0 when applying the difference
formula and add f̃n/2∆eiπx = f̃n/2∆(−1)x = 4x(−1)x f̃n/2 to the result. The same holds for the frequency
f̃0 in the sum formula with the additional term 4x f̃0.

4 Special Functions

In this chapter we provide sum and discrete difference formulae for elementary and some special
functions. A few of these formulae were found by implementing an experimental symbolic relation
generator under Sympy [Sy] including subroutines for symbolic discrete differentiation and summa-
tion.

4.1 Exponential Function

The functional equation (2.2) with x ± 1
2 arguments shows that the exponential function ecx is propor-

tional to it’s sum Σecx := fc · ecx. The functional equation can be simplified to fc · (ec/2 − e−c/2) =
c
2 (e1/2 + ec/2) or fc = 1

2 coth c
2 .
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∆ecx = 2 tanh
c
2
· ecx Σecx =

1
2

coth
c
2
· ecx

∆ax = 2
a − 1
a + 1

· ax Σax =
1
2

a + 1
a − 1

· ax

∆abx+c = 2
ab − 1
ab + 1

· abx+c Σabx+c =
1
2

ab + 1
ab − 1

· abx+c

(4.1)

We see that 3x is equal to it’s own sum because of coth ln 3
2 = 2. So 3x is the discrete version of the

natural exponential function and 3 is the discrete e ≈ 2.71828. 1x is constant because of ∆1x = 0 and
(−1)x is anti-constant because of Σ(−1)x = 0.

∆1x = 0 Σ1x = x

∆(−1)x = 4x · (−1)x Σ(−1)x = 0

∆3x = 3x Σ3x = 3x

∆3−x = −3−x Σ3−x = −3−x

(4.2)

The proportional factor will be the imaginary unit ±i for c = ln
(

3
5 ±

4
5i

)
with

∣∣∣3
5 ±

4
5i

∣∣∣ = 1 and(
3
5 ±

4
5i

)−1
= 3

5 ∓
4
5i. This is useful for trigonometric functions.

∆

(
3
5
±

4
5
i

)x

= ±i

(
3
5
±

4
5
i

)x

Σ

(
3
5
±

4
5
i

)x

= ∓i

(
3
5
±

4
5
i

)x

(4.3)

4.2 Hyperbolic Functions

With the exponential sum (4.1) we formulate the hyperbolic sums. The proportional factor will be
one for c = ln 3 ≈ 1.09861 22886 68109 69140.

∆ sinh(cx) = 2 tanh
c
2
· cosh(cx) Σ sinh(cx) =

1
2

coth
c
2
· cosh(cx)

∆ cosh(cx) = 2 tanh
c
2
· sinh(cx) Σ cosh(cx) =

1
2

coth
c
2
· sinh(cx)

(4.4)
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4.3 Trigonometric Functions

The imaginary argument in (4.3) introduces a sign change for trigonometric sums. It is remark-
able that the trigonometric sums are proportional to the integrals. The sum for c = 1 has approx-
imately 91.52% the size of the integral. The proportional factor will be one for c = 2 arctan 1

2 ≈

0.92729 52180 01612 23243.

∆ sin(cx) = 2 tan
c
2
· cos(cx) Σ sin(cx) = −

1
2

cot
c
2
· cos(cx)

∆ cos(cx) = −2 tan
c
2
· sin(cx) Σ cos(cx) =

1
2

cot
c
2
· sin(cx)

(4.5)

The degenerated cases for c = nπ represent constant and anti-constant functions which must be
handled separately as described in chapters 2.3, 2.10 and 2.11. So we get ∆ cos((2n + 1)πx) = 4x ·
cos((2n+1)πx), ∆ sin((2n+1)πx) = 4x ·sin((2n+1)πx), Σ cos(2nπx) = x ·cos(2nπx) and Σ sin(2nπx) =

x · sin(2nπx).

4.4 Differences of Integer Powers

With the chapter 3.8 about Laplace transformations we are prepared to solve the general case ∆xn by
using (3.28), (3.6) andLxn = n! x−n−1. The Laplace transform is then 4n!

∑∞
k=1

B2k
(2k)! (2

2k−1)x2k−n−2. For
the inverse Laplace transform only the terms k ≤ n+1

2 are relevant. All other terms would transform to
Dirac derivatives. The result is then ∆xn = 4n!

∑kmax
k=1 B2k/(2k)! (22k − 1) xn+1−2k/(n + 1 − 2k)!.

∆1 = ∆x0 = 0

∆x = ∆x1 = 1

∆x2 = 2x

∆x3 = 3x2 − 1
2

∆x4 = 4x3 − 2x

∆x5 = 5x4 − 5x2 + 1

∆x6 = 6x5 − 10x3 + 6x

∆x7 = 7x6 − 35
2 x4 + 21x2 − 17

4

∆x8 = 8x7 − 28x5 + 56x3 − 34x

∆x9 = 9x8 − 42x6 + 126x4 − 153x2 + 31
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∆xn = 4
xn+1

n + 1

b n+1
2 c∑

k=1

B2k

(
22k − 1

) (n + 1
2k

)
x−2k (4.6)

4.5 Sums of Integer Powers

Analogously we calculate the general case Σxn by using (3.27), (3.5) and Lxn = n! x−n−1.
The Laplace transform is n!

∑∞
k=0 B2k/(2k)!x2k−n−2 with k ≤ n+1

2 .
The result is Σxn = n!

∑kmax
k=0 B2k/(2k)!xn+1−2k/(n + 1 − 2k)!.

Σ1 = Σx0 = x

Σx = Σx1 = 1
2 x2 + 1

12

Σx2 = 1
3 x3 + 1

6 x

Σx3 = 1
4 x4 + 1

4 x2 − 1
120

Σx4 = 1
5 x5 + 1

3 x3 − 1
30 x

Σx5 = 1
6 x6 + 5

12 x4 − 1
12 x2 + 1

252

Σx6 = 1
7 x7 + 1

2 x5 − 1
6 x3 + 1

42 x

Σx7 = 1
8 x8 + 7

12 x6 − 7
24 x4 + 1

12 x2 − 1
240

Σx8 = 1
9 x9 + 2

3 x7 − 7
15 x5 + 2

9 x3 − 1
30 x

Σxn =
xn+1

n + 1

b n+1
2 c∑

k=0

B2k

(
n + 1

2k

)
x−2k =

Bn+1(x)
n + 1

+
xn

2
(4.7)

4.6 Rational Functions

The digamma function Ψ(x) = Γ′(x)/Γ(x) = ∂ ln Γ(x) is defined as the logarithmic derivative of the
gamma function Γ(x) = (x − 1)! or factorial. The logarithmic derivative of the recurrence relation
Γ(x + 1) = xΓ(x) results in Ψ(x + 1)−Ψ(x) = 1

x . With the duplication formula (3.8) we get the discrete
difference.
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Σ
1
x

= Ψ(x) +
1
2x

= ln |x| −
∞∑

k=1

B2k

2k x2k (4.8)

∆
1
x

= 2Ψ

( x
2

)
− 2Ψ

(
x + 1

2

)
+

2
x

= 4
∞∑

k=1

B2k

(
1 − 22k

)
2k x2k (4.9)

The Euler-Maclaurin sum of the digamma function Ψ(x) = ln x − 1
2x +

∑∞
k=1

B2k
2k x2k can be found as

equation 5.11.2 in [NI10]. We recognize the sum (4.8) according to expansion (3.4) 1
2 coth ∂

2 ≈ ∂
−1 +

1
12∂ −

1
720∂

3 + · · · as the integral
∫

1
x = ln x plus some Euler-Maclaurin correction terms. The sum of

inverse numbers is sometimes called „harmonic number“ Hn =
∑n

k=1
1
k = γ + Ψ(n + 1) which can be

expressed using the digamma function.

The n’th derivative Ψ(n)(x) of the digamma function is called polygamma function. So we get the
generalized recurrence relation Ψ(n)(x + 1) − Ψ(n)(x) = (−1)n n! x−n−1 and hence expressions for sum
and difference of x−n with n > 1.

Σ
1
xn =

(−1)n−1

(n − 1)!
Ψ(n−1)(x) +

1
2xn

n>1
=

x−n+1

−n + 1

∞∑
k=0

B2k

(
2k + n − 2

2k

)
x−2k (4.10)

∆
1
xn = 4

(−1)n−1

(n − 1)! 2n

(
Ψ(n−1)

( x
2

)
− Ψ(n−1)

(
x + 1

2

))
+

2
xn = (4.11)

n>1
= 4

x−n+1

−n + 1

∞∑
k=1

B2k

(
2k + n − 2

2k

) (
22k − 1

)
x−2k

With the equations above we are able to handle rational functions which have a partial fraction de-
composition of the form

∑
polynomial/(ax + b)n. The recurrence relation Ψ(n)(x + b) = Ψ(n)(x) +

(−1)n n!
∑b−1

k=0(x + k)−n−1 of the polygamma function can used to expand the sums
∑

(ax + b)−n for
integer b.

Σ
1

(x − b)n =
(−1)n−1

(n − 1)!
Ψ(n−1)(x) −

b−1∑
k=1

1
(x − k)n −

1
2(x − b)n for b ∈ N (4.12)

Σ
1

(x + b)n =
(−1)n−1

(n − 1)!
Ψ(n−1)(x) +

b−1∑
k=0

1
(x + k)n +

1
2(x + b)n for b ∈ N (4.13)
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Example 8:

Σ
1

(x − 3)2 = −Ψ1(x) −
1

(x − 1)2 −
1

(x − 2)2 −
1

2(x − 3)2

Σ
1

(x + 3)2 = −Ψ1(x) +
1
x2 +

1
(x + 1)2 +

1
(x + 2)2 +

1
2(x + 3)2

Σ
1

(x − 2)5 =
1
24

Ψ4(x) −
1

(x − 1)5 −
1

2(x − 2)5

Σ
1

(x + 2)5 =
1
24

Ψ4(x) +
1
x5 +

1
(x + 1)5 +

1
2(x + 2)5

The difference between the shifted equations (4.12) and (4.13) above can be used to get rid of the
polygamma term in the sum.

Σ

(
1

(x + b)n −
1

(x + c)n

)
=

1
2(x + b)n +

c−1∑
k=b+1

1
(x + k)n +

1
2(x + c)n for b, c ∈ N (4.14)

Example 9:

Σ
1

1 − x2 = Σ
(

1/2
x + 1

−
1/2

x − 1

)
=

1/4
x − 1

+
1/2

x
+

1/4
x + 1

=
2x2 − 1

2x
(
x2 − 1

)
Σ

1
x(x ± 1)

= Σ
(
±

1
x
∓

1
x ± 1

)
=
−1/2

x
+
−1/2
x ± 1

=
−2x ∓ 1
2x2 ± 2x

Σ
−2

x2 + 12x + 35
= Σ

(
1

x + 7
−

1
x + 5

)
=

1/2
x + 5

+
1

x + 6
+

1/2
x + 7

= 2x2+24x+71
x3+18x2+107x+210

Σ
−2x − 1

x4 + 2x3 + x2 = Σ
(

1
(x + 1)2 −

1
x2

)
=

1/2
x2 +

1/2
(x + 1)2 =

2x2 + 2x + 1
2x4 + 4x3 + 2x2

Example 10: The Catalan number is G :=
∑∞

k=0(−1)k (2k + 1)−2. We use the duality rela-

tion (2.6) and (4.11) to get Σ(−1)k (2x + 1)−2 = 1
4 (−1)x∆(2x + 1)−2 = 1

16 (−1)x∆
(
x + 1

2

)−2
=

−1
16 (−1)x

(
Ψ(1)

(
2x+1

4

)
− Ψ(1)

(
2x+3

4

))
+ 1

8 (−1)x
(
x + 1

2

)−2
. The sum vanishes for x → ∞. With

the half border value 1
2 (2 · 0 + 1)−2 = 1

2 at x = 0 the Catalan number is G = 1
2 −

∣∣∣
0 Σ · · · =

1
16

(
Ψ(1)

(
1
4

)
− Ψ(1)

(
3
4

))
. By using Ψ(1)

(
1
4

)
+ Ψ(1)

(
3
4

)
= 2π2 we finally get G = 1

8

(
Ψ(1)

(
1
4

)
− π2

)
≈

0.91596 55941 77219 01505.
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4.7 Logarithms

The logarithmic sum can easily be deduced from the logarithm of the gamma function recurrence
relation Γ(x + 1) = xΓ(x). According to the derivation of rational functions in chapter 4.6 we get
∆0 ln Γ(x) = ln Γ(x + 1) − ln Γ(x) = ln x or as a classical sum Σ0 ln x = ln Γ(x). The natural sum
has due to (2.8) the additional term 1

2 ln x and thus corresponds to the Euler-Maclaurin sum ln Γx =

x ln x − x − 1
2 ln x + 1

2 ln(2π) +
∑∞

k=1
B2k

2k(2k−1) x2k−1 which can be found as equation 5.11.1 in [NI10].

Σ ln x = ln Γ(x) +
1
2

ln x =

∫
ln x︷    ︸︸    ︷

x ln x − x +
1
2

ln(2π) +

∞∑
k=1

B2k

2k(2k − 1) x2k−1 (4.15)

Σ ln(ax + b) = ln
(
axΓ

(
x +

b
a

))
+

1
2

ln(ax + b)

With the duplication formula (3.8) we get the discrete difference of the logarithm as:

∆ ln x = 2 ln
x
2

+ 4 ln Γ

( x
2

)
− 4 ln Γ

(
x + 1

2

)
≈ 4

∞∑
k=1

B2k

(
22k − 1

)
2k(2k − 1) x2k−1 (4.16)

∆ ln(ax) = ∆ ln a + ∆ ln x = ∆ ln x

4.8 Polygamma Function

A recurrence relation for the polygamma sum ΣΨ(n)(x) can be obtained from the product formula
(3.40) Σx f = xΣ f + 1

4 f −Σ2 f by a double summation of f (x) = xn+1. The case n = 0 for the digamma
function Ψ(x) must be handled separately.

ΣΨ(x) =

(
x −

1
2

)
· (Ψ(x) − 1) (4.17)

ΣΨ(n)(x) =

(
x −

1
2

)
Ψ(n)(x) + nΨ(n−1)(x) (4.18)

The difference is again calculated by the duplication formula (3.8).

∆Ψ(x) = Ψ

(
x + 1

2

)
− Ψ

( x
2

)
(4.19)

∆Ψ(n)(x) =
1
2n

(
Ψ(n)

(
x + 1

2

)
− Ψ(n)

( x
2

))
(4.20)
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4.9 Factorials and Gamma Function

The factorial and the equivalent gamma function are not suited for discrete differentiation and sum-
mation, because they are defined as products. Hence their logarithm can be represented as a sum. We
already saw this in chapters 4.6 and 4.7 about rational functions and logarithms.

Σx · x! =

( x
2

+ 1
)
· x! (4.21)

Σ
x − 1

x!
= −

x + 1
2 x!

(4.22)

It is possible to obtain the summation formulae for rising and falling factorials described in [GKP95].
Also these equations are not really trivial.

Σxn =
1

n + 1
xn+1 +

1
2

xn =
2x − n + 1
2(n + 1)

xn (4.23)

Σxn =
1

n + 1
(x − 1)n+1 +

1
2

xn =
2x + n − 1
2(n + 1)

xn (4.24)

The rather complicated formula for the gamma sum can be found in [WP1].

ΣΓ(x) =

(
(−1)x+1<Γ(1 − x,−1)

e
+

1
2

)
Γ(x) (4.25)

4.10 Binomials

Like the factorials x! before, the binomials
(

n
k

)
are not really suited for discrete differentiation and

summation. There are two different cases
(

n
x

)
and

(
x
k

)
with either x = k or x = n as free summation

variable.

sum over k

∆

(
n
x

)
=

(
2 −

4x
n

) (
n
x

)
(4.26)

Σ
(
x −

n
2

) (n
x

)
= (x − n)

(
n
x

)
(4.27)
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sum over n

Σ

(
x
k

)
=

2x + 1 − k
2(k + 1)

(
x
k

)
(4.28)

Σ
1
x

(
x
k

)
=

1
k

(
x
k

)
−

1
2x

(
x
k

)
(4.29)

Σx
(
x
k

)
=
−k2x + 2kx2 + kx + 2k + 2x2

2(k + 1)(k + 2)

(
x
k

)
(4.30)

Many other relations including binomials can be experimentally found. These relations are of minor
interest.

Σ

(
2x
x

)
4−x = 4−x

(
2x
x

)
4x + 1

2
(4.31)

Σ
2x + 1

1

(
2x
x

)
4−x = 4−x

(
2x
x

)
2x + 1

1
·

4x + 3
2 · 3

(4.32)

Σ
2x + 1

1
·

2x + 3
3

(
2x
x

)
4−x = 4−x

(
2x
x

)
2x + 1

1
·

2x + 3
3
·

4x + 5
2 · 5

(4.33)

4.11 Complex Powers of x

With (3.27) and Lx−z = Γ(1 − z)xz−1 we get Σx−z = x−z
(

x
1−z −

z
12z +

z(z+1)(z+2)
720x3 −

z(z+1)(z+2)(z+3)(z+4)
30240x5 + · · ·

)
which can be simplified by

∏n−1
k=0(z + k) = Γ(z + n)/Γ(z).

Σx−z =
x1−z

1 − z

∞∑
k=0

B2k

(2k)!
(z + 2k − 2)!

(z − 2)!
x−2k (4.34)

∆x−z = −z x−z−1 4
∞∑

k=1

B2k

(
22k − 1

)
(2k)!

(z + 2k − 2)!
z!

x−2k+2 (4.35)

We recognize the final result as the well known Euler-Maclaurin expansion of the Riemann ζ function
[Ri59, Ed74].
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4.12 Miscellaneous Functions

For the square root we have no closed solution. In the expansions below we define the shortcut t := 1
4x .

Σ
√

x = 2x3/2
∞∑

k=0

B2k (4k)!
(2k)!2 (1 − 4k) (3 − 4k)

(4x)−2k ≈ (4.36)

≈ 2
3 x3/2

(
1 + t2 − 1

5 t4 + 2
3 t6 − 33

5 t8 + 130t10 − 446386
105 t12 + · · ·

)
Σ

1
√

x
= 2

√
x
∞∑

k=0

B2k (4k)!
(2k)!2 (1 − 4k)

(4x)−2k ≈ (4.37)

≈ 2
√

x
(
1 − 1

3 t2 + 1
3 t4 − 2t6 + 143

5 t8 − 2210
3 t10 + 446386

15 t12 − · · ·
)

4.13 Trigonometric Products

The following trigonometric products can either be calculated by simply using the corresponding
linearized trigonometric forms or directly by using the product difference (3.35) and sum (3.36) for-
mulae.

∆ cos ax · cos bx = − tan
a + b

2
sin(a + b)x − tan

a − b
2

sin(a − b)x

∆ cos ax · sin bx = + tan
a + b

2
cos(a + b)x − tan

a − b
2

cos(a − b)x

∆ sin ax · cos bx = + tan
a + b

2
cos(a + b)x + tan

a − b
2

cos(a − b)x

∆ sin ax · sin bx = + tan
a + b

2
sin(a + b)x − tan

a − b
2

sin(a − b)x

∆ cos2 ax = − tan a · sin 2ax

∆ sin2 ax = + tan a · sin 2ax

∆ cos ax · sin ax = + tan a · cos 2ax
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Σ cos ax · cos bx = +
1
4

cot
a + b

2
sin(a + b)x +

1
4

cot
a − b

2
sin(a − b)x

Σ cos ax · sin bx = −
1
4

cot
a + b

2
cos(a + b)x +

1
4

cot
a − b

2
cos(a − b)x

Σ sin ax · cos bx = −
1
4

cot
a + b

2
cos(a + b)x −

1
4

cot
a − b

2
cos(a − b)x

Σ sin ax · sin bx = −
1
4

cot
a + b

2
sin(a + b)x +

1
4

cot
a − b

2
sin(a − b)x

Σ cos2 ax =
1
2

+
1
4

cot a · sin 2ax

Σ sin2 ax =
1
2
−

1
4

cot a · sin 2ax

Σ cos ax · sin ax = −
1
4

cot a · cos 2ax

References

[Ab72] Milton Abramowitz, Irene A. Stegun, Handbook of Mathematical Functions, Dover Publications,
New York, 1972

[Ap99] TomM. Apostol, An Elementary View of Euler’s Summation Formula, The American Mathematical
Monthly, Vol. 106, No. 5. (May, 1999), pp. 409-418

[Ed74] H.M. Edwards, Riemann’s Zeta Function, Academic Press, New York - London 1974

[GKP95] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete mathematics, Addison-Wesley, Reading, MA,
1995

[Go78] R.W. Gosper, Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci.
USA 75, 1978, 40–42

[Ko94] W. Koepf, Algorithms for the indefinite and definite summation, Konrad-Zuse-Zentrum Berlin (ZIB),
Preprint SC 94-33, 1994

[Jo65] Charles Jordan, Calculus of Finite Differences, Chelsea Publishing Company, 1965 (First Edition,
Budapest, 1939)

[NI10] NIST, Handbook of Mathematical Functions, National Institute of Standards and Technology and
Cambridge University Press, 2010, ISBN 978-0-521-19225-5, http://dlmf.nist.gov

[Ri59] Bernhard Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Größe, Monatsberichte
der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Nov. 1859, 671

http://dlmf.nist.gov


REFERENCES 39

[Sy] SymPy, a Python library for symbolic mathematics, http://sympy.org

[WP1] Wikipedia, Indefinite sum, http://en.wikipedia.org/Indefinite_sum.html

[Wi90] H.S. Wilf, Generatingfunctionology, Academic Press, Boston, 1990.

[Ze91] D. Zeilberger, The method of creative telescoping, J. Symbolic Computation 11, 1991, 195–204

http://sympy.org
http://en.wikipedia.org/Indefinite_sum.html

	Introduction
	Notation
	Increment Operator
	Classical Discrete Calculus
	General Operators

	Natural Discrete Calculus
	Linearity
	Translation Invariance
	Symmetry
	Duality
	Additive Intervals
	Comparison with Classical Discrete Calculus
	Series Expansion of Operators
	Definite Summation
	Definite Difference
	Constants
	Anti-Constants
	Equivalence Relation

	Summation and Differentiation Algorithms
	Functional Equation
	Classical Summation
	Infinitesimal Calculus
	Operator Expansion
	Duplication
	Scaling
	Operators in Product Representation
	Laplace Transformation
	Euler-Maclaurin Summation
	Half Fraction
	Products
	Product Pattern
	Multiple Summation and Differentiation
	Taylor Expansion and Elementary Polynomials
	Local Approximation
	Periodic Numerical Data

	Special Functions
	Exponential Function
	Hyperbolic Functions
	Trigonometric Functions
	Differences of Integer Powers
	Sums of Integer Powers
	Rational Functions
	Logarithms
	Polygamma Function
	Factorials and Gamma Function
	Binomials
	Complex Powers of x
	Miscellaneous Functions
	Trigonometric Products

	Bibliography

